Philippe Lemey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8534364/publications.pdf

Version: 2024-02-01

7568 6996 30,526 293 77 154 citations h-index g-index papers 325 325 325 31727 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 2018, 4, vey016.	4.9	2,401
2	RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics, 2010, 26, 2462-2463.	4.1	1,524
3	Bayesian Phylogeography Finds Its Roots. PLoS Computational Biology, 2009, 5, e1000520.	3.2	1,519
4	Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science, 2021, 372, 815-821.	12.6	1,125
5	Improving the Accuracy of Demographic and Molecular Clock Model Comparison While Accommodating Phylogenetic Uncertainty. Molecular Biology and Evolution, 2012, 29, 2157-2167.	8.9	1,053
6	Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nature Microbiology, 2020, 5, 1408-1417.	13.3	772
7	Phylogeography Takes a Relaxed Random Walk in Continuous Space and Time. Molecular Biology and Evolution, 2010, 27, 1877-1885.	8.9	580
8	Mapping the Origins and Expansion of the Indo-European Language Family. Science, 2012, 337, 957-960.	12.6	549
9	Accurate Model Selection of Relaxed Molecular Clocks in Bayesian Phylogenetics. Molecular Biology and Evolution, 2012, 30, 239-243.	8.9	538
10	The early spread and epidemic ignition of HIV-1 in human populations. Science, 2014, 346, 56-61.	12.6	515
11	Complete Genomic Sequence of Human Coronavirus OC43: Molecular Clock Analysis Suggests a Relatively Recent Zoonotic Coronavirus Transmission Event. Journal of Virology, 2005, 79, 1595-1604.	3.4	477
12	Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science, 2020, 369, 1255-1260.	12.6	454
13	SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics, 2011, 27, 2910-2912.	4.1	451
14	Improving Bayesian Population Dynamics Inference: A Coalescent-Based Model for Multiple Loci. Molecular Biology and Evolution, 2013, 30, 713-724.	8.9	449
15	Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature, 2015, 523, 217-220.	27.8	445
16	SpreaD3: Interactive Visualization of Spatiotemporal History and Trait Evolutionary Processes. Molecular Biology and Evolution, 2016, 33, 2167-2169.	8.9	413
17	Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature, 2017, 544, 309-315.	27.8	346
18	Assessing substitution saturation with DAMBE. , 2009, , 615-630.		340

#	Article	IF	Citations
19	The emergence of SARS-CoV-2 in Europe and North America. Science, 2020, 370, 564-570.	12.6	331
20	Unifying Viral Genetics and Human Transportation Data to Predict the Global Transmission Dynamics of Human Influenza H3N2. PLoS Pathogens, 2014, 10, e1003932.	4.7	330
21	Temporal signal and the phylodynamic threshold of SARS-CoV-2. Virus Evolution, 2020, 6, veaa061.	4.9	317
22	Tracing the origin and history of the HIV-2 epidemic. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6588-6592.	7.1	315
23	Distinguishable Epidemics of Multidrug-Resistant <i>Salmonella</i> Typhimurium DT104 in Different Hosts. Science, 2013, 341, 1514-1517.	12.6	310
24	Tracking virus outbreaks in the twenty-first century. Nature Microbiology, 2019, 4, 10-19.	13.3	305
25	Integrating influenza antigenic dynamics with molecular evolution. ELife, 2014, 3, e01914.	6.0	299
26	Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science, 2018, 361, 894-899.	12.6	279
27	The HIV-1 reservoir in eight patients on long-term suppressive antiretroviral therapy is stable with few genetic changes over time. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4987-96.	7.1	260
28	The Spread of Tomato Yellow Leaf Curl Virus from the Middle East to the World. PLoS Pathogens, 2010, 6, e1001164.	4.7	259
29	Ancient Hybridization and an Irish Origin for the Modern Polar Bear Matriline. Current Biology, 2011, 21, 1251-1258.	3.9	257
30	Phylodynamic Analyses of Rotavirus Genotypes G9 and G12 Underscore Their Potential for Swift Global Spread. Molecular Biology and Evolution, 2010, 27, 2431-2436.	8.9	253
31	Unifying the spatial epidemiology and molecular evolution of emerging epidemics. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15066-15071.	7.1	226
32	Evolutionary History of the Closely Related Group 2 Coronaviruses: Porcine Hemagglutinating Encephalomyelitis Virus, Bovine Coronavirus, and Human Coronavirus OC43. Journal of Virology, 2006, 80, 7270-7274.	3.4	212
33	Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (<i>Ovibos) Tj ETQq1 States of America, 2010, 107, 5675-5680.</i>	. 1 0.7843 7.1	314 rgBT /0v 208
34	Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science, 2019, 363, 74-77.	12.6	201
35	Genetic History of Hepatitis C Virus in East Asia. Journal of Virology, 2009, 83, 1071-1082.	3.4	190
36	Geographic and Temporal Trends in the Molecular Epidemiology and Genetic Mechanisms of Transmitted HIV-1 Drug Resistance: An Individual-Patient- and Sequence-Level Meta-Analysis. PLoS Medicine, 2015, 12, e1001810.	8.4	188

