
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8534613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantum Mechanical Meaning of the Charge Transfer Resistance. Journal of Physical Chemistry C, 2022, 126, 3151-3162.	3.1	9
2	An outlook on electrochemical approaches for molecular diagnostics assays and discussions on the limitations of miniaturized technologies for point-of-care devices. Sensors and Actuators Reports, 2022, 4, 100087.	4.4	25
3	Quantum rate dynamics and charge screening at the nanoscale level. Physical Chemistry Chemical Physics, 2022, 24, 16200-16206.	2.8	5
4	Introducing polymer conductance in diagnostically relevant transduction. Biosensors and Bioelectronics, 2021, 172, 112705.	10.1	6
5	Impact of surface roughness on the self-assembling of molecular films onto gold electrodes for label-free biosensing applications. Electrochimica Acta, 2021, 378, 138137.	5.2	15
6	Low-fouling properties in serum of carboxylic-oligo(ethylene glycol)-based interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126426.	4.7	0
7	Density of States of a Nanoscale Semiconductor Interface as a Transduction Signal for Sensing Molecules. ACS Applied Electronic Materials, 2021, 3, 3411-3417.	4.3	5
8	The density-of-States and equilibrium charge dynamics of redox-active switches. Electrochimica Acta, 2021, 387, 138410.	5.2	8
9	Perspective on Quantum Electrochemistry. A Simple Method for Measuring the Electron Transfer Rate Constant. Electrochimica Acta, 2021, , 139219.	5.2	8
10	Sensing the quantized reactivity of graphene. Analytica Chimica Acta, 2021, 1177, 338735.	5.4	2
11	Measuring quantum conductance and capacitance of graphene using impedance-derived capacitance spectroscopy. Carbon, 2021, 184, 821-827.	10.3	16
12	Ab Initio QM/MM Simulation of Ferrocene Homogeneous Electron-Transfer Reaction. Journal of Physical Chemistry A, 2021, 125, 25-33.	2.5	7
13	Improving the Analytical Reproducibility of Electrochemical Capacitive Sensors Using the Chemical Hardness of the Interface. IEEE Access, 2021, 9, 166446-166454.	4.2	0
14	Varistor technology based on SnO2. , 2020, , 321-343.		3
15	Serological point-of-care and label-free capacitive diagnosis of dengue virus infection. Biosensors and Bioelectronics, 2020, 151, 111972.	10.1	33
16	Charge transport and energy storage at the molecular scale: from nanoelectronics to electrochemical sensing. Chemical Society Reviews, 2020, 49, 7505-7515.	38.1	39
17	The importance of the assembling of DNA strands on the performance of electrochemical genosensors. Microchemical Journal, 2020, 159, 105358.	4.5	7
18	Comparing glucose and urea enzymatic electrochemical and optical biosensors based on polyaniline thin films. Analytical Methods, 2020, 12, 4199-4210.	2.7	19

#	Article	IF	CITATIONS
19	Label-free capacitive assaying of biomarkers for molecular diagnostics. Nature Protocols, 2020, 15, 3879-3893.	12.0	31
20	Electron transfer and conductance quantum. Physical Chemistry Chemical Physics, 2020, 22, 26109-26112.	2.8	16
21	Two-Dimensional Nature and the Meaning of the Density of States in Redox Monolayers. Journal of Physical Chemistry C, 2020, 124, 14918-14927.	3.1	6
22	The nanoscopic principles of capacitive ion sensing interfaces. Physical Chemistry Chemical Physics, 2020, 22, 3770-3774.	2.8	15
23	Introducing mesoscopic charge transfer rates into molecular electronics. Physical Chemistry Chemical Physics, 2020, 22, 10828-10832.	2.8	14
24	Real-Time Monitoring of Electrochromic Memory Loss of Layered α-MoO3 Nanoplates. Journal of the Electrochemical Society, 2020, 167, 166509.	2.9	2
25	Perspectives on and Precautions for the Uses of Electric Spectroscopic Methods in Label-free Biosensing Applications. ACS Sensors, 2019, 4, 2216-2227.	7.8	56
26	Chemical Hardness of Mesoscopic Electrochemical Systems Directly Analyzed from Experimental Data. Journal of Physical Chemistry C, 2019, 123, 21213-21223.	3.1	22
