
Federica Sotgia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8534335/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New insights in the expression of stromal caveolin 1 in breast cancer spread to axillary lymph nodes. Scientific Reports, 2021, 11, 2755.	1.6	11
2	Bedaquiline, an FDA-approved drug, inhibits mitochondrial ATP production and metastasis in vivo, by targeting the gamma subunit (ATP5F1C) of the ATP synthase. Cell Death and Differentiation, 2021, 28, 2797-2817.	5.0	30
3	MitoTracker Deep Red (MTDR) Is a Metabolic Inhibitor for Targeting Mitochondria and Eradicating Cancer Stem Cells (CSCs), With Anti-Tumor and Anti-Metastatic Activity In Vivo. Frontiers in Oncology, 2021, 11, 678343.	1.3	12
4	High ATP Production Fuels Cancer Drug Resistance and Metastasis: Implications for Mitochondrial ATP Depletion Therapy. Frontiers in Oncology, 2021, 11, 740720.	1.3	38
5	Hypoxia and hyperglycaemia determine why some endometrial tumours fail to respond to metformin. British Journal of Cancer, 2020, 122, 62-71.	2.9	22
6	Cholesterol and Mevalonate: Two Metabolites Involved in Breast Cancer Progression and Drug Resistance through the ERRα Pathway. Cells, 2020, 9, 1819.	1.8	34
7	A Myristoyl Amide Derivative of Doxycycline Potently Targets Cancer Stem Cells (CSCs) and Prevents Spontaneous Metastasis, Without Retaining Antibiotic Activity. Frontiers in Oncology, 2020, 10, 1528.	1.3	8
8	Mitochondrial Fission Factor (MFF) Inhibits Mitochondrial Metabolism and Reduces Breast Cancer Stem Cell (CSC) Activity. Frontiers in Oncology, 2020, 10, 1776.	1.3	26
9	Deferiprone (DFP) Targets Cancer Stem Cell (CSC) Propagation by Inhibiting Mitochondrial Metabolism and Inducing ROS Production. Cells, 2020, 9, 1529.	1.8	38
10	COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection?. Aging, 2020, 12, 6511-6517.	1.4	170
11	First-in-class candidate therapeutics that target mitochondria and effectively prevent cancer cell metastasis: mitoriboscins and TPP compounds. Aging, 2020, 12, 10162-10179.	1.4	19
12	Using the common cold virus as a naturally occurring vaccine to prevent COVID-19: Lessons from Edward Jenner. Aging, 2020, 12, 18797-18803.	1.4	5
13	Essential role of STAT5a in DCIS formation and invasion following estrogen treatment. Aging, 2020, 12, 15104-15120.	1.4	3
14	Dodecyl-TPP Targets Mitochondria and Potently Eradicates Cancer Stem Cells (CSCs): Synergy With FDA-Approved Drugs and Natural Compounds (Vitamin C and Berberine). Frontiers in Oncology, 2019, 9, 615.	1.3	38
15	Doxycycline, Azithromycin and Vitamin C (DAV): A potent combination therapy for targeting mitochondria and eradicating cancer stem cells (CSCs). Aging, 2019, 11, 2202-2216.	1.4	54
16	Thioalbamide, A Thioamidated Peptide from Amycolatopsis alba, Affects Tumor Growth and Stemness by Inducing Metabolic Dysfunction and Oxidative Stress. Cells, 2019, 8, 1408.	1.8	31
17	FoxO3a as a Positive Prognostic Marker and a Therapeutic Target in Tamoxifen-Resistant Breast Cancer. Cancers, 2019, 11, 1858.	1.7	22
18	Hallmarks of the cancer cell of origin: Comparisons with "energetic―cancer stem cells (e-CSCs). Aging, 2019, 11, 1065-1068.	1.4	20

#	Article	IF	CITATIONS
19	Mitochondrial and ribosomal biogenesis are new hallmarks of stemness, oncometabolism and biomass accumulation in cancer: Mitoâ€stemness and riboâ€stemness features. Aging, 2019, 11, 4801-4835.	1.4	10