#	Article	IF	CITATIONS
37	The emergence and ongoing convergent evolution of the SARS-CoV-2 N501Y lineages. Cell, 2021, 184, 5189-5200.e7.	28.9	186
38	Evolutionary Dynamics of Human Rotaviruses: Balancing Reassortment with Preferred Genome Constellations. PLoS Pathogens, 2009, 5, e1000634.	4.7	178
39	1970s and â€ ⁻ Patient 0' HIV-1 genomes illuminate early HIV/AIDS history in North America. Nature, 2016, 539 98-101.	27.8	177
40	HIV evolutionary dynamics within and among hosts. AIDS Reviews, 2006, 8, 125-40.	1.0	176
41	Natural selection in the evolution of SARS-CoV-2 in bats created a generalist virus and highly capable human pathogen. PLoS Biology, 2021, 19, e3001115.	5.6	172
42	Synonymous Substitution Rates Predict HIV Disease Progression as a Result of Underlying Replication Dynamics. PLoS Computational Biology, 2007, 3, e29.	3.2	152
43	Ancient papillomavirus-host co-speciation in Felidae. Genome Biology, 2007, 8, R57.	9.6	152
44	The global antigenic diversity of swine influenza A viruses. ELife, 2016, 5, e12217.	6.0	146
45	Simultaneously reconstructing viral cross-species transmission history and identifying the underlying constraints. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120196.	4.0	141
46	BEAGLE 3: Improved Performance, Scaling, and Usability for a High-Performance Computing Library for Statistical Phylogenetics. Systematic Biology, 2019, 68, 1052-1061.	5.6	139
47	New Insights into Flavivirus Evolution, Taxonomy and Biogeographic History, Extended by Analysis of Canonical and Alternative Coding Sequences. PLoS ONE, 2015, 10, e0117849.	2.5	139
48	Longitudinal Genetic Characterization Reveals That Cell Proliferation Maintains a Persistent HIV Type 1 DNA Pool During Effective HIV Therapy. Journal of Infectious Diseases, 2015, 212, 596-607.	4.0	138
49	Untangling introductions and persistence in COVID-19 resurgence in Europe. Nature, 2021, 595, 713-717.	27.8	133
50	Global migration of influenza A viruses in swine. Nature Communications, 2015, 6, 6696.	12.8	128
51	Genetic Variability and Molecular Evolution of the Human Respiratory Syncytial Virus Subgroup B Attachment G Protein. Journal of Virology, 2005, 79, 9157-9167.	3.4	127
52	Phylodynamic Reconstruction Reveals Norovirus GII.4 Epidemic Expansions and their Molecular Determinants. PLoS Pathogens, 2010, 6, e1000884.	4.7	124
53	Phylodynamics and Human-Mediated Dispersal of a Zoonotic Virus. PLoS Pathogens, 2010, 6, e1001166.	4.7	124
54	SERAPHIM: studying environmental rasters and phylogenetically informed movements. Bioinformatics, 2016, 32, 3204-3206.	4.1	124

#	Article	IF	Citations
55	The mode and tempo of hepatitis C virus evolution within and among hosts. BMC Evolutionary Biology, 2011, 11, 131.	3.2	122
56	Accommodating individual travel history and unsampled diversity in Bayesian phylogeographic inference of SARS-CoV-2. Nature Communications, 2020, 11, 5110.	12.8	118
57	HIV Rebound Is Predominantly Fueled by Genetically Identical Viral Expansions from Diverse Reservoirs. Cell Host and Microbe, 2019, 26, 347-358.e7.	11.0	117
58	Spatial Dynamics of Human-Origin H1 Influenza A Virus in North American Swine. PLoS Pathogens, 2011, 7, e1002077.	4.7	116
59	Resurgence of Ebola virus in 2021 in Guinea suggests a new paradigm for outbreaks. Nature, 2021, 597, 539-543.	27.8	113
60	U.S. Human Immunodeficiency Virus Type 1 Epidemic: Date of Origin, Population History, and Characterization of Early Strains. Journal of Virology, 2003, 77, 6359-6366.	3.4	112
61	Molecular typing and epidemiology of enteroviruses identified from an outbreak of aseptic meningitis in Belgium during the summer of 2000. Journal of Medical Virology, 2003, 70, 420-429.	5.0	111
62	Single Cell Analysis of Lymph Node Tissue from HIV-1 Infected Patients Reveals that the Majority of CD4+ T-cells Contain One HIV-1 DNA Molecule. PLoS Pathogens, 2013, 9, e1003432.	4.7	110
63	Molecular Evolution and Circulation Patterns of Human Respiratory Syncytial Virus Subgroup A: Positively Selected Sites in the Attachment G Glycoprotein. Journal of Virology, 2004, 78, 4675-4683.	3.4	106
64	Analysing recombination in nucleotide sequences. Molecular Ecology Resources, 2011, 11, 943-955.	4.8	106
65	Virome characterization of game animals in China reveals a spectrum of emerging pathogens. Cell, 2022, 185, 1117-1129.e8.	28.9	106
66	The Molecular Population Genetics of HIV-1 Group O. Genetics, 2004, 167, 1059-1068.	2.9	105
67	Phylogeography and Population Dynamics of Dengue Viruses in the Americas. Molecular Biology and Evolution, 2012, 29, 1533-1543.	8.9	105
68	Measles virus and rinderpest virus divergence dated to the sixth century BCE. Science, 2020, 368, 1367-1370.	12.6	102
69	Genealogical Working Distributions for Bayesian Model Testing with Phylogenetic Uncertainty. Systematic Biology, 2016, 65, 250-264.	5.6	101
70	Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution. BMC Bioinformatics, 2013, 14, 85.	2.6	100
71	Reconstructing the initial global spread of a human influenza pandemicA Bayesian spatial-temporal model for the global spread of H1N1pdm. PLOS Currents, 2009, 1, RRN1031.	1.4	97
72	Virus evolution and transmission in an ever more connected world. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142878.	2.6	96