27	Nanoscale origins of super-capacitance phenomena. Journal of Power Sources, 2019, 414, 420-434.	7.8	48
28	Pseudocapacitance phenomena and applications in biosensing devices. Electrochimica Acta, 2019, 306, 175-184.	5.2	21
29	A nanoscale redox-active composite as a low-fouling interface for capacitive assaying. Sensors and Actuators B: Chemical, 2019, 291, 493-501.	7.8	11
30	Field effect in molecule-gated switches and the role of target-to-receptor size ratio in biosensor sensitivity. Biosensors and Bioelectronics, 2019, 127, 215-220.	10.1	15
31	Redox Capacitive Assaying of C-Reactive Protein at a Peptide Supported Aptamer Interface. Analytical Chemistry, 2018, 90, 3005-3008.	6.5	66
32	Mapping molecular binding by means of conformational dynamics measurements. RSC Advances, 2018, 8, 867-876.	3.6	4
33	A dual marker label free electrochemical assay for Flavivirus dengue diagnosis. Biosensors and Bioelectronics, 2018, 100, 519-525.	10.1	46
34	Common Principles of Molecular Electronics and Nanoscale Electrochemistry. Analytical Chemistry, 2018, 90, 7095-7106.	6.5	40
35	Reagentless Detection of Low-Molecular-Weight Triamterene Using Self-Doped TiO2 Nanotubes. Analytical Chemistry, 2018, 90, 7651-7658.	6.5	17
36	Nanoscale Electrochemistry of Molecular Contacts. SpringerBriefs in Applied Sciences and Technology, 2018, , .	0.4	25

#	Article	IF	CITATIONS
37	Electrochemistry and First Principles of Quantum Mechanics. SpringerBriefs in Applied Sciences and Technology, 2018, , 27-49.	0.4	1
38	Introduction to Fundamental Concepts. SpringerBriefs in Applied Sciences and Technology, 2018, , 1-26.	0.4	0
39	Field Effect and Applications. SpringerBriefs in Applied Sciences and Technology, 2018, , 51-81.	0.4	0
40	Conceptual density functional theory for electron transfer and transport in mesoscopic systems. Physical Chemistry Chemical Physics, 2017, 19, 6184-6195.	2.8	12
41	Mesoscopic behaviour of multi-layered graphene: the meaning of supercapacitance revisited. Physical Chemistry Chemical Physics, 2017, 19, 6792-6806.	2.8	20
42	ArtinM Binding Effinities and Kinetic Interaction with Leukemia Cells: A Quartz Crystal Microbalance Bioelectroanalysis on the Cytotoxic Effect. Electroanalysis, 2017, 29, 1554-1558.	2.9	3
43	Mapping the ionic fingerprints of molecular monolayers. Physical Chemistry Chemical Physics, 2017, 19, 15098-15109.	2.8	22
44	Quantum capacitance as a reagentless molecular sensing element. Nanoscale, 2017, 9, 15362-15370.	5.6	34
45	Optimized electrochemical biosensor for human prostatic acid phosphatase. Sensors and Actuators B: Chemical, 2017, 253, 1106-1112.	7.8	11
46	Versatile electroanalysis of cellular receptor: The case of Toll-like immune receptors evaluated on transfected human cell. Sensors and Actuators B: Chemical, 2017, 241, 1002-1007.	7.8	0
47	The capacitive sensing of NS1 Flavivirus biomarker. Biosensors and Bioelectronics, 2017, 87, 949-956.	10.1	80
48	Density functional theory and an experimentally-designed energy functional of electron density. Physical Chemistry Chemical Physics, 2016, 18, 25984-25992.	2.8	36
49	The Mesoscopic Electrochemistry of Molecular Junctions. Scientific Reports, 2016, 6, 18400.	3.3	28
50	The selfâ€assembly of redox active peptides: Synthesis and electrochemical capacitive behavior. Biopolymers, 2016, 106, 357-367.	2.4	19
51	Glycoprotein assay based on the optimized immittance signal of a redox tagged and lectin-based receptive interface. Biosensors and Bioelectronics, 2016, 83, 368-378.	10.1	15
52	Evidence for Conformational Mechanism on the Binding of TgMIC4 with β-Galactose-Containing Carbohydrate Ligand. Langmuir, 2015, 31, 12111-12119.	3.5	6
53	Biochemical Capacitance of <i>Geobacter Sulfurreducens</i> Biofilms. ChemSusChem, 2015, 8, 2492-2495.	6.8	6
54	Optimized Diagnostic Assays Based on Redox Tagged Bioreceptive Interfaces. Analytical Chemistry, 2015, 87, 12137-12144.	6.5	29

#	Article	IF	CITATIONS
55	Redox-tagged peptide for capacitive diagnostic assays. Biosensors and Bioelectronics, 2015, 68, 281-287.	10.1	37