20	Bergamot natural products eradicate cancer stem cells (CSCs) by targeting mevalonate, Rho-GDI-signalling and mitochondrial metabolism. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 984-996.	0.5	58
21	The ER-alpha mutation Y537S confers Tamoxifen-resistance via enhanced mitochondrial metabolism, glycolysis and Rho-GDI/PTEN signaling: Implicating TIGAR in somatic resistance to endocrine therapy. Aging, 2018, 10, 4000-4023.	1.4	21
22	Mitochondrial fission as a driver of stemness in tumor cells: mDIVI1 inhibits mitochondrial function, cell migration and cancer stem cell (CSC) signalling. Oncotarget, 2018, 9, 13254-13275.	0.8	77
23	Azithromycin and Roxithromycin define a new family of "senolytic―drugs that target senescent human fibroblasts. Aging, 2018, 10, 3294-3307.	1.4	90
24	Exploiting mitochondrial targeting signal(s), TPP and bis-TPP, for eradicating cancer stem cells (CSCs). Aging, 2018, 10, 229-240.	1.4	34
25	Matcha green tea (MGT) inhibits the propagation of cancer stem cells (CSCs), by targeting mitochondrial metabolism, glycolysis and multiple cell signalling pathways. Aging, 2018, 10, 1867-1883.	1.4	47
26	Doxycycline, an Inhibitor of Mitochondrial Biogenesis, Effectively Reduces Cancer Stem Cells (CSCs) in Early Breast Cancer Patients: A Clinical Pilot Study. Frontiers in Oncology, 2018, 8, 452.	1.3	98
27	A mitochondrial based oncology platform for targeting cancer stem cells (CSCs): MITO-ONC-RX. Cell Cycle, 2018, 17, 2091-2100.	1.3	53
28	Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochemical Journal, 2018, 475, 1611-1634.	1.7	205
29	"Energetic―Cancer Stem Cells (e-CSCs): A New Hyper-Metabolic and Proliferative Tumor Cell Phenotype, Driven by Mitochondrial Energy. Frontiers in Oncology, 2018, 8, 677.	1.3	52
30	Cancer metabolism: a therapeutic perspective. Nature Reviews Clinical Oncology, 2017, 14, 11-31.	12.5	1,028
31	Anti-CTLA-4 therapy for malignant mesothelioma. Immunotherapy, 2017, 9, 273-280.	1.0	19
32	Current and prospective pharmacotherapies for the treatment of pleural mesothelioma. Expert Opinion on Orphan Drugs, 2017, 5, 455-465.	0.5	8
33	Hodgkin lymphoma: A complex metabolic ecosystem with glycolytic reprogramming of the tumor microenvironment. Seminars in Oncology, 2017, 44, 218-225.	0.8	44
34	Pilot study demonstrating metabolic and anti-proliferative effects of in vivo anti-oxidant supplementation with N-Acetylcysteine in Breast Cancer. Seminars in Oncology, 2017, 44, 226-232.	0.8	40
35	G Protein-Coupled Receptors at the Crossroad between Physiologic and Pathologic Angiogenesis: Old Paradigms and Emerging Concepts. International Journal of Molecular Sciences, 2017, 18, 2713.	1.8	27
36	Vitamin C and Doxycycline: A synthetic lethal combination therapy targeting metabolic flexibility in cancer stem cells (CSCs). Oncotarget, 2017, 8, 67269-67286.	0.8	72

#	Article	IF	CITATIONS
37	GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment. Breast Cancer Research, 2017, 19, 129.	2.2	59
38	Mitochondrial markers predict recurrence, metastasis and tamoxifen-resistance in breast cancer patients: Early detection of treatment failure with companion diagnostics. Oncotarget, 2017, 8, 68730-68745.	0.8	64
39	Mitoriboscins: Mitochondrial-based therapeutics targeting cancer stem cells (CSCs), bacteria and pathogenic yeast. Oncotarget, 2017, 8, 67457-67472.	0.8	36
40	Mitochondrial "power―drives tamoxifen resistance: NQO1 and GCLC are new therapeutic targets in breast cancer. Oncotarget, 2017, 8, 20309-20327.	0.8	65
