Paulo R Bueno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8534613/publications.pdf

Version: 2024-02-01

200 papers

7,360 citations

45 h-index 76900 74 g-index

201 all docs

201 docs citations

201 times ranked

6381 citing authors

#	Article	IF	CITATIONS
1	A new SnO2-based varistor system. Journal of Materials Science Letters, 1995, 14, 692.	0.5	272
2	SnO2, ZnO and related polycrystalline compound semiconductors: An overview and review on the voltage-dependent resistance (non-ohmic) feature. Journal of the European Ceramic Society, 2008, 28, 505-529.	5.7	252
3	Theoretical models for ac impedance of finite diffusion layers exhibiting low frequency dispersion. Journal of Electroanalytical Chemistry, 1999, 475, 152-163.	3.8	228
4	Preparation and characterization of ceria nanospheres by microwave-hydrothermal method. Materials Letters, 2008, 62, 4509-4511.	2.6	206
5	An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood. Biosensors and Bioelectronics, 2013, 39, 94-98.	10.1	192
6	Role of oxygen at the grain boundary of metal oxide varistors: A potential barrier formation mechanism. Applied Physics Letters, 2001, 79, 48-50.	3.3	163
7	Investigation of the electrical properties of SnO2 varistor system using impedance spectroscopy. Journal of Applied Physics, 1998, 84, 3700-3705.	2.5	150
8	A polaronic stacking fault defect model for CaCu ₃ 1i ₄ O ₁₂ material: an approach for the origin of the huge dielectric constant and semiconducting coexistent features. Journal Physics D: Applied Physics, 2009, 42, 055404.	2.8	143
9	Surface Passivation of Nanoporous TiO ₂ via Atomic Layer Deposition of ZrO ₂ for Solid-State Dye-Sensitized Solar Cell Applications. Journal of Physical Chemistry C, 2009, 113, 18385-18390.	3.1	141
10	Reaction Pathway to the Synthesis of Anatase via the Chemical Modification of Titanium Isopropoxide with Acetic Acid. Chemistry of Materials, 2008, 20, 143-150.	6.7	140
11	Title is missing!. Journal of Materials Science Letters, 1997, 16, 634-638.	0.5	127
12	Synthesis and characterization of mesoporous TiO2 nanostructured films prepared by a modified sol–gel method for application in dye solar cells. Ceramics International, 2011, 37, 1017-1024.	4.8	105
13	Microstructure and electric properties of a SnO2 based varistor. Ceramics International, 1999, 25, 1-6.	4.8	102
14	Nature of the Schottky-type barrier of highly dense SnO2 systems displaying nonohmic behavior. Journal of Applied Physics, 2000, 88, 6545-6548.	2.5	99
15	Non-Ohmic and dielectric properties of a Ca2Cu2Ti4O12 polycrystalline system. Applied Physics Letters, 2006, 89, 212102.	3.3	98
16	Nanostructured Li Ion Insertion Electrodes. 1. Discussion on Fast Transport and Short Path for Ion Diffusion. Journal of Physical Chemistry B, 2003, 107, 8868-8877.	2.6	92
17	Effect of oxidizing and reducing atmospheres on the electrical properties of dense SnO2-based varistors. Journal of the European Ceramic Society, 2001, 21, 161-167.	5 . 7	86
18	Capacitance Spectroscopy: A Versatile Approach To Resolving the Redox Density of States and Kinetics in Redox-Active Self-Assembled Monolayers. Journal of Physical Chemistry B, 2012, 116, 8822-8829.	2.6	85