56	Graphene-based protein biomarker detection. Bioanalysis, 2015, 7, 725-742.	1.5	26
57	Capacitance spectroscopy and density functional theory. Physical Chemistry Chemical Physics, 2015, 17, 9375-9382.	2.8	45
58	An impedimetric biosensor to test neat serum for dengue diagnosis. Sensors and Actuators B: Chemical, 2015, 213, 150-154.	7.8	74
59	Sensitive label-free electron chemical capacitive signal transduction for D-dimer electroanalysis. Electrochimica Acta, 2015, 182, 946-952.	5.2	30
60	Immittance Electroanalysis in Diagnostics. Analytical Chemistry, 2015, 87, 944-950.	6.5	35
61	Pitahaya Aging Diagnostic by Impedance/Capacitance Spectroscopy. Food Analytical Methods, 2015, 8, 126-129.	2.6	4
62	Evaluating the Equilibrium Association Constant between ArtinM Lectin and Myeloid Leukemia Cells by Impedimetric and Piezoelectric Label Free Approaches. Biosensors, 2014, 4, 358-369.	4.7	12
63	Comparing label free electrochemical impedimetric and capacitive biosensing architectures. Biosensors and Bioelectronics, 2014, 57, 96-102.	10.1	77
64	Critical Water Effect on the Plasmon Band and Visible Light Activity of Au/ZnO Nanocomposites. Journal of Physical Chemistry C, 2014, 118, 2018-2027.	3.1	13
65	Impedance-derived electrochemical capacitance spectroscopy for the evaluation of lectin–glycoprotein binding affinity. Biosensors and Bioelectronics, 2014, 62, 102-105.	10.1	39
66	Measuring Quantum Capacitance in Energetically Addressable Molecular Layers. Analytical Chemistry, 2014, 86, 1337-1341.	6.5	62
67	Label-free Capacitive Diagnostics: Exploiting Local Redox Probe State Occupancy. Analytical Chemistry, 2014, 86, 2559-2564.	6.5	67
68	Elucidating Redox-Level Dispersion and Local Dielectric Effects within Electroactive Molecular Films. Analytical Chemistry, 2014, 86, 1997-2004.	6.5	44
69	Penicillinase-based amperometric biosensor for penicillin G. Electrochemistry Communications, 2014, 38, 131-133.	4.7	42
70	Propiedades Eléctricas en membranas de Complejos Electrolitos Poliméricos PVA-OH/Ll2SO4/PEG400. Polimeros, 2014, 24, 170-175.	0.7	1
71	EFFECTS OF SURFACE ROUGHNESS ON PROPERTIES OF PASSIVATION OF SELF-ASSEMBLED ORGANIC MONOLAYERS. Quimica Nova, 2014, , .	0.3	1
72	Label free redox capacitive biosensing. Biosensors and Bioelectronics, 2013, 50, 437-440.	10.1	74

#	Article	IF	CITATIONS
73	A Facile Measurement of Heterogeneous Electron Transfer Kinetics. Analytical Chemistry, 2013, 85, 10920-10926.	6.5	6
74	INSEL: an in silico method for optimizing and exploring biorecognition assays. Chemical Communications, 2013, 49, 10868.	4.1	9
75	Elucidating Capacitance and Resistance Terms in Confined Electroactive Molecular Layers. Analytical Chemistry, 2013, 85, 411-417.	6.5	58
76	An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood. Biosensors and Bioelectronics, 2013, 39, 94-98.	10.1	192
77	Elucidation of Carbohydrate Molecular Interaction Mechanism of Recombinant and Native ArtinM. Journal of Physical Chemistry B, 2013, 117, 8360-8369.	2.6	6
78	Electrogravimetric Analysis by Quartz-Crystal Microbalance on the Consumption of the Neurotransmitter Acetylcholine by Acetylcholinesterase. Analytical Letters, 2013, 46, 258-265.	1.8	7
79	Jacalin interaction with human immunoglobulin A1 and bovine immunoglobulin G1: Affinity constant determined by piezoelectric biosensoring. Glycobiology, 2012, 22, 326-331.	2.5	8
80	DNA hybridization mechanism in an interfacial environment: What hides beneath first order k (sâ^'1) kinetic constant?. Sensors and Actuators B: Chemical, 2012, 171-172, 522-527.	7.8	5
81	Capacitance Spectroscopy: A Versatile Approach To Resolving the Redox Density of States and Kinetics in Redox-Active Self-Assembled Monolayers. Journal of Physical Chemistry B, 2012, 116, 8822-8829.	2.6	85
82	Sensitive Affimer and Antibody Based Impedimetric Label-Free Assays for C-Reactive Protein. Analytical Chemistry, 2012, 84, 6553-6560.	6.5	68