41	Targeting hypoxic cancer stem cells (CSCs) with Doxycycline: Implications for optimizing anti-angiogenic therapy. Oncotarget, 2017, 8, 56126-56142.	0.8	53
42	Targeting cancer stem cell propagation with palbociclib, a CDK4/6 inhibitor: Telomerase drives tumor cell heterogeneity. Oncotarget, 2017, 8, 9868-9884.	0.8	44
43	A new mutation-independent approach to cancer therapy: Inhibiting oncogenic RAS and MYC, by targeting mitochondrial biogenesis. Aging, 2017, 9, 2098-2116.	1.4	21
44	Targeting flavin-containing enzymes eliminates cancer stem cells (CSCs), by inhibiting mitochondrial respiration: Vitamin B2 (Riboflavin) in cancer therapy. Aging, 2017, 9, 2610-2628.	1.4	49
45	Mitochondrial markers predict survival and progression in non-small cell lung cancer (NSCLC) patients: Use as companion diagnostics. Oncotarget, 2017, 8, 68095-68107.	0.8	29
46	Mitochondrial biomarkers predict tumor progression and poor overall survival in gastric cancers: Companion diagnostics for personalized medicine. Oncotarget, 2017, 8, 67117-67128.	0.8	38
47	Mitochondrial mRNA transcripts predict overall survival, tumor recurrence and progression in serous ovarian cancer: Companion diagnostics for cancer therapy. Oncotarget, 2017, 8, 66925-66939.	0.8	18
48	Mitoketoscins: Novel mitochondrial inhibitors for targeting ketone metabolism in cancer stem cells (CSCs). Oncotarget, 2017, 8, 78340-78350.	0.8	31
49	Bedaquiline, an FDA-approved antibiotic, inhibits mitochondrial function and potently blocks the proliferative expansion of stem-like cancer cells (CSCs). Aging, 2016, 8, 1593-1607.	1.4	105
50	Repurposing atovaquone: Targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget, 2016, 7, 34084-34099.	0.8	171
51	Cancer stem cell metabolism. Breast Cancer Research, 2016, 18, 55.	2.2	377
52	Metabolic reprogramming of bone marrow stromal cells by leukemic extracellular vesicles in acute lymphoblastic leukemia. Blood, 2016, 128, 453-456.	0.6	60
53	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
54	Doxycycline and therapeutic targeting of the DNA damage response in cancer cells: old drug, new purpose. Oncoscience, 2015, 2, 696-699.	0.9	26

Federica Sotgia

#	Article	IF	CITATIONS
55	Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via "differentiation-based nano-therapy― Oncotarget, 2015, 6, 3553-3562.	0.8	192
56	Monocytes and macrophages, implications for breast cancer migration and stem cell-like activity and treatment. Oncotarget, 2015, 6, 14687-14699.	0.8	35
57	Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget, 2015, 6, 14777-14795.	0.8	225
58	Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: Treating cancer like an infectious disease. Oncotarget, 2015, 6, 4569-4584.	0.8	401
59	Proteomic identification of prognostic tumour biomarkers, using chemotherapy-induced cancer-associated fibroblasts. Aging, 2015, 7, 816-838.	1.4	32
60	Doxycycline down-regulates DNA-PK and radiosensitizes tumor initiating cells: Implications for more effective radiation therapy. Oncotarget, 2015, 6, 14005-14025.	0.8	103
61	High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant. Oncotarget, 2015, 6, 30472-30486.	0.8	175
62	Caveolae and signalling in cancer. Nature Reviews Cancer, 2015, 15, 225-237.	12.8	185
63	Metastasis and Oxidative Stress: Are Antioxidants a Metabolic Driver of Progression?. Cell Metabolism, 2015, 22, 956-958.	7.2	85