#	Article	IF	CITATIONS
19	Preparation of CeO2 by a simple microwave–hydrothermal method. Solid State Ionics, 2009, 180, 288-291.	2.7	81
20	The capacitive sensing of NS1 Flavivirus biomarker. Biosensors and Bioelectronics, 2017, 87, 949-956.	10.1	80
21	A Dielectric Model of Self-Assembled Monolayer Interfaces by Capacitive Spectroscopy. Langmuir, 2012, 28, 9689-9699.	3.5	79
22	Comparing label free electrochemical impedimetric and capacitive biosensing architectures. Biosensors and Bioelectronics, 2014, 57, 96-102.	10.1	77
23	Title is missing!. Journal of Materials Science: Materials in Electronics, 1999, 10, 321-327.	2.2	75
24	Label free redox capacitive biosensing. Biosensors and Bioelectronics, 2013, 50, 437-440.	10.1	74
25	An impedimetric biosensor to test neat serum for dengue diagnosis. Sensors and Actuators B: Chemical, 2015, 213, 150-154.	7.8	74
26	Impedance Spectroscopy Analysis of the Effect of TiO ₂ Blocking Layers on the Efficiency of Dye Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 12415-12421.	3.1	73
27	Sensitive Affimer and Antibody Based Impedimetric Label-Free Assays for C-Reactive Protein. Analytical Chemistry, 2012, 84, 6553-6560.	6.5	68
28	Label-free Capacitive Diagnostics: Exploiting Local Redox Probe State Occupancy. Analytical Chemistry, 2014, 86, 2559-2564.	6.5	67
29	Redox Capacitive Assaying of C-Reactive Protein at a Peptide Supported Aptamer Interface. Analytical Chemistry, 2018, 90, 3005-3008.	6.5	66
30	Electrical properties of the SnO2-based varistor. Journal of Materials Science: Materials in Electronics, 1998, 9, 159-165.	2.2	65
31	Dye-sensitized solar cell architecture based on indium–tin oxide nanowires coated with titanium dioxide. Scripta Materialia, 2007, 57, 277-280.	5.2	64
32	Measuring Quantum Capacitance in Energetically Addressable Molecular Layers. Analytical Chemistry, 2014, 86, 1337-1341.	6.5	62
33	Dielectric spectroscopy analysis of CaCu3Ti4O12 polycrystalline systems. Applied Physics Letters, 2006, 89, 191117. Nanoscale effects and polaronic relaxation in <mml:math< td=""><td>3.3</td><td>60</td></mml:math<>	3.3	60
34	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.gif" display="inline" overflow="scroll"> <mml:msub><mml:mrow><mml:mstyle mathvariant="normal"><mml:mi>CaCu</mml:mi></mml:mstyle></mml:mrow><mml:mrow><mml:mn>3<mml:mi>Ti</mml:mi></mml:mn></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub>	nn ^{1.9} /mml <td>:mfow></td>	:mfow>
35	mathvariant="normal"> <mml:mi>O<. Solid State Communications, 2011, 151, 173-176. Elucidating Capacitance and Resistance Terms in Confined Electroactive Molecular Layers. Analytical Chemistry, 2013, 85, 411-417.</mml:mi>	6.5	58
36	Perspectives on and Precautions for the Uses of Electric Spectroscopic Methods in Label-free Biosensing Applications. ACS Sensors, 2019, 4, 2216-2227.	7.8	56

#	Article	IF	CITATIONS
37	Evaluation of the effect of the stoichiometric ratio of Ca/Cu on the electrical and microstructural properties of the CaCu ₃ Ti ₄ O ₁₂ polycrystalline system. Journal Physics D: Applied Physics, 2009, 42, 185503.	2.8	55
38	Analysis of the admittance-frequency and capacitance–voltage of dense SnO2â‹CoO-based varistor ceramics. Journal of Applied Physics, 2002, 91, 6007-6014.	2.5	53
39	Sintering and mass transport features of (Sn,Ti)O2 polycrystalline ceramics. Journal of the European Ceramic Society, 2003, 23, 887-896.	5.7	53
40	Sol–gel synthesis of mesoporous CaCu3Ti4O12 thin films and their gas sensing response. Journal of Solid State Chemistry, 2010, 183, 1209-1214.	2.9	53
41	Synchrotron Structural Characterization of Electrochemically Synthesized Hexacyanoferrates Containing K+: A Revisited Analysis of Electrochemical Redox. Journal of Physical Chemistry C, 2008, 112, 13264-13271.	3.1	50
42	The effect of cooling rate during hydrothermal synthesis of ZnO nanorods. Journal of Crystal Growth, 2009, 311, 4102-4108.	1.5	49
43	Impedance spectroscopy analysis of TiO2 thin film gas sensors obtained from water-based anatase colloids. Sensors and Actuators B: Chemical, 2009, 139, 447-452.	7.8	48
44	Nanoscale origins of super-capacitance phenomena. Journal of Power Sources, 2019, 414, 420-434.	7.8	48
45	A dual marker label free electrochemical assay for Flavivirus dengue diagnosis. Biosensors and Bioelectronics, 2018, 100, 519-525.	10.1	46
46	Dynamic Processes in the Coloration of WO[sub 3] by Lithium Insertion. Journal of the Electrochemical Society, 2001, 148, E302.	2.9	45
47	Capacitance spectroscopy and density functional theory. Physical Chemistry Chemical Physics, 2015, 17, 9375-9382.	2.8	45
48	Nature of potential barrier in (Ca1/4,Cu3/4)TiO3 polycrystalline perovskite. Solid State Communications, 2006, 138, 1-4.	1.9	44
49	Elucidating Redox-Level Dispersion and Local Dielectric Effects within Electroactive Molecular Films. Analytical Chemistry, 2014, 86, 1997-2004.	6.5	44
50	Synthesis and electrochromic behavior of lithium-doped WO3 films. Journal of Non-Crystalline Solids, 2001, 290, 115-121.	3.1	43
51	Changeover during in Situ Compositional Modulation of Hexacyanoferrate (Prussian Blue) Material. Journal of the American Chemical Society, 2006, 128, 17146-17152.	13.7	42
52	Penicillinase-based amperometric biosensor for penicillin G. Electrochemistry Communications, 2014, 38, 131-133.	4.7	42
53	Electrochromic properties of lithium doped WO3 films prepared by the sol–gel process. Electrochimica Acta, 2001, 46, 1977-1981.	5.2	41
54	lonic conductivity of Bi4Ti0.2V1.8O10.7 polycrystalline ceramics obtained by the polymeric precursor route. Materials Letters, 2003, 57, 2540-2544.	2.6	41