83	Impedance Spectroscopy Analysis of the Effect of TiO ₂ Blocking Layers on the Efficiency of Dye Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 12415-12421.	3.1	73
84	A Dielectric Model of Self-Assembled Monolayer Interfaces by Capacitive Spectroscopy. Langmuir, 2012, 28, 9689-9699.	3.5	79
85	Determinação dos parâmetros cinéticos e termodinâmicos da adsorção de L-cisteÃna em ouro por me da técnica de microbalança a cristal de quartzo. Quimica Nova, 2012, 35, 1365-1368.	0.3	1
86	Resistive-Switching Behavior in Polycrystalline CaCu ₃ Ti ₄ O ₁₂ Nanorods. ACS Applied Materials & Interfaces, 2011, 3, 500-504.	8.0	28
87	Nanoscale electromechanical properties of CaCu3Ti4O12 ceramics. Journal of Applied Physics, 2011, 110,	2.5	37
88	Platinum-coated nanostructured oxides for active catalytic electrodes. Catalysis Communications, 2011, 14, 58-61.	3.3	4
89	Quartz crystal microbalance as a tool for kinetic enzymatic assays by variation of pH. Analytical Biochemistry, 2011, 418, 152-154.	2.4	4
90	Synthesis and characterization of mesoporous TiO2 nanostructured films prepared by a modified sol–gel method for application in dye solar cells. Ceramics International, 2011, 37, 1017-1024.	4.8	105

#	Article	IF	CITATIONS
91	Doping saturation in dye-sensitized solar cells based on ZnO:Ga nanostructured photoanodes. Electrochimica Acta, 2011, 56, 6503-6509. Nanoscale effects and polaronic relaxation in <mml:math< td=""><td>5.2</td><td>36</td></mml:math<>	5.2	36
92	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.gif" display="inline" overflow="scroll"> <mml:msub><mml:mrow><mml:mstyle mathvariant="normal"><mml:mi>CaCu</mml:mi></mml:mstyle </mml:mrow><mml:mrow><mml:mn>3mathvariant="normal"><mml:mi>Ti</mml:mi></mml:mn></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub>	mn>: <td>l:mřow>ow></td>	l:mřow>ow>
93	mathvariant="normal"> <mml:mi>O<. Solid State Communications, 2011, 151, 173-176. The dielectric suppress and the control of semiconductor non-Ohmic feature of CaCu3Ti4O12 by means of tin doping. Applied Physics Letters, 2011, 98, 132906.</mml:mi>	3.3	35
94	Electrochemical capacitance spectroscopy and capacitive relaxation of the changeover process in iron hexacyanoferrate molecular compound. Electrochimica Acta, 2010, 55, 6147-6155.	5.2	7
95	Real-time monitoring and kinetic parameter estimation of the affinity interaction of jArtinM and rArtinM with peroxidase glycoprotein by the electrogravimetric technique. Biosensors and Bioelectronics, 2010, 26, 36-42.	10.1	32
96	Sol–gel synthesis of mesoporous CaCu3Ti4O12 thin films and their gas sensing response. Journal of Solid State Chemistry, 2010, 183, 1209-1214.	2.9	53
97	The effect of TiO ₂ on the microstructural and electrical properties of low voltage varistor based on (Sn,Ti)O ₂ ceramics. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 457-461.	1.8	12
98	Lowâ€Temperature Sputtering Deposition of Aligned Polycrystalline CaCu ₃ Ti ₄ O ₁₂ Nanorods. Journal of the American Ceramic Society, 2010, 93, 51-54.	3.8	9
99	Microstructural and nonohmic properties of ZnO.Pr6O11 CoO polycrystalline system. Materials Research, 2010, 13, 29-34.	1.3	7
100	Influence of degradation on the electrical conduction process in ZnO and SnO2-based varistors. Journal of Applied Physics, 2010, 108, .	2.5	19
101	Electrogravimetric Real-Time and in Situ Michaelisâ^'Menten Enzimatic Kinetics: Progress Curve of Acetylcholinesterase Hydrolysis. Journal of Physical Chemistry B, 2010, 114, 16605-16610.	2.6	12
102	Electronic Perspective on the Electrochemistry of Prussian Blue Films. Journal of the Electrochemical Society, 2009, 156, P74.	2.9	24
103	Impedance spectroscopy study of solid-state dye-sensitized solar cells with varying Spiro-OMeTAD concentration. Materials Research Society Symposia Proceedings, 2009, 1211, 1.	0.1	0
104	An Electronic Perspective On The Electrochemical Changeover In Prussian Blue-Like Materials. ECS Transactions, 2009, 16, 151-162.	0.5	0