64	Targeting tumor-initiating cells: Eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction. Oncotarget, 2015, 6, 4585-4601.	0.8	55
65	Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog-GLI signalling in breast cancer cells. Oncotarget, 2015, 6, 10728-10745.	0.8	89
66	Estrogen related receptor α (ERRα) a promising target for the therapy of adrenocortical carcinoma (ACC). Oncotarget, 2015, 6, 25135-25148.	0.8	39
67	Dissecting tumor metabolic heterogeneity: Telomerase and large cell size metabolically define a sub-population of stem-like, mitochondrial-rich, cancer cells. Oncotarget, 2015, 6, 21892-21905.	0.8	41
68	Mitochondrial mass, a new metabolic biomarker for stem-like cancer cells: Understanding WNT/FGF-driven anabolic signaling. Oncotarget, 2015, 6, 30453-30471.	0.8	113
69	JNK1 stress signaling is hyper-activated in high breast density and the tumor stroma: Connecting fibrosis, inflammation, and stemness for cancer prevention. Cell Cycle, 2014, 13, 580-599.	1.3	52
70	CAPER, a novel regulator of human breast cancer progression. Cell Cycle, 2014, 13, 1256-1264.	1.3	24
71	Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Seminars in Cancer Biology, 2014, 25, 47-60.	4.3	337
72	Metabolic Asymmetry in Cancer: A "Balancing Act―that Promotes Tumor Growth. Cancer Cell, 2014, 26, 5-7.	7.7	20

#	Article	IF	CITATIONS
73	Tumor Microenvironment and Metabolic Synergy in Breast Cancers: Critical Importance of Mitochondrial Fuels and Function. Seminars in Oncology, 2014, 41, 195-216.	0.8	176
74	17β-estradiol regulates giant vesicle formation via estrogen receptor-alpha in human breast cancer cells. Oncotarget, 2014, 5, 3055-3065.	0.8	30
75	The reverse warburg effect in osteosarcoma. Oncotarget, 2014, 5, 7982-7983.	0.8	26
76	Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition. Oncotarget, 2014, 5, 11029-11037.	0.8	181
77	Cav1 Suppresses Tumor Growth and Metastasis in a Murine Model of Cutaneous SCC through Modulation of MAPK/AP-1 Activation. American Journal of Pathology, 2013, 182, 992-1004.	1.9	26
78	Reverse Warburg Effect in a Patient With Aggressive B-Cell Lymphoma: Is Lactic Acidosis a Paraneoplastic Syndrome?. Seminars in Oncology, 2013, 40, 403-418.	0.8	40
79	Creating a tumor-resistant microenvironment: Cell-mediated delivery of TNFα completely prevents breast cancer tumor formation in vivo. Cell Cycle, 2013, 12, 480-490.	1.3	26
80	Cancer metabolism, stemness and tumor recurrence. Cell Cycle, 2013, 12, 1371-1384.	1.3	195
81	Caloric restriction augments radiation efficacy in breast cancer. Cell Cycle, 2013, 12, 1955-1963.	1.3	95
82	Nutrient Restriction and Radiation Therapy for Cancer Treatment: When Less Is More. Oncologist, 2013, 18, 97-103.	1.9	47
83	Cigarette smoke metabolically promotes cancer, via autophagy and premature aging in the host stromal microenvironment. Cell Cycle, 2013, 12, 818-825.	1.3	51
84	Caveolin-1 is a negative regulator of tumor growth in glioblastoma and modulates chemosensitivity to temozolomide. Cell Cycle, 2013, 12, 1510-1520.	1.3	45
85	Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism. Cell Cycle, 2013, 12, 289-301.	1.3	43
86	Carbonic anhydrase 9 (CA9) and redox signaling in cancer-associated fibroblasts: Therapeutic implications. Cell Cycle, 2013, 12, 2534-2534.	1.3	3
87	Stromal glycolysis and MCT4 are hallmarks of DCIS progression to invasive breast cancer. Cell Cycle, 2013, 12, 2935-2936.	1.3	11