#	Article	IF	CITATIONS
73	Three roads diverged? Routes to phylogeographic inference. Trends in Ecology and Evolution, 2010, 25, 626-632.	8.7	92
74	Air Travel Is Associated with Intracontinental Spread of Dengue Virus Serotypes 1–3 in Brazil. PLoS Neglected Tropical Diseases, 2014, 8, e2769.	3.0	91
75	An integrated map of HIV genome-wide variation from a population perspective. Retrovirology, 2015, 12, 18.	2.0	90
76	Quantifying Differences in the Tempo of Human Immunodeficiency Virus Type 1 Subtype Evolution. Journal of Virology, 2009, 83, 12917-12924.	3.4	87
77	Emerging Concepts of Data Integration in Pathogen Phylodynamics. Systematic Biology, 2017, 66, syw054.	5 . 6	87
78	Distinct Effects of T-705 (Favipiravir) and Ribavirin on Influenza Virus Replication and Viral RNA Synthesis. Antimicrobial Agents and Chemotherapy, 2016, 60, 6679-6691.	3 . 2	86
79	The Comparative Genomics of Human Respiratory Syncytial Virus Subgroups A and B: Genetic Variability and Molecular Evolutionary Dynamics. Journal of Virology, 2013, 87, 8213-8226.	3.4	85
80	Recombination Confounds the Early Evolutionary History of Human Immunodeficiency Virus Type 1: Subtype G Is a Circulating Recombinant Form. Journal of Virology, 2007, 81, 8543-8551.	3.4	84
81	Selection Analysis Identifies Clusters of Unusual Mutational Changes in Omicron Lineage BA.1 That Likely Impact Spike Function. Molecular Biology and Evolution, 2022, 39, .	8.9	84
82	Bayesian Evaluation of Temporal Signal in Measurably Evolving Populations. Molecular Biology and Evolution, 2020, 37, 3363-3379.	8.9	81
83	Rates of Viral Evolution Are Linked to Host Geography in Bat Rabies. PLoS Pathogens, 2012, 8, e1002720.	4.7	79
84	The Genealogical Population Dynamics of HIV-1 in a Large Transmission Chain: Bridging within and among Host Evolutionary Rates. PLoS Computational Biology, 2014, 10, e1003505.	3 . 2	79
85	Genetic Variability among Complete Human Respiratory Syncytial Virus Subgroup A Genomes: Bridging Molecular Evolutionary Dynamics and Epidemiology. PLoS ONE, 2012, 7, e51439.	2.5	78
86	Bayesian evolutionary model testing in the phylogenomics era: matching model complexity with computational efficiency. Bioinformatics, 2013, 29, 1970-1979.	4.1	78
87	Investigating the Origin and Spread of Hepatitis C Virus Genotype 5a. Journal of Virology, 2006, 80, 4220-4226.	3.4	77
88	Molecular dating of human-to-bovid host jumps by <i>Staphylococcus aureus</i> reveals an association with the spread of domestication. Biology Letters, 2012, 8, 829-832.	2.3	77
89	Genomic Epidemiology, Evolution, and Transmission Dynamics of Porcine Deltacoronavirus. Molecular Biology and Evolution, 2020, 37, 2641-2654.	8.9	76
90	A counting renaissance: combining stochastic mapping and empirical Bayes to quickly detect amino acid sites under positive selection. Bioinformatics, 2012, 28, 3248-3256.	4.1	75

#	Article	IF	Citations
91	Inferring Heterogeneous Evolutionary Processes Through Time: from Sequence Substitution to Phylogeography. Systematic Biology, 2014, 63, 493-504.	5 . 6	75
92	Toward a quantitative understanding of viral phylogeography. Current Opinion in Virology, 2011, 1, 423-429.	5.4	74
93	Geographical and Historical Patterns in the Emergences of Novel Highly Pathogenic Avian Influenza (HPAI) H5 and H7 Viruses in Poultry. Frontiers in Veterinary Science, 2018, 5, 84.	2.2	72
94	Circulation of genetically distinct contemporary human coronavirus OC43 strains. Virology, 2005, 337, 85-92.	2.4	71
95	Phylogeography of Dengue Virus Serotype 4, Brazil, 2010–2011. Emerging Infectious Diseases, 2012, 18, 1858-1864.	4.3	68
96	Sampling bias and incorrect rooting make phylogenetic network tracing of SARS-COV-2 infections unreliable. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12522-12523.	7.1	68
97	Molecular Footprint of Drug-Selective Pressure in a Human Immunodeficiency Virus Transmission Chain. Journal of Virology, 2005, 79, 11981-11989.	3.4	67
98	Revealing the Micro-scale Signature of Endemic Zoonotic Disease Transmission in an African Urban Setting. PLoS Pathogens, 2016, 12, e1005525.	4.7	65
99	Yellow Fever Virus Maintenance in Trinidad and Its Dispersal throughout the Americas. Journal of Virology, 2010, 84, 9967-9977.	3.4	64
100	Using Viral Gene Sequences to Compare and Explain the Heterogeneous Spatial Dynamics of Virus Epidemics. Molecular Biology and Evolution, 2017, 34, 2563-2571.	8.9	64
101	Genetic Diversity of Highly Pathogenic Avian Influenza A(H5N8/H5N5) Viruses in Italy, 2016–17. Emerging Infectious Diseases, 2017, 23, 1543-1547.	4.3	62
102	Reconstructing the History of Maize Streak Virus Strain A Dispersal To Reveal Diversification Hot Spots and Its Origin in Southern Africa. Journal of Virology, 2011, 85, 9623-9636.	3.4	61
103	Disentangling the role of Africa in the global spread of H5 highly pathogenic avian influenza. Nature Communications, 2019, 10, 5310.	12.8	61
104	Understanding Past Population Dynamics: Bayesian Coalescent-Based Modeling with Covariates. Systematic Biology, 2016, 65, 1041-1056.	5.6	60
105	Evolutionary trajectory of the VP1 gene of human enterovirus 71 genogroup B and C viruses. Journal of General Virology, 2010, 91, 1949-1958.	2.9	59
106	Host ecology determines the dispersal patterns of a plant virus. Virus Evolution, 2015, 1, vev016.	4.9	59
107	Phylodynamic assessment of intervention strategies for the West African Ebola virus outbreak. Nature Communications, 2018, 9, 2222.	12.8	59
108	The global distribution of <i>Banana bunchy top virus </i> reveals little evidence for frequent recent, human-mediated long distance dispersal events. Virus Evolution, 2015, 1, vev009.	4.9	58