#	Article	IF	Citations
55	Lowâ€Voltage Varistor Based on (Sn,Ti)O ₂ Ceramics. Journal of the American Ceramic Society, 2002, 85, 282-284.	3.8	41
56	Importance of oxygen atmosphere to recover the ZnO-based varistors properties. Journal of Materials Science, 2006, 41, 6221-6227.	3.7	41
57	Common Principles of Molecular Electronics and Nanoscale Electrochemistry. Analytical Chemistry, 2018, 90, 7095-7106.	6.5	40
58	Effect of the addition of ZnO seeds on the electrical proprieties of ZnO-based varistors. Materials Chemistry and Physics, 2003, 80, 512-516.	4.0	39
59	Admittance and dielectric spectroscopy of polycrystalline semiconductors. Journal of the European Ceramic Society, 2007, 27, 4313-4320.	5.7	39
60	Impedance-derived electrochemical capacitance spectroscopy for the evaluation of lectin–glycoprotein binding affinity. Biosensors and Bioelectronics, 2014, 62, 102-105.	10.1	39
61	Charge transport and energy storage at the molecular scale: from nanoelectronics to electrochemical sensing. Chemical Society Reviews, 2020, 49, 7505-7515.	38.1	39
62	Sol–gel nonhydrolytic synthesis of a hybrid organic–inorganic electrolyte for application in lithium-ion devices. Solid State Ionics, 2004, 166, 83-88.	2.7	38
63	Conventional and microwave sintering of CaCu ₃ ceramic composites: non-ohmic and dielectric properties. Journal Physics D: Applied Physics, 2008, 41, 152004.	2.8	38
64	Comparative Electrical Behavior at Low and High Current of SnO ₂ ―and ZnOâ€Based Varistors. Journal of the American Ceramic Society, 2008, 91, 2402-2404.	3.8	38
65	Nanoscale electromechanical properties of CaCu3Ti4O12 ceramics. Journal of Applied Physics, 2011, 110,	2.5	37
66	Redox-tagged peptide for capacitive diagnostic assays. Biosensors and Bioelectronics, 2015, 68, 281-287.	10.1	37
67	Doping saturation in dye-sensitized solar cells based on ZnO:Ga nanostructured photoanodes. Electrochimica Acta, 2011, 56, 6503-6509.	5.2	36
68	Density functional theory and an experimentally-designed energy functional of electron density. Physical Chemistry Chemical Physics, 2016, 18, 25984-25992.	2.8	36
69	Comparative degradation of ZnO- and SnO2-based polycrystalline non-ohmic devices by current pulse stress. Journal Physics D: Applied Physics, 2008, 41, 122002.	2.8	35
70	Dielectric behaviour of CaCu3Ti4O12-epoxy composites. Materials Research, 2008, 11, 85-88.	1.3	35
71	The dielectric suppress and the control of semiconductor non-Ohmic feature of CaCu3Ti4O12 by means of tin doping. Applied Physics Letters, 2011, 98, 132906.	3.3	35
72	Immittance Electroanalysis in Diagnostics. Analytical Chemistry, 2015, 87, 944-950.	6.5	35