88	Compartment-specific activation of PPARÎ ³ governs breast cancer tumor growth, via metabolic reprogramming and symbiosis. Cell Cycle, 2013, 12, 1360-1370.	1.3	32
89	Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment. Cell Cycle, 2013, 12, 2580-2597.	1.3	75
90	Oncogenes induce the cancer-associated fibroblast phenotype: Metabolic symbiosis and "fibroblast addiction―are new therapeutic targets for drug discovery. Cell Cycle, 2013, 12, 2723-2732.	1.3	104

#	Article	IF	CITATIONS
91	Mitochondrial dysfunction in breast cancer cells prevents tumor growth. Cell Cycle, 2013, 12, 172-182.	1.3	76
92	Cancer Metabolism: New Validated Targets for Drug Discovery. Oncotarget, 2013, 4, 1309-1316.	0.8	44
93	Cav1 inhibits benign skin tumor development in a two-stage carcinogenesis model by suppressing epidermal proliferation. American Journal of Translational Research (discontinued), 2013, 5, 80-91.	0.0	6
94	CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling―tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle, 2012, 11, 3599-3610.	1.3	182
95	Ketone body utilization drives tumor growth and metastasis. Cell Cycle, 2012, 11, 3964-3971.	1.3	152
96	Metabolic reprogramming and two-compartment tumor metabolism. Cell Cycle, 2012, 11, 3280-3289.	1.3	77
97	Genetic Ablation of Cav1 Differentially Affects Melanoma Tumor Growth and Metastasis in Mice: Role of Cav1 in Shh Heterotypic Signaling and Transendothelial Migration. Cancer Research, 2012, 72, 2262-2274.	0.4	20
98	Metabolic remodeling of the tumor microenvironment: Migration stimulating factor (MSF) reprograms myofibroblasts toward lactate production, fueling anabolic tumor growth. Cell Cycle, 2012, 11, 3403-3414.	1.3	42
99	Two-compartment tumor metabolism: Autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells. Cell Cycle, 2012, 11, 2545-2559.	1.3	107
100	CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth. Cell Cycle, 2012, 11, 2272-2284.	1.3	116
101	BRCA1 mutations drive oxidative stress and glycolysis in the tumor microenvironment. Cell Cycle, 2012, 11, 4402-4413.	1.3	71
102	Is cancer a metabolic rebellion against host aging? In the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism. Cell Cycle, 2012, 11, 253-263.	1.3	57
103	Hereditary ovarian cancer and two-compartment tumor metabolism. Cell Cycle, 2012, 11, 4152-4166.	1.3	53
104	Mitochondria "fuel―breast cancer metabolism: Fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle, 2012, 11, 4390-4401.	1.3	147
105	Ketone bodies and two-compartment tumor metabolism: Stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle, 2012, 11, 3956-3963.	1.3	103
106	Warburg Meets Autophagy: Cancer-Associated Fibroblasts Accelerate Tumor Growth and Metastasis <i>via</i> Oxidative Stress, Mitophagy, and Aerobic Glycolysis. Antioxidants and Redox Signaling, 2012, 16, 1264-1284.	2.5	254
107	Using the "reverse Warburg effect―to identify high-risk breast cancer patients. Cell Cycle, 2012, 11, 1108-1117.	1.3	224
108	Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: Connecting TGF-β signaling with "Warburg-like―cancer metabolism and L-lactate production. Cell Cycle, 2012, 11, 3019-3035.	1.3	249

#	Article	IF	CITATIONS
109	Caveolin-1 and Accelerated Host Aging in the Breast Tumor Microenvironment. American Journal of Pathology, 2012, 181, 278-293.	1.9	95
110	Power Surge: Supporting Cells "Fuel―Cancer Cell Mitochondria. Cell Metabolism, 2012, 15, 4-5.	7.2	137