#	Article	IF	CITATIONS
109	Analysis of the Serotype and Genotype Correlation of VP1 and the $5\hat{a} \in \mathbb{Z}^2$ Noncoding Region in an Epidemiological Survey of the Human Enterovirus B Species. Journal of Clinical Microbiology, 2004, 42, 963-971.	3.9	57
110	Genomic characterization of novel dolphin papillomaviruses provides indications for recombination within the Papillomaviridae. Virology, 2008, 378, 151-161.	2.4	57
111	Identifying recombinants in human and primate immunodeficiency virus sequence alignments using quartet scanning. BMC Bioinformatics, 2009, 10, 126.	2.6	57
112	Are hepatitis B virus "subgenotypes―defined accurately?. Journal of Clinical Virology, 2010, 47, 356-360.	3.1	57
113	Phylogeographical footprint of colonial history in the global dispersal of human immunodeficiency virus type 2 group A. Journal of General Virology, 2012, 93, 889-899.	2.9	56
114	A novel hepatitis B virus species discovered in capuchin monkeys sheds new light on the evolution of primate hepadnaviruses. Journal of Hepatology, 2018, 68, 1114-1122.	3.7	56
115	High GUD Incidence in the Early 20th Century Created a Particularly Permissive Time Window for the Origin and Initial Spread of Epidemic HIV Strains. PLoS ONE, 2010, 5, e9936.	2.5	54
116	Mannan-binding lectin (MBL) gene polymorphisms in ulcerative colitis and Crohn's disease. Genes and Immunity, 2001, 2, 323-328.	4.1	52
117	Phylodynamics of the HIV-1 CRF02_AG clade in Cameroon. Infection, Genetics and Evolution, 2012, 12, 453-460.	2.3	52
118	Landscape attributes governing local transmission of an endemic zoonosis: Rabies virus in domestic dogs. Molecular Ecology, 2018, 27, 773-788.	3.9	50
119	Genomic Analysis of Hepatitis B Virus Reveals Antigen State and Genotype as Sources of Evolutionary Rate Variation. Viruses, 2011, 3, 83-101.	3.3	49
120	Phylogeography of Lassa Virus in Nigeria. Journal of Virology, 2019, 93, .	3.4	49
121	Complete Genome Sequence, Taxonomic Assignment, and Comparative Analysis of the Untranslated Regions of the Modoc Virus, a Flavivirus with No Known Vector. Virology, 2002, 293, 125-140.	2.4	46
122	Isolation and cloning of the raccoon (Procyon lotor) papillomavirus type 1 by using degenerate papillomavirus-specific primers. Journal of General Virology, 2005, 86, 2029-2033.	2.9	46
123	Novel hepatitis B virus subgenotype A6 in African-Belgian patients. Journal of Clinical Virology, 2010, 47, 93-96.	3.1	46
124	Bayesian Inference Reveals Host-Specific Contributions to the Epidemic Expansion of Influenza A H5N1. Molecular Biology and Evolution, 2015, 32, msv185.	8.9	46
125	The spread of Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in North America: A phylogeographic approach. Virology, 2013, 447, 146-154.	2.4	45
126	Differential Infection Patterns and Recent Evolutionary Origins of Equine Hepaciviruses in Donkeys. Journal of Virology, 2017, 91, .	3.4	45

#	Article	IF	CITATIONS
127	Recent advances in computational phylodynamics. Current Opinion in Virology, 2018, 31, 24-32.	5.4	45
128	Molecular testing of multiple HIV-1 transmissions in a criminal case. Aids, 2005, 19, 1649-1658.	2.2	43
129	On the Biogeography of Centipeda: A Species-Tree Diffusion Approach. Systematic Biology, 2014, 63, 178-191.	5.6	43
130	Genome-Wide Evolutionary Analyses of G1P[8] Strains Isolated Before and After Rotavirus Vaccine Introduction. Genome Biology and Evolution, 2015, 7, 2473-2483.	2.5	43
131	Assessing the role of live poultry trade in community-structured transmission of avian influenza in China. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5949-5954.	7.1	43
132	A large Finnish echovirus 30 outbreak was preceded by silent circulation of the same genotype. Virus Genes, 2011, 42, 28-36.	1.6	41
133	Complete genome sequence of Montana Myotis leukoencephalitis virus, phylogenetic analysis and comparative study of the $3\hat{a} \in \mathbb{C}^2$ untranslated region of flaviviruses with no known vector. Journal of General Virology, 2002, 83, 1875-1885.	2.9	40
134	A genotypic resistance assay for the detection of drug resistance in the human immunodeficiency virus type 1 envelope gene. Journal of Virological Methods, 2005, 123, 25-34.	2.1	39
135	Bayesian Inference of Evolutionary Histories under Time-Dependent Substitution Rates. Molecular Biology and Evolution, 2019, 36, 1793-1803.	8.9	39
136	Limitations to Contact Tracing And Phylogenetic Analysis in Establishing HIV Type 1 Transmission Networks in Cuba. AIDS Research and Human Retroviruses, 2007, 23, 347-356.	1.1	38
137	Impact of CCR5delta32 Host Genetic Background and Disease Progression on HIV-1 Intrahost Evolutionary Processes: Efficient Hypothesis Testing through Hierarchical Phylogenetic Models. Molecular Biology and Evolution, 2011, 28, 1605-1616.	8.9	38
138	Viral Characteristics Associated with the Clinical Nonprogressor Phenotype Are Inherited by Viruses from a Cluster of HIV-1 Elite Controllers. MBio, 2018, 9, .	4.1	37
139	Distinct rates and patterns of spread of the major HIV-1 subtypes in Central and East Africa. PLoS Pathogens, 2019, 15, e1007976.	4.7	37
140	Characterization of a Putative Ancestor of Coxsackievirus B5. Journal of Virology, 2010, 84, 9695-9708.	3.4	36
141	A Bayesian statistical analysis of human T-cell lymphotropic virus evolutionary rates. Infection, Genetics and Evolution, 2005, 5, 291-298.	2.3	35
142	Molecular evolutionary analysis and mutational pattern of fullâ€length genomes of hepatitis B virus isolated from Belgian patients with different clinical manifestations. Journal of Medical Virology, 2010, 82, 379-389.	5.0	35
143	Adaptive MCMC in Bayesian phylogenetics: an application to analyzing partitioned data in BEAST. Bioinformatics, 2017, 33, 1798-1805.	4.1	35
144	Transmission dynamics of re-emerging rabies in domestic dogs of rural China. PLoS Pathogens, 2018, 14, e1007392.	4.7	35