105	Evaluation of the effect of the stoichiometric ratio of Ca/Cu on the electrical and microstructural properties of the CaCu ₃ Ti ₄ O ₁₂ polycrystalline system. Journal Physics D: Applied Physics, 2009, 42, 185503.	2.8	55
106	A polaronic stacking fault defect model for CaCu ₃ Ti ₄ O ₁₂ material: an approach for the origin of the huge dielectric constant and semiconducting coexistent features. Journal Physics D: Applied Physics, 2009, 42, 055404.	2.8	143
107	Preparation of CeO2 by a simple microwave–hydrothermal method. Solid State Ionics, 2009, 180, 288-291.	2.7	81
108	The influence of area/volume ratio on microstructure and non-Ohmic properties of SnO2-based varistor ceramic blocks. Journal of Materials Science: Materials in Electronics, 2009, 20, 49-54.	2.2	12

#	Article	IF	CITATIONS
109	Application of impedance spectroscopy to evaluate the effect of different setting accelerators on the developed microstructures of calcium phosphate cements. Journal of Materials Science: Materials in Medicine, 2009, 20, 1619-1627.	3.6	5
110	Electrical relaxation in proton conductor composites based on (NH4)H2PO4/TiO2. Ionics, 2009, 15, 329-336.	2.4	12
111	Dielectric relaxation and dc conductivity on the PVOH-CF3COONH4 polymer system. Ionics, 2009, 15, 537-544.	2.4	21
112	Impedance spectroscopy analysis of TiO2 thin film gas sensors obtained from water-based anatase colloids. Sensors and Actuators B: Chemical, 2009, 139, 447-452.	7.8	48
113	The effect of cooling rate during hydrothermal synthesis of ZnO nanorods. Journal of Crystal Growth, 2009, 311, 4102-4108.	1.5	49
114	Kinetics of interface state-limited hole injection in α-naphthylphenylbiphenyl diamine (α-NPD) thin layers. Synthetic Metals, 2009, 159, 480-486.	3.9	13
115	Comparison of non-Ohmic accelerated ageing of the ZnO- and SnO ₂ -based voltage dependent resistors. Journal Physics D: Applied Physics, 2009, 42, 015503.	2.8	27
116	Surface Passivation of Nanoporous TiO ₂ via Atomic Layer Deposition of ZrO ₂ for Solid-State Dye-Sensitized Solar Cell Applications. Journal of Physical Chemistry C, 2009, 113, 18385-18390.	3.1	141
117	Electrochromic Switching Mechanism of Iron Hexacyanoferrates Molecular Compounds: The Role of Fe ²⁺ (CN) ₆ Vacancies. Journal of Physical Chemistry C, 2009, 113, 9916-9920.	3.1	27
118	Electrochemistry, Nanomaterials, and Nanostructures. Nanostructure Science and Technology, 2009, , 81-149.	0.1	4
119	Grain size effect on the electrical response of SnO2 thin and thick film gas sensors. Materials Research, 2009, 12, 83-87.	1.3	16
120	Impedance spectroscopy analysis of SnO2 thick-films gas sensors. Journal of Materials Science: Materials in Electronics, 2008, 19, 1169-1175.	2.2	24
121	Influence of thermal annealing treatment in oxygen atmosphere on grain boundary chemistry and nonâ€ohmic properties of SnO ₂ ·MnO polycrystalline semiconductors. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 383-388.	1.8	4
122	Relationship between grainâ€boundary capacitance and bulk shallow donors in SnO ₂ polycrystalline semiconductor. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1694-1698.	1.8	10
123	SnO2, ZnO and related polycrystalline compound semiconductors: An overview and review on the voltage-dependent resistance (non-ohmic) feature. Journal of the European Ceramic Society, 2008, 28, 505-529.	5.7	252
124	Impedance of carrier injection at the metal–organic interface mediated by surface states in electron-only tris(8-hydroxyquinoline) aluminium (Alq3) thin layers. Chemical Physics Letters, 2008, 455, 242-248.	2.6	13
125	Coloring ionic trapping states in WO3 and Nb2O5 electrochromic materials. Electrochimica Acta, 2008, 53, 5533-5539.	5.2	34
126	Quartz Crystal Microbalance monitoring the real-time binding of lectin with carbohydrate with high and low molecular mass. Microchemical Journal, 2008, 89, 153-158.	4.5	24