111	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
112	Estrogen receptor beta (ERβ) produces autophagy and necroptosis in human seminoma cell line through the binding of the Sp1 on the phosphatase and tensin homolog deleted from chromosome 10 (PTEN) promoter gene. Cell Cycle, 2012, 11, 2911-2921.	1.3	67
113	The milk protein α-casein functions as a tumor suppressor via activation of STAT1 signaling, effectively preventing breast cancer tumor growth and metastasis. Cell Cycle, 2012, 11, 3972-3982.	1.3	31
114	Mitochondrial metabolism in cancer metastasis. Cell Cycle, 2012, 11, 1445-1454.	1.3	162
115	Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance. Cell Cycle, 2012, 11, 4174-4180.	1.3	105
116	Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1 \hat{l} ±, autophagy and ketone body production. Cell Cycle, 2012, 11, 4167-4173.	1.3	40
117	Hyccin, the Molecule Mutated in the Leukodystrophy Hypomyelination and Congenital Cataract (HCC), Is a Neuronal Protein. PLoS ONE, 2012, 7, e32180.	1.1	20
118	Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis, via glycolysis and ketone production. Cell Cycle, 2012, 11, 2285-2302.	1.3	209
119	Caveolin-1 and Cancer Metabolism in the Tumor Microenvironment: Markers, Models, and Mechanisms. Annual Review of Pathology: Mechanisms of Disease, 2012, 7, 423-467.	9.6	249
120	Mitochondrial Fission Induces Glycolytic Reprogramming in Cancer-Associated Myofibroblasts, Driving Stromal Lactate Production, and Early Tumor Growth. Oncotarget, 2012, 3, 798-810.	0.8	112
121	Genetic Induction of the Warburg Effect Inhibits Tumor Growth. Oncotarget, 2012, 3, 1266-1267.	0.8	7
122	Cytokine production and inflammation drive autophagy in the tumor microenvironment. Cell Cycle, 2011, 10, 1784-1793.	1.3	137
123	Molecular profiling of a lethal tumor microenvironment, as defined by stromal caveolin-1 status in breast cancers. Cell Cycle, 2011, 10, 1794-1809.	1.3	107
124	Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis. Cell Cycle, 2011, 10, 2440-2449.	1.3	208
125	Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biology and Therapy, 2011, 12, 924-938.	1.5	154
126	Role of Cholesterol in the Development and Progression of Breast Cancer. American Journal of Pathology, 2011, 178, 402-412.	1.9	257

#	Article	IF	CITATIONS
127	Mitochondrial Biogenesis Drives Tumor Cell Proliferation. American Journal of Pathology, 2011, 178, 1949-1952.	1.9	54
128	Stromal–epithelial metabolic coupling in cancer: Integrating autophagy and metabolism in the tumor microenvironment. International Journal of Biochemistry and Cell Biology, 2011, 43, 1045-1051.	1.2	218
129	Caveolin-1 promotes pancreatic cancer cell differentiation and restores membranous E-cadherin via suppression of the epithelial-mesenchymal transition. Cell Cycle, 2011, 10, 3692-3700.	1.3	49
130	Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Research, 2011, 13, 213.	2.2	153
131	Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect. Cell Cycle, 2011, 10, 2504-2520.	1.3	245
132	Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention?. BMC Medicine, 2011, 9, 62.	2.3	121
133	Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth. Cancer Biology and Therapy, 2011, 12, 1101-1113.	1.5	99
134	Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ. Cell Cycle, 2011, 10, 4047-4064.	1.3	256
135	Loss of stromal caveolin-1 expression in malignant melanoma metastases predicts poor survival. Cell Cycle, 2011, 10, 4250-4255.	1.3	72