#	Article	IF	Citations
145	Discovery and genome characterization of three new Jeilongviruses, a lineage of paramyxoviruses characterized by their unique membrane proteins. BMC Genomics, 2018, 19, 617.	2.8	35
146	Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework. Nature Communications, 2020, $11,5620$.	12.8	35
147	Phylogeography Reveals Association between Swine Trade and the Spread of Porcine Epidemic Diarrhea Virus in China and across the World. Molecular Biology and Evolution, 2022, 39, .	8.9	35
148	Unlocking capacities of genomics for the COVID-19 response and future pandemics. Nature Methods, 2022, 19, 374-380.	19.0	35
149	HIV-1 compartmentalization in diverse leukocyte populations during antiretroviral therapy. Journal of Leukocyte Biology, 2004, 76, 562-570.	3.3	34
150	Using phylogeographic approaches to analyse the dispersal history, velocity and direction of viral lineages—ÂApplication to rabies virus spread in Iran. Molecular Ecology, 2019, 28, 4335-4350.	3.9	34
151	Phylogenetic analysis of hepatitis B virus full-length genomes reveals evidence for a large nosocomial outbreak in Belgium. Journal of Clinical Virology, 2009, 46, 61-68.	3.1	33
152	Phylodynamics of H5N1 avian influenza virus in Indonesia. Molecular Ecology, 2012, 21, 3062-3077.	3.9	33
153	Circulation of HRSV in Belgium: From Multiple Genotype Circulation to Prolonged Circulation of Predominant Genotypes. PLoS ONE, 2013, 8, e60416.	2.5	33
154	Emergence in Japan of an HIV-1 Variant Associated with Transmission among Men Who Have Sex with Men (MSM) in China: First Indication of the International Dissemination of the Chinese MSM Lineage. Journal of Virology, 2013, 87, 5351-5361.	3.4	32
155	A uniquely prevalent nonnucleoside reverse transcriptase inhibitor resistance mutation in Russian subtype A HIV-1 viruses. Aids, 2014, 28, F1-F8.	2.2	32
156	Genesis of avian-origin H7N9 influenza A viruses. Lancet, The, 2013, 381, 1883-1885.	13.7	31
157	The Phylogeography and Spatiotemporal Spread of South-Central Skunk Rabies Virus. PLoS ONE, 2013, 8, e82348.	2.5	31
158	Ecuador Paraiso Escondido Virus, a New Flavivirus Isolated from New World Sand Flies in Ecuador, Is the First Representative of a Novel Clade in the Genus Flavivirus. Journal of Virology, 2015, 89, 11773-11785.	3.4	31
159	Towards a unified classification for human respiratory syncytial virus genotypes. Virus Evolution, 2020, 6, veaa052.	4.9	31
160	A near full-length HIV-1 genome from 1966 recovered from formalin-fixed paraffin-embedded tissue. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12222-12229.	7.1	31
161	Relax, Keep Walking â€" A Practical Guide to Continuous Phylogeographic Inference with BEAST. Molecular Biology and Evolution, 2021, 38, 3486-3493.	8.9	31
162	Exceptional Heterogeneity in Viral Evolutionary Dynamics Characterises Chronic Hepatitis C Virus Infection. PLoS Pathogens, 2016, 12, e1005894.	4.7	31

#	Article	IF	Citations
163	Analysis of the Evolutionary Relationships of HIV-1 and SIVcpz Sequences Using Bayesian Inference: Implications for the Origin of HIV-1. Molecular Biology and Evolution, 2003, 20, 1986-1996.	8.9	30
164	Assessing phenotypic correlation through the multivariate phylogenetic latent liability model. Annals of Applied Statistics, 2015, 9, 969-991.	1.1	30
165	On the importance of negative controls in viral landscape phylogeography. Virus Evolution, 2018, 4, vey023.	4.9	29
166	Estimation of an <i>in vivo</i> fitness landscape experienced by HIV-1 under drug selective pressure useful for prediction of drug resistance evolution during treatment. Bioinformatics, 2008, 24, 34-41.	4.1	28
167	Evolutionary analysis of HBV "S―antigen genetic diversity in Iranian blood donors: A nationwide study. Journal of Medical Virology, 2014, 86, 144-155.	5.0	28
168	Contribution of Epidemiological Predictors in Unraveling the Phylogeographic History of HIV-1 Subtype C in Brazil. Journal of Virology, 2015, 89, 12341-12348.	3.4	28
169	Combining phylogeography and spatial epidemiology to uncover predictors of H5N1 influenza A virus diffusion. Archives of Virology, 2015, 160, 215-224.	2.1	28
170	Spatioâ€ŧemporal analysis of Nova virus, a divergent hantavirus circulating in the European mole in Belgium. Molecular Ecology, 2016, 25, 5994-6008.	3.9	28
171	Genetic analyses reveal structured HIV-1 populations in serially sampled T lymphocytes of patients receiving HAART. Virology, 2006, 348, 35-46.	2.4	27
172	Whole genome analysis of local Kenyan and global sequences unravels the epidemiological and molecular evolutionary dynamics of RSV genotype ON1 strains. Virus Evolution, 2018, 4, vey027.	4.9	27
173	Phylogenetic Reconstruction of a Known HIV-1 CRF04_cpx Transmission Network Using Maximum Likelihood and Bayesian Methods. Journal of Molecular Evolution, 2004, 59, 709-717.	1.8	26
174	Evolutionary Dynamics of Human Retroviruses Investigated Through Full-Genome Scanning. Molecular Biology and Evolution, 2005, 22, 942-951.	8.9	26
175	Estimating the Relative Contribution of dNTP Pool Imbalance and APOBEC3G/3F Editing to HIV Evolution <i>In Vivo</i> Iournal of Computational Biology, 2007, 14, 1105-1114.	1.6	26
176	The recent ancestry of Middle East respiratory syndrome coronavirus in Korea has been shaped by recombination. Scientific Reports, 2016, 6, 18825.	3.3	26
177	Detection of Marburg Virus Disease in Guinea. New England Journal of Medicine, 2022, 386, 2528-2530.	27.0	26
178	Full-genome analysis of a highly divergent simian T-cell lymphotropic virus type 1 strain in Macaca arctoides. Journal of General Virology, 2005, 86, 1953-1959.	2.9	25
179	A Relaxed Directional Random Walk Model for Phylogenetic Trait Evolution. Systematic Biology, 2017, 66, syw093.	5.6	25
180	Mass migration to Europe: an opportunity for elimination of hepatitis B virus?. The Lancet Gastroenterology and Hepatology, 2019, 4, 315-323.	8.1	25