#	Article	IF	CITATIONS
73	Relaxation processes in the coloration of amorphous WO3 thin films studied by combined impedance and electro-optical measurements. Journal of Applied Physics, 2004, 96, 853-859.	2.5	34
74	Separation of dielectric and space charge polarizations in CaCu3Ti4O12â^•CaTiO3 composite polycrystalline systems. Applied Physics Letters, 2007, 90, 142912.	3.3	34
75	Coloring ionic trapping states in WO3 and Nb2O5 electrochromic materials. Electrochimica Acta, 2008, 53, 5533-5539.	5.2	34
76	Quantum capacitance as a reagentless molecular sensing element. Nanoscale, 2017, 9, 15362-15370.	5.6	34
77	Grain-boundary segregation and precipitates in La2O3 and Pr2O3 doped SnO2·CoO-based varistors. Journal of the European Ceramic Society, 2003, 23, 1875-1880.	5 . 7	33
78	A Comparative Study of Thermal Conductivity in ZnO- and SnO2-Based Varistor Systems. Journal of the American Ceramic Society, 2005, 88, 2629-2631.	3.8	33
79	Electrostatic force microscopy as a tool to estimate the number of active potential barriers in dense non-Ohmic polycrystalline SnO2 devices. Applied Physics Letters, 2006, 89, 152102.	3.3	33
80	Serological point-of-care and label-free capacitive diagnosis of dengue virus infection. Biosensors and Bioelectronics, 2020, 151, 111972.	10.1	33
81	P -type semiconducting gas sensing behavior of nanoporous rf sputtered CaCu3Ti4O12 thin films. Applied Physics Letters, 2008, 92, .	3.3	32
82	Real-time monitoring and kinetic parameter estimation of the affinity interaction of jArtinM and rArtinM with peroxidase glycoprotein by the electrogravimetric technique. Biosensors and Bioelectronics, 2010, 26, 36-42.	10.1	32
83	Structural analysis of pure and LiCF3SO3-doped amorphous WO3 electrochromic films and discussion on coloration kinetics. Journal of Applied Physics, 2004, 96, 2102-2109.	2.5	31
84	Synthesis of SnO2 by chemical routes and its use in varistors production. Journal of the European Ceramic Society, 2007, 27, 3893-3896.	5.7	31
85	Label-free capacitive assaying of biomarkers for molecular diagnostics. Nature Protocols, 2020, 15, 3879-3893.	12.0	31
86	Photoluminescent CaCu ₃ Ti ₄ O ₁₂ â€Based Thin Films Synthesized by a Solâ€"Gel Method. Journal of the American Ceramic Society, 2008, 91, 4162-4164.	3.8	30
87	Sensitive label-free electron chemical capacitive signal transduction for D-dimer electroanalysis. Electrochimica Acta, 2015, 182, 946-952.	5.2	30
88	Electrochromic properties of undoped and lithium doped Nb2O5 films prepared by the sol–gel method. Electrochimica Acta, 2001, 46, 2113-2118.	5.2	29
89	Hybrid Organicâ-ʾInorganic Polymer:Â A New Approach for the Development of Decoupled Polymer Electrolytes. Chemistry of Materials, 2005, 17, 4561-4563.	6.7	29
90	Optimized Diagnostic Assays Based on Redox Tagged Bioreceptive Interfaces. Analytical Chemistry, 2015, 87, 12137-12144.	6.5	29

#	Article	IF	Citations
91	Thermal conductivity features of ZnO-based varistors using the laser-pulse method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 371, 377-381.	5.6	28
92	Resistive-Switching Behavior in Polycrystalline CaCu ₃ Ti ₄ O ₁₂ Nanorods. ACS Applied Materials & Samp; Interfaces, 2011, 3, 500-504.	8.0	28
93	The Mesoscopic Electrochemistry of Molecular Junctions. Scientific Reports, 2016, 6, 18400.	3.3	28
94	Sensitivity of SnO2 non-ohmic behavior to the sintering process and to the addition of La2O3. Journal of the European Ceramic Society, 2001, 21, 1179-1185.	5.7	27
95	Li+ insertion into pure and doped amorphous WO3 films. Correlations between coloration kinetics, charge and mass accumulation. Solid State Ionics, 2003, 158, 415-426.	2.7	27
96	Mechanism for Interplay between Electron and Ionic Fluxes in KhFek[Fe(CN)6]l·mH2O Compounds. Journal of Physical Chemistry B, 2006, 110, 2715-2722.	2.6	27
97	Comparison of non-Ohmic accelerated ageing of the ZnO- and SnO ₂ -based voltage dependent resistors. Journal Physics D: Applied Physics, 2009, 42, 015503.	2.8	27
98	Electrochromic Switching Mechanism of Iron Hexacyanoferrates Molecular Compounds: The Role of Fe ²⁺ (CN) ₆ Vacancies. Journal of Physical Chemistry C, 2009, 113, 9916-9920.	3.1	27
99	Nonohmic behavior of SnO2-MnO polycrystalline ceramics. II. Analysis of admittance and dielectric spectroscopy. Journal of Applied Physics, 2004, 96, 3811-3817.	2.5	26
100	Crossover from capacitive to pseudoinductive charge-relaxation in organicâ-polymeric light-emitting diodes. Applied Physics Letters, 2005, 87, 013505.	3.3	26
101	Graphene-based protein biomarker detection. Bioanalysis, 2015, 7, 725-742.	1.5	26
102	Espectroscopia de impedância eletroquÃmica aplicada ao estudo das reações heterogêneas em ânodos dimensionalmente estáveis. Quimica Nova, 2006, 29, 796-804.	0.3	25
103	Nanoscale Electrochemistry of Molecular Contacts. SpringerBriefs in Applied Sciences and Technology, 2018, , .	0.4	25
104	An outlook on electrochemical approaches for molecular diagnostics assays and discussions on the limitations of miniaturized technologies for point-of-care devices. Sensors and Actuators Reports, 2022, 4, 100087.	4.4	25
105	The Influence of Excess Precipitate on the Non-Ohmic Properties of SnO2-Based Varistors., 2003, 10, 63-68.		24
106	The failure analyses on ZnO varistors used in high tension devices. Journal of Materials Science, 2005, 40, 5591-5596.	3.7	24
107	Impedance spectroscopy analysis of SnO2 thick-films gas sensors. Journal of Materials Science: Materials in Electronics, 2008, 19, 1169-1175.	2.2	24
108	Quartz Crystal Microbalance monitoring the real-time binding of lectin with carbohydrate with high and low molecular mass. Microchemical Journal, 2008, 89, 153-158.	4.5	24