136	Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth. Cell Cycle, 2011, 10, 4065-4073.	1.3	110
137	Accelerated aging in the tumor microenvironment. Cell Cycle, 2011, 10, 2059-2063.	1.3	63
138	Ketones and lactate increase cancer cell "stemness,―driving recurrence, metastasis and poor clinical outcome in breast cancer. Cell Cycle, 2011, 10, 1271-1286.	1.3	295
139	Evidence for a stromal-epithelial "lactate shuttle―in human tumors. Cell Cycle, 2011, 10, 1772-1783.	1.3	393
140	Understanding the metabolic basis of drug resistance. Cell Cycle, 2011, 10, 2521-2528.	1.3	97
141	Matrix remodeling stimulates stromal autophagy, "fueling―cancer cell mitochondrial metabolism and metastasis. Cell Cycle, 2011, 10, 2021-2034.	1.3	69
142	Caveolin-2-deficient mice show increased sensitivity to endotoxemia. Cell Cycle, 2011, 10, 2151-2161.	1.3	23
143	Scleroderma-like properties of skin from caveolin-1-deficient mice. Cell Cycle, 2011, 10, 2140-2150.	1.3	58
144	Energy transfer in "parasitic" cancer metabolism. Cell Cycle, 2011, 10, 4208-4216.	1.3	144

#	Article	IF	CITATIONS
145	Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment. Cancer Biology and Therapy, 2011, 11, 383-394.	1.5	122
146	Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells. Cancer Biology and Therapy, 2011, 12, 1085-1097.	1.5	145
147	Caveolinopathies: from the biology of caveolin-3 to human diseases. European Journal of Human Genetics, 2010, 18, 137-145.	1.4	238
148	Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: Evidence for stromal-epithelial metabolic coupling. Cell Cycle, 2010, 9, 2412-2422.	1.3	130
149	Understanding the "lethal" drivers of tumor-stroma co-evolution. Cancer Biology and Therapy, 2010, 10, 537-542.	1.5	180
150	Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the "reverse Warburg effect― A transcriptional informatics analysis with validation. Cell Cycle, 2010, 9, 2201-2219.	1.3	212
151	CAV1 Inhibits Metastatic Potential in Melanomas through Suppression of the Integrin/Src/FAK Signaling Pathway. Cancer Research, 2010, 70, 7489-7499.	0.4	65
152	Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers. Cancer Biology and Therapy, 2010, 10, 135-143.	1.5	118
153	Ketones and lactate "fuel―tumor growth and metastasis. Cell Cycle, 2010, 9, 3506-3514.	1.3	526
154	HIF1-alpha functions as a tumor promoter in cancer-associated fibroblasts, and as a tumor suppressor in breast cancer cells. Cell Cycle, 2010, 9, 3534-3551.	1.3	207
155	Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: Implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle, 2010, 9, 2423-2433.	1.3	238
156	The autophagic tumor stroma model of cancer or "battery-operated tumor growth― Cell Cycle, 2010, 9, 4297-4306.	1.3	165
157	Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution. Cell Cycle, 2010, 9, 3276-3296.	1.3	400
158	The reverse Warburg Effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle, 2010, 9, 1960-1971.	1.3	192
159	Autophagy in cancer associated fibroblasts promotes tumor cell survival. Cell Cycle, 2010, 9, 3515-3533.	1.3	377
160	The autophagic tumor stroma model of cancer. Cell Cycle, 2010, 9, 3485-3505.	1.3	248
161	Therapeutic Potential of Proteasome Inhibition in Duchenne and Becker Muscular Dystrophies. American Journal of Pathology, 2010, 176, 1863-1877.	1.9	71
