Michael C Antle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/85351/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Longitudinal Location Influences Preference for Daylight Saving Time. Journal of Biological Rhythms, 2022, 37, 343-348.	2.6	4
2	Early life circadian rhythm disruption in mice alters brain and behavior in adulthood. Scientific Reports, 2022, 12, 7366.	3.3	8
3	Anticipation of Scheduled Feeding in BTBR Mice Reveals Independence and Interactions Between the Light- and Food-Entrainable Circadian Clocks. Frontiers in Integrative Neuroscience, 2022, 16, .	2.1	2
4	Circadian Responses to Light in the BTBR Mouse. Journal of Biological Rhythms, 2022, 37, 498-515.	2.6	4
5	Gestational low-dose BPA exposure impacts suprachiasmatic nucleus neurogenesis and circadian activity with transgenerational effects. Science Advances, 2021, 7, .	10.3	29
6	Examination of Zinc in the Circadian System. Neuroscience, 2020, 432, 15-29.	2.3	2
7	Modeling the Influence of Synaptic Plasticity on After-effects. Journal of Biological Rhythms, 2019, 34, 645-657.	2.6	1
8	Investigating the Role of the Hypothalamus in Outcomes to Repetitive Mild Traumatic Brain Injury: Neonatal Monosodium Glutamate Does Not Exacerbate Deficits. Neuroscience, 2019, 413, 264-278.	2.3	12
9	Behavior of Adult 5-HT1A Receptor Knockout Mice Exposed to Stress During Prenatal Development. Neuroscience, 2018, 371, 16-28.	2.3	8
10	Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents. Nature Medicine, 2017, 23, 355-360.	30.7	130
11	Circadian behavior of adult mice exposed to stress and fluoxetine during development. Psychopharmacology, 2017, 234, 793-804.	3.1	17
12	Chronic <scp>BMY</scp> 7378 treatment alters behavioral circadian rhythms. European Journal of Neuroscience, 2017, 46, 2782-2790.	2.6	1
13	Activation of M1/4 receptors phase advances the hamster circadian clock during the day. Neuroscience Letters, 2016, 621, 22-27.	2.1	8
14	Phase shifts to light are altered by antagonists to neuropeptide receptors. Neuroscience, 2016, 327, 115-124.	2.3	8
15	The cholinergic forebrain arousal system acts directly on the circadian pacemaker. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13498-13503.	7.1	36
16	Neural activity in the suprachiasmatic circadian clock of nocturnal mice anticipating a daytime meal. Neuroscience, 2016, 315, 91-103.	2.3	17
17	Postictal behavioural impairments are due to a severe prolonged hypoperfusion/hypoxia event that is COX-2 dependent. ELife, 2016, 5, .	6.0	96
18	Triptans attenuate circadian responses to light. European Journal of Neuroscience, 2015, 42, 2489-2495.	2.6	2