#	Article	IF	CITATIONS
127	Conventional and microwave sintering of CaCu ₃ Ti ₄ O ₁₂ /CaTiO ₃ ceramic composites: non-ohmic and dielectric properties. Journal Physics D: Applied Physics, 2008, 41, 152004.	2.8	38
128	Comparative Electrical Behavior at Low and High Current of SnO ₂ ―and ZnOâ€Based Varistors. Journal of the American Ceramic Society, 2008, 91, 2402-2404.	3.8	38
129	Mechanical Properties and Dimensional Effects of ZnO- and SnO2-Based Varistors. Journal of the American Ceramic Society, 2008, 91, 3105-3108.	3.8	15
130	Photoluminescent CaCu ₃ Ti ₄ O ₁₂ â€Based Thin Films Synthesized by a Sol–Gel Method. Journal of the American Ceramic Society, 2008, 91, 4162-4164.	3.8	30
131	Preparation and characterization of ceria nanospheres by microwave-hydrothermal method. Materials Letters, 2008, 62, 4509-4511.	2.6	206
132	Reaction Pathway to the Synthesis of Anatase via the Chemical Modification of Titanium Isopropoxide with Acetic Acid. Chemistry of Materials, 2008, 20, 143-150.	6.7	140
133	Reply to Comment on "Reaction Pathway to the Synthesis of Anatase via the Chemical Modification of Titanium Isopropoxide with Acetic Acid― Chemistry of Materials, 2008, 20, 3541-3541.	6.7	4
134	Voltageâ^'Composition Profile and Synchrotron X-ray Structural Analysis of Low and High Temperature LixCoO2 Host Material. Journal of Physical Chemistry C, 2008, 112, 14655-14664.	3.1	8
135	Synchrotron Structural Characterization of Electrochemically Synthesized Hexacyanoferrates Containing K+: A Revisited Analysis of Electrochemical Redox. Journal of Physical Chemistry C, 2008, 112, 13264-13271.	3.1	50
136	Comparative degradation of ZnO- and SnO2-based polycrystalline non-ohmic devices by current pulse stress. Journal Physics D: Applied Physics, 2008, 41, 122002.	2.8	35
137	Resonant x-ray diffraction as a tool to calculate mixed valence ratios: Application to Prussian Blue materials. Applied Physics Letters, 2008, 92, 264103.	3.3	16
138	P -type semiconducting gas sensing behavior of nanoporous rf sputtered CaCu3Ti4O12 thin films. Applied Physics Letters, 2008, 92, .	3.3	32
139	Aspects of solid state formation and properties of Sn0.9Ti0.1O2 system doped with CoO and Nb2O5. Powder Diffraction, 2008, 23, S65-S69.	0.2	0
140	Dielectric behaviour of CaCu3Ti4O12-epoxy composites. Materials Research, 2008, 11, 85-88.	1.3	35
141	Separation of dielectric and space charge polarizations in CaCu3Ti4O12â^•CaTiO3 composite polycrystalline systems. Applied Physics Letters, 2007, 90, 142912.	3.3	34
142	Synthesis of SnO2 by chemical routes and its use in varistors production. Journal of the European Ceramic Society, 2007, 27, 3893-3896.	5.7	31
143	Admittance and dielectric spectroscopy of polycrystalline semiconductors. Journal of the European Ceramic Society, 2007, 27, 4313-4320.	5.7	39
144	Dye-sensitized solar cell architecture based on indium–tin oxide nanowires coated with titanium dioxide. Scripta Materialia, 2007, 57, 277-280.	5.2	64

#	Article	IF	CITATIONS
145	Qualitative evaluation of active potential barriers in SnO2-based polycrystalline devices by electrostatic force microscopy. Applied Physics A: Materials Science and Processing, 2007, 87, 793-796.	2.3	7
146	Thermodynamic Aspects of Ion Intercalation in KhFek[Fe(CN)6]l·mH2O Compounds:  Application to the Everit's Salt/Prussian Blue Transition. Journal of Physical Chemistry B, 2006, 110, 19364-19368.	2.6	7
147	Changeover during in Situ Compositional Modulation of Hexacyanoferrate (Prussian Blue) Material. Journal of the American Chemical Society, 2006, 128, 17146-17152.	13.7	42
148	Kinetic Aspects of Ion Exchange in KhFek[Fe(CN)6]l·mH2O Compounds:  A Combined Electrical and Mass Transfer Functions Approach. Journal of Physical Chemistry B, 2006, 110, 19352-19363.	2.6	20
149	Mechanism for Interplay between Electron and Ionic Fluxes in KhFek[Fe(CN)6]l·mH2O Compounds. Journal of Physical Chemistry B, 2006, 110, 2715-2722.	2.6	27