#	Article	IF	CITATIONS
181	Online Bayesian Phylodynamic Inference in BEAST with Application to Epidemic Reconstruction. Molecular Biology and Evolution, 2020, 37, 1832-1842.	8.9	25
182	Archival influenza virus genomes from Europe reveal genomic variability during the 1918 pandemic. Nature Communications, 2022, 13, 2314.	12.8	25
183	Plasma ExchangeAssociated Immunoglobulin MNegative Hantavirus Disease after a Camping Holiday in Southern France. Clinical Infectious Diseases, 2004, 38, 1350-1356.	5.8	24
184	The multi-faceted dynamics of HIV-1 transmission in Northern Alberta: A combined analysis of virus genetic and public health data. Infection, Genetics and Evolution, 2017, 52, 100-105.	2.3	24
185	Divergence dating using mixed effects clock modelling: An application to HIV-1. Virus Evolution, 2019, 5, vez036.	4.9	24
186	Genomic Epidemiology of 2015–2016 Zika Virus Outbreak in Cape Verde. Emerging Infectious Diseases, 2020, 26, 1084-1090.	4.3	24
187	Spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals. Nature Medicine, 2022, 28, 1476-1485.	30.7	24
188	HBV subgenotype misclassification expands quasi-subgenotype A3. Clinical Microbiology and Infection, 2011, 17, 947-949.	6.0	23
189	Molecular characterization of hepatitis B virus strains circulating in Belgian patients coâ€infected with HIV and HBV: Overt and occult infection. Journal of Medical Virology, 2011, 83, 1876-1884.	5.0	23
190	Tracing the Impact of Public Health Interventions on HIV-1 Transmission in Portugal Using Molecular Epidemiology. Journal of Infectious Diseases, 2019, 220, 233-243.	4.0	23
191	Covering all bases in HIV research: unveiling a hidden world of viral evolution. AIDS Reviews, 2010, 12, 89-102.	1.0	23
192	Genetic Variability of Human Respiratory Coronavirus OC43. Journal of Virology, 2005, 79, 3223-3225.	3.4	22
193	Role of viral evolutionary rate in HIV-1 disease progression in a linked cohort. Retrovirology, 2005, 2, 41.	2.0	22
194	Ï€BUSS: a parallel BEAST/BEAGLE utility for sequence simulation under complex evolutionary scenarios. BMC Bioinformatics, 2014, 15, 133.	2.6	22
195	Simultaneously estimating evolutionary history and repeated traits phylogenetic signal: applications to viral and host phenotypic evolution. Methods in Ecology and Evolution, 2015, 6, 67-82.	5.2	22
196	Enzootic Transmission of Yellow Fever Virus, Venezuela. Emerging Infectious Diseases, 2015, 21, 99-102.	4.3	22
197	The epidemic dynamics of hepatitis C virus subtypes 4a and 4d in Saudi Arabia. Scientific Reports, 2017, 7, 44947.	3.3	22
198	Comparing patterns and scales of plant virus phylogeography: Rice yellow mottle virus in Madagascar and in continental Africa. Virus Evolution, 2019, 5, vez023.	4.9	22

#	Article	IF	Citations
199	Gradients Do Grow on Trees: A Linear-Time $\langle i \rangle O \langle i \rangle (\langle i \rangle N \langle i \rangle)$ -Dimensional Gradient for Statistical Phylogenetics. Molecular Biology and Evolution, 2020, 37, 3047-3060.	8.9	22
200	Global spatial dynamics and vaccine-induced fitness changes of <i>Bordetella pertussis</i> Science Translational Medicine, 2022, 14, eabn3253.	12.4	22
201	SlidingBayes: exploring recombination using a sliding window approach based on Bayesian phylogenetic inference. Bioinformatics, 2005, 21, 1274-1275.	4.1	21
202	Proposal for a new subtype of the zoonotic genotype 3 Hepatitis E virus: HEV-3l. Virus Research, 2018, 248, 1-4.	2.2	21
203	Earlier Initiation of Antiretroviral Treatment Coincides With an Initial Control of the HIV-1 Sub-Subtype F1 Outbreak Among Men-Having-Sex-With-Men in Flanders, Belgium. Frontiers in Microbiology, 2019, 10, 613.	3.5	21
204	Genetically Different Highly Pathogenic Avian Influenza A(H5N1) Viruses in West Africa, 2015. Emerging Infectious Diseases, 2016, 22, 2132-2136.	4.3	20
205	Host Genetic Variation Does Not Determine Spatio-Temporal Patterns of European Bat 1 Lyssavirus. Genome Biology and Evolution, 2017, 9, 3202-3213.	2.5	19
206	Iran's hepatitis elimination programme is under threat. Lancet, The, 2018, 392, 1009.	13.7	19
207	nosoi: A stochastic agentâ€based transmission chain simulation framework in <scp>r</scp> . Methods in Ecology and Evolution, 2020, 11, 1002-1007.	5.2	19
208	Relaxed Random Walks at Scale. Systematic Biology, 2021, 70, 258-267.	5.6	19
209	A systematic review on global RSV genetic data: Identification of knowledge gaps. Reviews in Medical Virology, 2022, 32, e2284.	8.3	19
210	The epidemic history of hepatitis C among injecting drug users in Flanders, Belgium. Journal of Viral Hepatitis, 2008, 15, 399-408.	2.0	18
211	Dynamic features of the selective pressure on the human immunodeficiency virus type 1 (HIV-1) gp120 CD4-binding site in a group of long term non progressor (LTNP) subjects. Retrovirology, 2009, 6, 4.	2.0	18
212	Graph hierarchies for phylogeography. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120206.	4.0	18
213	High intrapatient HIV-1 evolutionary rate is associated with CCR5-to-CXCR4 coreceptor switch. Infection, Genetics and Evolution, 2013, 19, 369-377.	2.3	18
214	Limited evolution of the yellow fever virus 17d in a mouse infection model. Emerging Microbes and Infections, 2019, 8, 1734-1746.	6.5	18
215	Time-measured phylogenies of gag, pol and env sequence data reveal the direction and time interval of HIV-1 transmission. Aids, 2011, 25, 1035-1039.	2.2	16
216	The introduction of fox rabies into Italy (2008–2011) was due to two viral genetic groups with distinct phylogeographic patterns. Infection, Genetics and Evolution, 2013, 17, 202-209.	2.3	16