MICHAEL C ANTLE

#	Article	IF	CITATIONS
19	Serotonergic enhancement of circadian responses to light: role of the raphe and intergeniculate leaflet. European Journal of Neuroscience, 2015, 42, 2805-2817.	2.6	15
20	Sleep: Neural Systems. , 2015, , 87-93.		2
21	Circadian Insights into Motivated Behavior. Current Topics in Behavioral Neurosciences, 2015, 27, 137-169.	1.7	30
22	Temporal changes of light-induced proteins in the SCN following treatment with the serotonin mixed agonist/antagonist BMY7378. Experimental Brain Research, 2015, 233, 2723-2731.	1.5	4
23	Effects of lighting condition on circadian behavior in 5-HT1A receptor knockout mice. Physiology and Behavior, 2015, 139, 136-144.	2.1	11
24	The serotonergic anxiolytic buspirone attenuates circadian responses to light. European Journal of Neuroscience, 2014, 40, 3512-3525.	2.6	8
25	Regulation of circadian rhythms in mammals by behavioral arousal Behavioral Neuroscience, 2014, 128, 304-325.	1.2	49
26	Mindfulness-Based Stress Reduction Compared With Cognitive Behavioral Therapy for the Treatment of Insomnia Comorbid With Cancer: A Randomized, Partially Blinded, Noninferiority Trial. Journal of Clinical Oncology, 2014, 32, 449-457.	1.6	247
27	Phase delays to light and gastrin-releasing peptide require the protein kinase A pathway. Neuroscience Letters, 2014, 559, 24-29.	2.1	9
28	Survival of Adult Generated Hippocampal Neurons Is Altered in Circadian Arrhythmic Mice. PLoS ONE, 2014, 9, e99527.	2.5	32
29	The effects of perinatal fluoxetine treatment on the circadian system of the adult mouse. Psychopharmacology, 2013, 225, 743-751.	3.1	16
30	Lesion Size and Behavioral Deficits after Endothelin-1–Induced Ischemia are not Dependent on Time of Day. Journal of Stroke and Cerebrovascular Diseases, 2013, 22, 397-405.	1.6	9
31	Serotonin 1A Receptors Alter Expression of Movement Representations. Journal of Neuroscience, 2013, 33, 4988-4999.	3.6	17
32	Bi-Parental Care Contributes to Sexually Dimorphic Neural Cell Genesis in the Adult Mammalian Brain. PLoS ONE, 2013, 8, e62701.	2.5	8
33	Methylphenidate Modifies the Motion of the Circadian Clock. Neuropsychopharmacology, 2012, 37, 2446-2455.	5.4	46
34	Amplitude of the SCN Clock Enhanced by the Behavioral Activity Rhythm. PLoS ONE, 2012, 7, e39693.	2.5	83
35	I-CAN SLEEP: Rationale and design of a non-inferiority RCT of Mindfulness-based Stress Reduction and Cognitive Behavioral Therapy for the treatment of Insomnia in CANcer survivors. Contemporary Clinical Trials, 2011, 32, 747-754.	1.8	22
36	High frequency stimulation of the subthalamic nucleus acutely rescues motor deficits and neocortical movement representations following 6-hydroxydopamine administration in rats. Experimental Neurology, 2011, 231, 82-90.	4.1	18

MICHAEL C ANTLE

#	Article	IF	CITATIONS
37	Entrainment of circadian clocks in mammals by arousal and food. Essays in Biochemistry, 2011, 49, 119-136.	4.7	88
38	Characterization of the 3xTg-AD mouse model of Alzheimer's disease: Part 1. Circadian changes. Brain Research, 2010, 1348, 139-148.	2.2	161
39	Characterization of the 3xTg-AD mouse model of Alzheimer's disease: Part 2. Behavioral and cognitive changes. Brain Research, 2010, 1348, 149-155.	2.2	182
40	Phenotype and function of raphe projections to the suprachiasmatic nucleus. European Journal of Neuroscience, 2010, 31, 1974-1983.	2.6	30
41	Investigating the role of substance P in photic responses of the circadian system: Individual and combined actions with gastrin-releasing peptide. Neuropharmacology, 2010, 58, 277-285.	4.1	7
42	Serotonergic potentiation of photic phase shifts: examination of receptor contributions and early biochemical/molecular events. Neuroscience, 2010, 165, 16-27.	2.3	13
43	Neonatal Medial Frontal Cortex Lesions Disrupt Circadian Activity Patterns. Developmental Neuroscience, 2009, 31, 412-419.	2.0	3
44	Physiological responses of the circadian clock to acute light exposure at night. Reviews in Endocrine and Metabolic Disorders, 2009, 10, 279-291.	5.7	55
45	Nonserotonergic projection neurons in the midbrain raphe nuclei contain the vesicular glutamate transporter VGLUT3. Synapse, 2009, 63, 31-41.	1.2	52
46	Neural basis of timing and anticipatory behaviors. European Journal of Neuroscience, 2009, 30, 1643-1649.	2.6	48
47	A Single Generalized Seizure Alters the Amplitude, but Not Phase, of the Circadian Activity Rhythm of the Hamster. Chronobiology International, 2009, 26, 1-13.	2.0	15
48	Neocortical movement representations are reduced and reorganized following bilateral intrastriatal 6-hydroxydopamine infusion and dopamine type-2 receptor antagonism. Experimental Neurology, 2009, 220, 162-170.	4.1	23
49	Nonâ€photic phase shifting of the circadian clock: role of the extracellular signalâ€responsive kinases I/II/mitogenâ€activated protein kinase pathway. European Journal of Neuroscience, 2008, 28, 2511-2518.	2.6	17
50	Enhancement of photic shifts with the 5-HT1A mixed agonist/antagonist NAN-190: Intra-suprachiasmatic nucleus pathway. Neuroscience, 2008, 153, 571-580.	2.3	22
51	Altered photic and non-photic phase shifts in 5-HT1A receptor knockout mice. Neuroscience, 2008, 157, 513-523.	2.3	35
52	The Circadian Clock: Physiology, Genes, and Disease. , 2008, , 481-499.		1
53	Non-Photic Modulation of Phase Shifts to Long Light Pulses. Journal of Biological Rhythms, 2007, 22, 524-533.	2.6	12
54	Gates and Oscillators II: Zeitgebers and the Network Model of the Brain Clock. Journal of Biological Rhythms, 2007, 22, 14-25.	2.6	56