150	Mechanism for Interplay between Electron and Ionic Fluxes in KhFek[Fe(CN)6]l·mH2O Compounds. Journal of Physical Chemistry B, 2006, 110, 10208-10208.	2.6	3
151	Espectroscopia de impedância eletroquÃmica aplicada ao estudo das reações heterogêneas em ânodos dimensionalmente estáveis. Quimica Nova, 2006, 29, 796-804.	0.3	25
152	Mass/charge balance as a tool to estimate dimensional change in polypyrrole-based actuators. Electrochemistry Communications, 2006, 8, 195-199.	4.7	6
153	Electrochemical impedance spectroscopy as a tool to estimate thickness in PB films. Electrochemistry Communications, 2006, 8, 371-374.	4.7	10
154	How Cr2O3 influences the microstructure and nonohmic features of the SnO2(Cox, Mn1â^'x)O-based varistor system. Journal of the European Ceramic Society, 2006, 26, 1221-1229.	5.7	18
155	Nature of potential barrier in (Ca1/4,Cu3/4)TiO3 polycrystalline perovskite. Solid State Communications, 2006, 138, 1-4.	1.9	44
156	Importance of oxygen atmosphere to recover the ZnO-based varistors properties. Journal of Materials Science, 2006, 41, 6221-6227.	3.7	41
157	Non-Ohmic and dielectric properties of a Ca2Cu2Ti4O12 polycrystalline system. Applied Physics Letters, 2006, 89, 212102.	3.3	98
158	Dielectric spectroscopy analysis of CaCu3Ti4O12 polycrystalline systems. Applied Physics Letters, 2006, 89, 191117.	3.3	60
159	Electrostatic force microscopy as a tool to estimate the number of active potential barriers in dense non-Ohmic polycrystalline SnO2 devices. Applied Physics Letters, 2006, 89, 152102.	3.3	33
160	EQCM study during lithium insertion/deinsertion processes in Nb2O5 films prepared by polymeric precursor method. Solid State Ionics, 2005, 176, 1175-1180.	2.7	11
161	A Comparative Study of Thermal Conductivity in ZnO- and SnO2-Based Varistor Systems. Journal of the American Ceramic Society, 2005, 88, 2629-2631.	3.8	33
162	The failure analyses on ZnO varistors used in high tension devices. Journal of Materials Science, 2005, 40, 5591-5596.	3.7	24

#	Article	IF	CITATIONS
163	Crossover from capacitive to pseudoinductive charge-relaxation in organicâ^•polymeric light-emitting diodes. Applied Physics Letters, 2005, 87, 013505.	3.3	26
164	Hybrid Organicâ~'Inorganic Polymer:Â A New Approach for the Development of Decoupled Polymer Electrolytes. Chemistry of Materials, 2005, 17, 4561-4563.	6.7	29
165	Structural analysis of pure and LiCF3SO3-doped amorphous WO3 electrochromic films and discussion on coloration kinetics. Journal of Applied Physics, 2004, 96, 2102-2109.	2.5	31
166	Nonohmic behavior of SnO2-MnO polycrystalline ceramics. II. Analysis of admittance and dielectric spectroscopy. Journal of Applied Physics, 2004, 96, 3811-3817.	2.5	26
167	Nonohmic behavior of SnO2-MnO polycrystalline ceramics. I. Correlations between microstructural morphology and nonohmic features. Journal of Applied Physics, 2004, 96, 2693-2700.	2.5	22
168	Relaxation processes in the coloration of amorphous WO3 thin films studied by combined impedance and electro-optical measurements. Journal of Applied Physics, 2004, 96, 853-859.	2.5	34
169	Sol-Gel Non-hydrolytic Synthesis of a Nanocomposite Electrolyte for Application in Lithium-ion Devices. Materials Research Society Symposia Proceedings, 2004, 822, S3.1.1.	0.1	0
170	Sol–gel nonhydrolytic synthesis of a hybrid organic–inorganic electrolyte for application in lithium-ion devices. Solid State Ionics, 2004, 166, 83-88.	2.7	38
171	Quantitative structural analysis of the transition from LT-LixCoO2 to HT-LixCoO2 using the rietveld method: correlation between structure and electrochemical performance. Journal of Power Sources, 2004, 125, 103-113.	7.8	8
172	Thermal conductivity features of ZnO-based varistors using the laser-pulse method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 371, 377-381.	5.6	28
173	The Influence of Excess Precipitate on the Non-Ohmic Properties of SnO2-Based Varistors. , 2003, 10, 63-68.		24