#	Article	IF	CITATIONS
217	Disentangling the impact of within-host evolution and transmission dynamics on the tempo of HIV-1 evolution. Aids, 2015, 29, 1549-1556.	2.2	16
218	Accurate quantification of within- and between-host HBV evolutionary rates requires explicit transmission chain modelling. Virus Evolution, 2017, 3, vex028.	4.9	16
219	Phylogenetic Factor Analysis. Systematic Biology, 2018, 67, 384-399.	5.6	16
220	Identifying the patterns and drivers of Puumala hantavirus enzootic dynamics using reservoir sampling. Virus Evolution, 2019, 5, vez009.	4.9	16
221	Phylogenetic classification of TT virus groups based on the N22 region is unreliable. Virus Research, 2002, 85, 47-59.	2.2	15
222	Evidence for a Complex Mosaic Genome Pattern in a Full-length Hepatitis C Virus Sequence. Evolutionary Bioinformatics, 2008, 4, EBO.S1038.	1.2	15
223	Molecular characterization of hepatitis B virus (HBV) strains circulating in the northern coast of the Persian Gulf and its comparison with worldwide distribution of HBV subgenotype D1. Journal of Medical Virology, 2014, 86, 745-757.	5.0	15
224	Advances in Visualization Tools for Phylogenomic and Phylodynamic Studies of Viral Diseases. Frontiers in Public Health, 2019, 7, 208.	2.7	15
225	In Search of Covariates of HIV-1 Subtype B Spread in the United Statesâ€"A Cautionary Tale of Large-Scale Bayesian Phylogeography. Viruses, 2020, 12, 182.	3.3	15
226	Evaluating predictive markers for viral rebound and safety assessment in blood and lumbar fluid during HIV-1 treatment interruption. Journal of Antimicrobial Chemotherapy, 2020, 75, 1311-1320.	3.0	15
227	Massive Parallelization Boosts Big Bayesian Multidimensional Scaling. Journal of Computational and Graphical Statistics, 2021, 30, 11-24.	1.7	15
228	Hamiltonian Monte Carlo sampling to estimate past population dynamics using the skygrid coalescent model in a Bayesian phylogenetics framework. Wellcome Open Research, 2020, 5, 53.	1.8	15
229	Bayesian Phylogeographic Analysis Incorporating Predictors and Individual Travel Histories in BEAST. Current Protocols, 2021, 1, e98.	2.9	14
230	Increasing importance of European lineages in seeding the hepatitis C virus subtype 1a epidemic in Spain. Eurosurveillance, 2019, 24, .	7.0	14
231	Exploring full-genome sequences for phylogenetic support of HIV-1 transmission events. Aids, 2005, 19, 1551-1552.	2.2	13
232	The evolution of human immunodeficiency virus type-1 (HIV-1) envelope molecular properties and coreceptor use at all stages of infection in an HIV-1 donor–recipient pair. Virology, 2012, 422, 70-80.	2.4	13
233	Quantifying Next Generation Sequencing Sample Pre-Processing Bias in HIV-1 Complete Genome Sequencing. Viruses, 2016, 8, 12.	3.3	13
234	Identifying predictors of time-inhomogeneous viral evolutionary processes. Virus Evolution, 2016, 2, vew023.	4.9	13

#	Article	IF	Citations
235	A Novel Series of Indole Alkaloid Derivatives Inhibit Dengue and Zika Virus Infection by Interference with the Viral Replication Complex. Antimicrobial Agents and Chemotherapy, 2021, 65, e0234920.	3.2	13
236	Symptom evolution following the emergence of maize streak virus. ELife, 2020, 9, .	6.0	13
237	Cyclorraphan yolk proteins and lepidopteran minor yolk proteins originate from two unrelated lipase families. Insect Molecular Biology, 2004, 13, 615-623.	2.0	12
238	Genetic variation in mother–child acute seroconverter pairs from Zambia. Aids, 2008, 22, 817-824.	2.2	12
239	Estimating the individualized HIV-1 genetic barrier to resistance using a nelfinavir fitness landscape. BMC Bioinformatics, 2010, 11, 409.	2.6	12
240	Complete nucleotide sequence and evolutionary analysis of a Gorilla foamy virus. Journal of General Virology, 2011, 92, 582-586.	2.9	11
241	Phylogenetic analysis of two genotype 3 Hepatitis E viruses from wild boar, Italy. Virus Genes, 2018, 54, 812-817.	1.6	11
242	High-Performance Computing in Bayesian Phylogenetics and Phylodynamics Using BEAGLE. Methods in Molecular Biology, 2019, 1910, 691-722.	0.9	11
243	Incorporating heterogeneous sampling probabilities in continuous phylogeographic inference â€" Application to H5N1 spread in the Mekong region. Bioinformatics, 2020, 36, 2098-2104.	4.1	11
244	Markov-Modulated Continuous-Time Markov Chains to Identify Site- and Branch-Specific Evolutionary Variation in BEAST. Systematic Biology, 2021, 70, 181-189.	5.6	11
245	Molecular detection and genomic characterization of diverse hepaciviruses in African rodents. Virus Evolution, 2021, 7, veab036.	4.9	11
246	Genome Sequence of Ruloma Virus, a Novel Paramyxovirus Clustering Basally to Members of the Genus <i>Jeilongvirus</i> . Microbiology Resource Announcements, 2021, 10, .	0.6	11
247	A Comprehensive Molecular Epidemiological Analysis of SARS-CoV-2 Infection in Cyprus from April 2020 to January 2021: Evidence of a Highly Polyphyletic and Evolving Epidemic. Viruses, 2021, 13, 1098.	3.3	11
248	Site stripping based on likelihood ratio reduction is a useful tool to evaluate the impact of non-clock-like behavior on viral phylogenetic reconstructions. FEMS Immunology and Medical Microbiology, 2003, 39, 125-132.	2.7	10
249	Phylogenetic analysis using protein sequences. , 2009, , 313-342.		10
250	On Hepatitis C Virus Evolution: The Interaction between Virus and Host towards Treatment Outcome. PLoS ONE, 2013, 8, e62393.	2.5	10
251	Reassortment compatibility between PB1, PB2, and HA genes of the two influenza B virus lineages in mammalian cells. Scientific Reports, 2016, 6, 27480.	3.3	10
252	Inferring Phenotypic Trait Evolution on Large Trees With Many Incomplete Measurements. Journal of the American Statistical Association, 2022, 117, 678-692.	3.1	10