MICHAEL C ANTLE

#	Article	IF	CITATIONS
55	Modeling the Behavior of Coupled Cellular Circadian Oscillators in the Suprachiasmatic Nucleus. Journal of Biological Rhythms, 2007, 22, 211-219.	2.6	30
56	The enigma of behavioral inputs to the circadian clock: A test of function using restraint. Physiology and Behavior, 2006, 87, 948-954.	2.1	8
57	Neurogenesis and ontogeny of specific cell phenotypes within the hamster suprachiasmatic nucleus. Developmental Brain Research, 2005, 157, 8-18.	1.7	31
58	Signaling within the Master Clock of the Brain: Localized Activation of Mitogen-Activated Protein Kinase by Gastrin-Releasing Peptide. Journal of Neuroscience, 2005, 25, 2447-2454.	3.6	79
59	Orchestrating time: arrangements of the brain circadian clock. Trends in Neurosciences, 2005, 28, 145-151.	8.6	405
60	Temporal and spatial expression patterns of canonical clock genes and clockâ€controlled genes in the suprachiasmatic nucleus. European Journal of Neuroscience, 2004, 19, 1741-1748.	2.6	120
61	The role of Period1 in non-photic resetting of the hamster circadian pacemaker in the suprachiasmatic nucleus. Neuroscience Letters, 2004, 362, 87-90.	2.1	40
62	Orcadian Rhythms. , 2004, , 183-194.		0
63	Food- and light-entrained circadian rhythms in rats with hypocretin-2-saporin ablations of the lateral hypothalamus. Brain Research, 2003, 980, 161-168.	2.2	44
64	Response of the Mouse Circadian System to Serotonin 1A/2/7 Agonists in vivo: Surprisingly Little. Journal of Biological Rhythms, 2003, 18, 145-158.	2.6	72
65	Gates and Oscillators: A Network Model of the Brain Clock. Journal of Biological Rhythms, 2003, 18, 339-350.	2.6	116
66	Circadian Clock Resetting by Sleep Deprivation without Exercise in Syrian Hamsters: Dark Pulses Revisited. Journal of Biological Rhythms, 2002, 17, 227-237.	2.6	43
67	Activity-induced circadian clock resetting in the Syrian hamster: effects of melatonin. Neuroscience Letters, 2002, 317, 5-8.	2.1	2
68	Circadian rhythms of activity and drinking in mice lacking angiotensin II 1A receptors. Physiology and Behavior, 2001, 74, 457-464.	2.1	8
69	Sleep deprivation stimulates serotonin release in the suprachiasmatic nucleus. NeuroReport, 2000, 11, 1929-1932.	1.2	84
70	5-HT1A autoreceptor antagonist-induced 5-HT release in the hamster suprachiasmatic nuclei: effects on circadian clock resetting. Neuroscience Letters, 2000, 282, 97-100.	2.1	15
71	Neonatal monosodium glutamate alters circadian organization of feeding, food anticipatory activity and photic masking in the rat. Brain Research, 1999, 842, 73-83.	2.2	47
72	Behavioral inhibition of light-induced circadian phase resetting is phase and serotonin dependent. Brain Research, 1998, 786, 31-38.	2.2	80

#	Article	IF	CITATIONS
73	Serotonin antagonists do not attenuate activity-induced phase shifts of circadian rhythms in the Syrian hamster. Brain Research, 1998, 813, 139-149.	2.2	50