174	Effect of the addition of ZnO seeds on the electrical proprieties of ZnO-based varistors. Materials Chemistry and Physics, 2003, 80, 512-516.	4.0	39
175	Li+ insertion into pure and doped amorphous WO3 films. Correlations between coloration kinetics, charge and mass accumulation. Solid State Ionics, 2003, 158, 415-426.	2.7	27
176	Sintering and mass transport features of (Sn,Ti)O2 polycrystalline ceramics. Journal of the European Ceramic Society, 2003, 23, 887-896.	5.7	53
177	Grain-boundary segregation and precipitates in La2O3 and Pr2O3 doped SnO2·CoO-based varistors. Journal of the European Ceramic Society, 2003, 23, 1875-1880.	5.7	33
178	lonic conductivity of Bi4Ti0.2V1.8O10.7 polycrystalline ceramics obtained by the polymeric precursor route. Materials Letters, 2003, 57, 2540-2544.	2.6	41
179	Nanostructured Li Ion Insertion Electrodes. 1. Discussion on Fast Transport and Short Path for Ion Diffusion. Journal of Physical Chemistry B, 2003, 107, 8868-8877.	2.6	92
180	Nonohmic behavior of SnO2.MnO2-based ceramics. Materials Research, 2003, 6, 279-283.	1.3	8

#	Article	IF	CITATIONS
181	Analysis of the admittance-frequency and capacitance–voltage of dense SnO2â‹CoO-based varistor ceramics. Journal of Applied Physics, 2002, 91, 6007-6014.	2.5	53
182	Influence of La2O3, Pr2O3 and CeO2 on the nonlinear properties of SnO2 multicomponent varistors. Materials Chemistry and Physics, 2002, 74, 150-153.	4.0	22
183	Lowâ€Voltage Varistor Based on (Sn,Ti)O ₂ Ceramics. Journal of the American Ceramic Society, 2002, 85, 282-284.	3.8	41
184	Synthesis and electrochromic behavior of lithium-doped WO3 films. Journal of Non-Crystalline Solids, 2001, 290, 115-121.	3.1	43
185	Role of oxygen at the grain boundary of metal oxide varistors: A potential barrier formation mechanism. Applied Physics Letters, 2001, 79, 48-50.	3.3	163
186	Dynamic Processes in the Coloration of WO[sub 3] by Lithium Insertion. Journal of the Electrochemical Society, 2001, 148, E302.	2.9	45
187	Electrochemical performance of cathodes based on LiMn2O4 spinel obtained by combustion synthesis. Journal of Power Sources, 2001, 97-98, 447-449.	7.8	23
188	Effect of oxidizing and reducing atmospheres on the electrical properties of dense SnO2-based varistors. Journal of the European Ceramic Society, 2001, 21, 161-167.	5.7	86
189	Sensitivity of SnO2 non-ohmic behavior to the sintering process and to the addition of La2O3. Journal of the European Ceramic Society, 2001, 21, 1179-1185.	5.7	27
190	Electrochromic properties of lithium doped WO3 films prepared by the sol–gel process. Electrochimica Acta, 2001, 46, 1977-1981.	5.2	41
191	Electrochromic properties of undoped and lithium doped Nb2O5 films prepared by the sol–gel method. Electrochimica Acta, 2001, 46, 2113-2118.	5.2	29
192	Ferroelectric and microstructural characteristics of SrBi2Ta2O9 thin films crystallized by the rapid thermal annealing process. Journal of Applied Physics, 2001, 89, 3416-3419.	2.5	19
193	Nature of the Schottky-type barrier of highly dense SnO2 systems displaying nonohmic behavior. Journal of Applied Physics, 2000, 88, 6545-6548.	2.5	99
194	Microstructure and electric properties of a SnO2 based varistor. Ceramics International, 1999, 25, 1-6.	4.8	102
195	Title is missing!. Journal of Materials Science: Materials in Electronics, 1999, 10, 321-327.	2.2	75
196	Theoretical models for ac impedance of finite diffusion layers exhibiting low frequency dispersion. Journal of Electroanalytical Chemistry, 1999, 475, 152-163.	3.8	228
197	Electrical properties of the SnO2-based varistor. Journal of Materials Science: Materials in Electronics, 1998, 9, 159-165.	2.2	65
198	Investigation of the electrical properties of SnO2 varistor system using impedance spectroscopy. Journal of Applied Physics, 1998, 84, 3700-3705.	2.5	150

#	Article	IF	CITATIONS
199	Title is missing!. Journal of Materials Science Letters, 1997, 16, 634-638.	0.5	127
200	A new SnO2-based varistor system. Journal of Materials Science Letters, 1995, 14, 692.	0.5	272