#	Article	IF	Citations
109	Electronic Perspective on the Electrochemistry of Prussian Blue Films. Journal of the Electrochemical Society, 2009, 156, P74.	2.9	24
110	Electrochemical performance of cathodes based on LiMn2O4 spinel obtained by combustion synthesis. Journal of Power Sources, 2001, 97-98, 447-449.	7.8	23
111	Influence of La2O3, Pr2O3 and CeO2 on the nonlinear properties of SnO2 multicomponent varistors. Materials Chemistry and Physics, 2002, 74, 150-153.	4.0	22
112	Nonohmic behavior of SnO2-MnO polycrystalline ceramics. I. Correlations between microstructural morphology and nonohmic features. Journal of Applied Physics, 2004, 96, 2693-2700.	2.5	22
113	Mapping the ionic fingerprints of molecular monolayers. Physical Chemistry Chemical Physics, 2017, 19, 15098-15109.	2.8	22
114	Chemical Hardness of Mesoscopic Electrochemical Systems Directly Analyzed from Experimental Data. Journal of Physical Chemistry C, 2019, 123, 21213-21223.	3.1	22
115	Dielectric relaxation and dc conductivity on the PVOH-CF3COONH4 polymer system. Ionics, 2009, 15, 537-544.	2.4	21
116	Pseudocapacitance phenomena and applications in biosensing devices. Electrochimica Acta, 2019, 306, 175-184.	5,2	21
117	Kinetic Aspects of Ion Exchange in KhFek[Fe(CN)6]I·mH2O Compounds:  A Combined Electrical and Mass Transfer Functions Approach. Journal of Physical Chemistry B, 2006, 110, 19352-19363.	2.6	20
118	Mesoscopic behaviour of multi-layered graphene: the meaning of supercapacitance revisited. Physical Chemistry Chemical Physics, 2017, 19, 6792-6806.	2.8	20
119	Ferroelectric and microstructural characteristics of SrBi2Ta2O9 thin films crystallized by the rapid thermal annealing process. Journal of Applied Physics, 2001, 89, 3416-3419.	2.5	19
120	Influence of degradation on the electrical conduction process in ZnO and SnO2-based varistors. Journal of Applied Physics, 2010, 108, .	2.5	19
121	The selfâ€assembly of redox active peptides: Synthesis and electrochemical capacitive behavior. Biopolymers, 2016, 106, 357-367.	2.4	19
122	Comparing glucose and urea enzymatic electrochemical and optical biosensors based on polyaniline thin films. Analytical Methods, 2020, 12, 4199-4210.	2.7	19
123	How Cr2O3 influences the microstructure and nonohmic features of the SnO2(Cox, Mn1â^2x)O-based varistor system. Journal of the European Ceramic Society, 2006, 26, 1221-1229.	5.7	18
124	Reagentless Detection of Low-Molecular-Weight Triamterene Using Self-Doped TiO2 Nanotubes. Analytical Chemistry, 2018, 90, 7651-7658.	6.5	17
125	Resonant x-ray diffraction as a tool to calculate mixed valence ratios: Application to Prussian Blue materials. Applied Physics Letters, 2008, 92, 264103.	3.3	16
126	Grain size effect on the electrical response of SnO2 thin and thick film gas sensors. Materials Research, 2009, 12, 83-87.	1,3	16