#	Article	IF	Citations
253	Large-scale inference of correlation among mixed-type biological traits with phylogenetic multivariate probit models. Annals of Applied Statistics, 2021, 15, .	1.1	10
254	Phylogenetic relationships of the HA and NA genes between vaccine and seasonal influenza A(H3N2) strains in Korea. PLoS ONE, 2017, 12, e0172059.	2.5	10
255	Introduction to recombination detection. , 2009, , 493-518.		9
256	Rivers and landscape ecology of a plant virus, Rice yellow mottle virus along the Niger Valley. Virus Evolution, 2021, 7, .	4.9	9
257	Molecular and genomic investigation of an urban outbreak of dengue virus serotype 2 in Angola, 2017–2019. PLoS Neglected Tropical Diseases, 2022, 16, e0010255.	3.0	9
258	A comparative study of HIV-1 clade C env evolution in a Zambian infant with an infected rhesus macaque during disease progression. Aids, 2009, 23, 1817-1828.	2.2	8
259	Genomic population structure associated with repeated escape of Salmonella enterica ATCC14028s from the laboratory into nature. PLoS Genetics, 2021, 17, e1009820.	3.5	8
260	Accommodating sampling location uncertainty in continuous phylogeography. Virus Evolution, 2022, 8, .	4.9	8
261	HIV-1 evolution in patients undergoing immunotherapy with Tat, Rev, and Nef expressing dendritic cells followed by treatment interruption. Aids, 2013, 27, 2679-2689.	2.2	7
262	Epidemiological history and genomic characterization of non-D1 HBV strains identified in Iran. Journal of Clinical Virology, 2015, 63, 38-41.	3.1	7
263	Low Postseroconversion CD4 + T-cell Level Is Associated with Faster Disease Progression and Higher Viral Evolutionary Rate in HIV-2 Infection. MBio, 2019, 10, .	4.1	7
264	HIV-1 p24Gag adaptation to modern and archaic HLA-allele frequency differences in ethnic groups contributes to viral subtype diversification. Virus Evolution, 2020, 6, veaa085.	4.9	7
265	Efficient Bayesian inference of general Gaussian models on large phylogenetic trees. Annals of Applied Statistics, 2021, 15, .	1.1	7
266	Molecular clock analysis., 2009,, 362-380.		6
267	A21 HIV-1 sub-subtype F1 outbreak among MSM in Belgium. Virus Evolution, 2017, 3, .	4.9	6
268	Quantifying rates of HIV-1 flow between risk groups and geographic locations in Kenya: A country-wide phylogenetic study. Virus Evolution, 2022, 8, veac016.	4.9	6
269	Emergency of Primary NNRTI Resistance Mutations without Antiretroviral Selective Pressure in a HAART-Treated Child. PLoS ONE, 2009, 4, e4806.	2.5	5
270	HCV genotype distribution in Flanders and Brussels (Belgium): unravelling the spread of an uncommon HCV genotype 5a cluster. European Journal of Clinical Microbiology and Infectious Diseases, 2010, 29, 1427-1434.	2.9	5

#	Article	IF	CITATIONS
271	Synonymous and nonsynonymous distances help untangle convergent evolution and recombination. Statistical Applications in Genetics and Molecular Biology, 2015, 14, 375-89.	0.6	5
272	Determinants of dengue virus dispersal in the Americas. Virus Evolution, 2020, 6, veaa074.	4.9	5
273	The phylodynamics of SARS-CoV-2 during 2020 in Finland. Communications Medicine, 2022, 2, .	4.2	5
274	Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza. Statistics in Medicine, 2018, 37, 195-206.	1.6	4
275	<i>In Vivo</i> Therapy with M2e-Specific IgG Selects for an Influenza A Virus Mutant with Delayed Matrix Protein 2 Expression. MBio, 2021, 12, e0074521.	4.1	4
276	Phylogenomic Characterization of Lopma Virus and Praja Virus, Two Novel Rodent-Borne Arteriviruses. Viruses, 2021, 13, 1842.	3.3	4
277	Bayesian codon substitution modelling to identify sources of pathogen evolutionary rate variation. Microbial Genomics, 2016, 2, e000057.	2.0	4
278	Generalized linear models for identifying predictors of the evolutionary diffusion of viruses. AMIA Summits on Translational Science Proceedings, 2014, 2014, 23-8.	0.4	4
279	Reconstruction of the origin and dispersal of the worldwide dominant Hepatitis B Virus subgenotype D1. Virus Evolution, 2022, 8, .	4.9	4
280	High Frequency of HIV-1 Dual Infections in Cameroon, West Central Africa. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 57, e25-e27.	2.1	3
281	Air conditioning system usage and SARS-CoV-2 transmission dynamics in Iran. Medical Hypotheses, 2020, 143, 110164.	1.5	3
282	Phycova â€" a tool for exploring covariates of pathogen spread. Virus Evolution, 2022, 8, veac015.	4.9	3
283	The role of high-risk geographies in the perpetuation of the HIV epidemic in rural South Africa: A spatial molecular epidemiology study. PLOS Global Public Health, 2022, 2, e0000105.	1.6	3
284	The International Virus Bioinformatics Meeting 2022. Viruses, 2022, 14, 973.	3.3	3
285	Global origins of African highly pathogenic avian influenza H5Nx viruses and intracontinental spread. International Journal of Infectious Diseases, 2019, 79, 9-10.	3.3	2
286	Sequence databases and database searching., 0,, 33-67.		1
287	High-throughput HIV sequencing: evolution in 2D. Future Virology, 2011, 6, 417-420.	1.8	1
288	International BioInformatics Workshop on Virus Evolution and Molecular Epidemiology. Infection, Genetics and Evolution, 2013, 19, 335-336.	2.3	1

PHILIPPE LEMEY

#	Article	IF	CITATIONS
289	OP3-8 Evolutionary analysis of Hepatitis B virus full-length genomes reveals evidence for a large nosocomial outbreak in Belgium. Journal of Clinical Virology, 2009, 46, S8.	3.1	O
290	A63â€∫Quantifying the dynamics of evolutionary rates through time. Virus Evolution, 2019, 5, .	4.9	0
291	A4â \in fAn amplicon-based approach for universal amplification, sequencing, and assembly of full-length HIV-1 samples from the DRC. Virus Evolution, 2019, 5, .	4.9	O
292	Phylogeographic Insights into the Origins and Epidemic History of the Human Immunodeficiency Virus Type $2., 2013, 1-9$.		0
293	HIV-2, Phylogeographic Insights into the Origins and Epidemic History. , 2018, , 970-978.		0