#	Article	IF	Citations
127	Electron transfer and conductance quantum. Physical Chemistry Chemical Physics, 2020, 22, 26109-26112.	2.8	16
128	Measuring quantum conductance and capacitance of graphene using impedance-derived capacitance spectroscopy. Carbon, 2021, 184, 821-827.	10.3	16
129	Mechanical Properties and Dimensional Effects of ZnO- and SnO2-Based Varistors. Journal of the American Ceramic Society, 2008, 91, 3105-3108.	3.8	15
130	Glycoprotein assay based on the optimized immittance signal of a redox tagged and lectin-based receptive interface. Biosensors and Bioelectronics, 2016, 83, 368-378.	10.1	15
131	Field effect in molecule-gated switches and the role of target-to-receptor size ratio in biosensor sensitivity. Biosensors and Bioelectronics, 2019, 127, 215-220.	10.1	15
132	The nanoscopic principles of capacitive ion sensing interfaces. Physical Chemistry Chemical Physics, 2020, 22, 3770-3774.	2.8	15
133	Impact of surface roughness on the self-assembling of molecular films onto gold electrodes for label-free biosensing applications. Electrochimica Acta, 2021, 378, 138137.	5.2	15
134	Introducing mesoscopic charge transfer rates into molecular electronics. Physical Chemistry Chemical Physics, 2020, 22, 10828-10832.	2.8	14
135	Impedance of carrier injection at the metal–organic interface mediated by surface states in electron-only tris(8-hydroxyquinoline) aluminium (Alq3) thin layers. Chemical Physics Letters, 2008, 455, 242-248.	2.6	13
136	Kinetics of interface state-limited hole injection in \hat{l}_{\pm} -naphthylphenylbiphenyl diamine (\hat{l}_{\pm} -NPD) thin layers. Synthetic Metals, 2009, 159, 480-486.	3.9	13
137	Critical Water Effect on the Plasmon Band and Visible Light Activity of Au/ZnO Nanocomposites. Journal of Physical Chemistry C, 2014, 118, 2018-2027.	3.1	13
138	The influence of area/volume ratio on microstructure and non-Ohmic properties of SnO2-based varistor ceramic blocks. Journal of Materials Science: Materials in Electronics, 2009, 20, 49-54.	2.2	12
139	Electrical relaxation in proton conductor composites based on (NH4)H2PO4/TiO2. lonics, 2009, 15, 329-336.	2.4	12
140	The effect of TiO ₂ on the microstructural and electrical properties of low voltage varistor based on (Sn,Ti)O ₂ ceramics. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 457-461.	1.8	12
141	Electrogravimetric Real-Time and in Situ Michaelisâ^'Menten Enzimatic Kinetics: Progress Curve of Acetylcholinesterase Hydrolysis. Journal of Physical Chemistry B, 2010, 114, 16605-16610.	2.6	12
142	Evaluating the Equilibrium Association Constant between ArtinM Lectin and Myeloid Leukemia Cells by Impedimetric and Piezoelectric Label Free Approaches. Biosensors, 2014, 4, 358-369.	4.7	12
143	Conceptual density functional theory for electron transfer and transport in mesoscopic systems. Physical Chemistry Chemical Physics, 2017, 19, 6184-6195.	2.8	12
144	EQCM study during lithium insertion/deinsertion processes in Nb2O5 films prepared by polymeric precursor method. Solid State Ionics, 2005, 176, 1175-1180.	2.7	11

#	Article	IF	CITATIONS
145	Optimized electrochemical biosensor for human prostatic acid phosphatase. Sensors and Actuators B: Chemical, 2017, 253, 1106-1112.	7.8	11
146	A nanoscale redox-active composite as a low-fouling interface for capacitive assaying. Sensors and Actuators B: Chemical, 2019, 291, 493-501.	7.8	11
147	Electrochemical impedance spectroscopy as a tool to estimate thickness in PB films. Electrochemistry Communications, 2006, 8, 371-374.	4.7	10
148	Relationship between grainâ€boundary capacitance and bulk shallow donors in SnO ₂ polycrystalline semiconductor. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1694-1698.	1.8	10
149	Lowâ€Temperature Sputtering Deposition of Aligned Polycrystalline CaCu _{3 < /sub>Ti_{4 < /sub>O_{12 < /sub> Nanorods. Journal of the American Ceramic Society, 2010, 93, 51-54.}}}	3.8	9
150	INSEL: an in silico method for optimizing and exploring biorecognition assays. Chemical Communications, 2013, 49, 10868.	4.1	9
151	Quantum Mechanical Meaning of the Charge Transfer Resistance. Journal of Physical Chemistry C, 2022, 126, 3151-3162.	3.1	9
152	Quantitative structural analysis of the transition from LT-LixCoO2 to HT-LixCoO2 using the rietveld method: correlation between structure and electrochemical performance. Journal of Power Sources, 2004, 125, 103-113.	7.8	8
153	Voltageâ^'Composition Profile and Synchrotron X-ray Structural Analysis of Low and High Temperature LixCoO2 Host Material. Journal of Physical Chemistry C, 2008, 112, 14655-14664.	3.1	8
154	Jacalin interaction with human immunoglobulin A1 and bovine immunoglobulin G1: Affinity constant determined by piezoelectric biosensoring. Glycobiology, 2012, 22, 326-331.	2.5	8
155	The density-of-States and equilibrium charge dynamics of redox-active switches. Electrochimica Acta, 2021, 387, 138410.	5.2	8
156	Perspective on Quantum Electrochemistry. A Simple Method for Measuring the Electron Transfer Rate Constant. Electrochimica Acta, 2021, , 139219.	5.2	8
157	Nonohmic behavior of SnO2.MnO2-based ceramics. Materials Research, 2003, 6, 279-283.	1.3	8
158	Thermodynamic Aspects of Ion Intercalation in KhFek[Fe(CN)6]l·mH2O Compounds:  Application to the Everit's Salt/Prussian Blue Transition. Journal of Physical Chemistry B, 2006, 110, 19364-19368.	2.6	7
159	Qualitative evaluation of active potential barriers in SnO2-based polycrystalline devices by electrostatic force microscopy. Applied Physics A: Materials Science and Processing, 2007, 87, 793-796.	2.3	7
160	Electrochemical capacitance spectroscopy and capacitive relaxation of the changeover process in iron hexacyanoferrate molecular compound. Electrochimica Acta, 2010, 55, 6147-6155.	5. 2	7
161	Microstructural and nonohmic properties of ZnO.Pr6O11 CoO polycrystalline system. Materials Research, 2010, 13, 29-34.	1.3	7
162	Electrogravimetric Analysis by Quartz-Crystal Microbalance on the Consumption of the Neurotransmitter Acetylcholine by Acetylcholinesterase. Analytical Letters, 2013, 46, 258-265.	1.8	7

#	Article	IF	Citations
163	The importance of the assembling of DNA strands on the performance of electrochemical genosensors. Microchemical Journal, 2020, 159, 105358.	4.5	7
164	Ab Initio QM/MM Simulation of Ferrocene Homogeneous Electron-Transfer Reaction. Journal of Physical Chemistry A, 2021, 125, 25-33.	2.5	7
165	Mass/charge balance as a tool to estimate dimensional change in polypyrrole-based actuators. Electrochemistry Communications, 2006, 8, 195-199.	4.7	6
166	A Facile Measurement of Heterogeneous Electron Transfer Kinetics. Analytical Chemistry, 2013, 85, 10920-10926.	6.5	6
167	Elucidation of Carbohydrate Molecular Interaction Mechanism of Recombinant and Native ArtinM. Journal of Physical Chemistry B, 2013, 117, 8360-8369.	2.6	6
168	Evidence for Conformational Mechanism on the Binding of TgMIC4 with \hat{l}^2 -Galactose-Containing Carbohydrate Ligand. Langmuir, 2015, 31, 12111-12119.	3.5	6
169	Biochemical Capacitance of <i>Geobacter Sulfurreducens</i> Biofilms. ChemSusChem, 2015, 8, 2492-2495.	6.8	6
170	Two-Dimensional Nature and the Meaning of the Density of States in Redox Monolayers. Journal of Physical Chemistry C, 2020, 124, 14918-14927.	3.1	6
171	Introducing polymer conductance in diagnostically relevant transduction. Biosensors and Bioelectronics, 2021, 172, 112705.	10.1	6
172	Application of impedance spectroscopy to evaluate the effect of different setting accelerators on the developed microstructures of calcium phosphate cements. Journal of Materials Science: Materials in Medicine, 2009, 20, 1619-1627.	3.6	5
173	DNA hybridization mechanism in an interfacial environment: What hides beneath first order k (sâ^'1) kinetic constant?. Sensors and Actuators B: Chemical, 2012, 171-172, 522-527.	7.8	5
174	Density of States of a Nanoscale Semiconductor Interface as a Transduction Signal for Sensing Molecules. ACS Applied Electronic Materials, 2021, 3, 3411-3417.	4.3	5
175	Quantum rate dynamics and charge screening at the nanoscale level. Physical Chemistry Chemical Physics, 2022, 24, 16200-16206.	2.8	5
176	Influence of thermal annealing treatment in oxygen atmosphere on grain boundary chemistry and nonâ€ohmic properties of SnO ₂ ·MnO polycrystalline semiconductors. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 383-388.	1.8	4
177	Reply to Comment on "Reaction Pathway to the Synthesis of Anatase via the Chemical Modification of Titanium Isopropoxide with Acetic Acid― Chemistry of Materials, 2008, 20, 3541-3541.	6.7	4
178	Electrochemistry, Nanomaterials, and Nanostructures. Nanostructure Science and Technology, 2009, , 81-149.	0.1	4
179	Platinum-coated nanostructured oxides for active catalytic electrodes. Catalysis Communications, 2011, 14, 58-61.	3.3	4
180	Quartz crystal microbalance as a tool for kinetic enzymatic assays by variation of pH. Analytical Biochemistry, 2011, 418, 152-154.	2.4	4

#	Article	IF	CITATIONS
181	Pitahaya Aging Diagnostic by Impedance/Capacitance Spectroscopy. Food Analytical Methods, 2015, 8, 126-129.	2.6	4
182	Mapping molecular binding by means of conformational dynamics measurements. RSC Advances, 2018, 8, 867-876.	3.6	4
183	Mechanism for Interplay between Electron and Ionic Fluxes in KhFek[Fe(CN)6]l·mH2O Compounds. Journal of Physical Chemistry B, 2006, 110, 10208-10208.	2.6	3
184	ArtinM Binding Effinities and Kinetic Interaction with Leukemia Cells: A Quartz Crystal Microbalance Bioelectroanalysis on the Cytotoxic Effect. Electroanalysis, 2017, 29, 1554-1558.	2.9	3
185	Varistor technology based on SnO2. , 2020, , 321-343.		3
186	Sensing the quantized reactivity of graphene. Analytica Chimica Acta, 2021, 1177, 338735.	5.4	2
187	Real-Time Monitoring of Electrochromic Memory Loss of Layered α-MoO3 Nanoplates. Journal of the Electrochemical Society, 2020, 167, 166509.	2.9	2
188	Electrochemistry and First Principles of Quantum Mechanics. SpringerBriefs in Applied Sciences and Technology, 2018, , 27-49.	0.4	1
189	Determinação dos parâmetros cinéticos e termodinâmicos da adsorção de L-cisteÃna em ouro por meioda técnica de microbalança a cristal de quartzo. Quimica Nova, 2012, 35, 1365-1368.	⁰ 0.3	1
190	Propiedades Eléctricas en membranas de Complejos Electrolitos Poliméricos PVA-OH/LI2SO4/PEG400. Polimeros, 2014, 24, 170-175.	0.7	1
191	EFFECTS OF SURFACE ROUGHNESS ON PROPERTIES OF PASSIVATION OF SELF-ASSEMBLED ORGANIC MONOLAYERS. Quimica Nova, 2014, , .	0.3	1
192	Sol-Gel Non-hydrolytic Synthesis of a Nanocomposite Electrolyte for Application in Lithium-ion Devices. Materials Research Society Symposia Proceedings, 2004, 822, S3.1.1.	0.1	0
193	Aspects of solid state formation and properties of Sn0.9Ti0.1O2 system doped with CoO and Nb2O5. Powder Diffraction, 2008, 23, S65-S69.	0.2	O
194	Impedance spectroscopy study of solid-state dye-sensitized solar cells with varying Spiro-OMeTAD concentration. Materials Research Society Symposia Proceedings, 2009, 1211, 1.	0.1	0
195	An Electronic Perspective On The Electrochemical Changeover In Prussian Blue-Like Materials. ECS Transactions, 2009, 16, 151-162.	0.5	O
196	Versatile electroanalysis of cellular receptor: The case of Toll-like immune receptors evaluated on transfected human cell. Sensors and Actuators B: Chemical, 2017, 241, 1002-1007.	7.8	0
197	Low-fouling properties in serum of carboxylic-oligo(ethylene glycol)-based interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126426.	4.7	O
198	Introduction to Fundamental Concepts. SpringerBriefs in Applied Sciences and Technology, 2018, , 1-26.	0.4	0

Paulo R Bueno

#	Article	lF	CITATIONS
199	Field Effect and Applications. SpringerBriefs in Applied Sciences and Technology, 2018, , 51-81.	0.4	O
200	Improving the Analytical Reproducibility of Electrochemical Capacitive Sensors Using the Chemical Hardness of the Interface. IEEE Access, 2021, 9, 166446-166454.	4.2	0