162	Transcriptional evidence for the "Reverse Warburg Effect" in human breast cancer tumor stroma and metastasis: Similarities with oxidative stress, inflammation, Alzheimer's disease, and "Neuron-Glia Metabolic Coupling". Aging, 2010, 2, 185-199.	1.4	136

#	Article	IF	CITATIONS
163	The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle, 2009, 8, 3984-4001.	1.3	1,130
164	Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer. Cancer Biology and Therapy, 2009, 8, 1071-1079.	1.5	125
165	An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease spread and epithelial Akt activation. Cell Cycle, 2009, 8, 2420-2424.	1.3	141
166	Towards a new "stromal-based―classification system for human breast cancer prognosis and therapy. Cell Cycle, 2009, 8, 1654-1658.	1.3	64
167	Clinical and translational implications of the caveolin gene family: lessons from mouse models and human genetic disorders. Laboratory Investigation, 2009, 89, 614-623.	1.7	76
168	An Absence of Stromal Caveolin-1 Expression Predicts Early Tumor Recurrence and Poor Clinical Outcome in Human Breast Cancers. American Journal of Pathology, 2009, 174, 2023-2034.	1.9	307
169	Caveolin-1 (P132L), a Common Breast Cancer Mutation, Confers Mammary Cell Invasiveness and Defines a Novel Stem Cell/Metastasis-Associated Gene Signature. American Journal of Pathology, 2009, 174, 1650-1662.	1.9	73
170	Loss of Caveolin-3 Induces a Lactogenic Microenvironment that Is Protective Against Mammary Tumor Formation. American Journal of Pathology, 2009, 174, 613-629.	1.9	20
171	Caveolin-1â~'/â~' Null Mammary Stromal Fibroblasts Share Characteristics with Human Breast Cancer-Associated Fibroblasts. American Journal of Pathology, 2009, 174, 746-761.	1.9	123
172	Genetic Ablation of Caveolin-1 Drives Estrogen-Hypersensitivity and the Development of DCIS-Like Mammary Lesions. American Journal of Pathology, 2009, 174, 1172-1190.	1.9	57
173	Using Caveolin-1 epithelial immunostaining patterns to stratify human breast cancer patients and to predict the Caveolin-1 (P132L) mutation. Cell Cycle, 2009, 8, 1396-1401.	1.3	15
174	Decreased expression of caveolin 1 in patients with systemic sclerosis: Crucial role in the pathogenesis of tissue fibrosis. Arthritis and Rheumatism, 2008, 58, 2854-2865.	6.7	159
175	Caveolin-3 T78M and T78K missense mutations lead to different phenotypes in vivo and in vitro. Laboratory Investigation, 2008, 88, 275-283.	1.7	37
176	Regulation of Cripto-1 Signaling and Biological Activity by Caveolin-1 in Mammary Epithelial Cells. American Journal of Pathology, 2008, 172, 345-357.	1.9	23
177	Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle, 2008, 7, 2257-2267.	1.3	80
178	Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 down-regulation and RB tumor suppressor functional inactivation: Implications for the response to hormonal therapy. Cancer Biology and Therapy, 2008, 7, 1212-1225.	1.5	136
179	Localized Treatment with a Novel FDA-Approved Proteasome Inhibitor Blocks the Degradation of Dystrophin and Dystrophin-Associated Proteins in mdx Mice. Cell Cycle, 2007, 6, 1242-1248.	1.3	67
180	Caveolin-1 is required for the upregulation of fatty acid synthase (FASN), a tumor promoter, during prostate cancer progression. Cancer Biology and Therapy, 2007, 6, 1269-1274.	1.5	47

#	Article	IF	CITATIONS
181	Caveolin-1(â^'/â^')- and Caveolin-2(â^'/â^')-Deficient Mice Both Display Numerous Skeletal Muscle Abnormalities, with Tubular Aggregate Formation. American Journal of Pathology, 2007, 170, 316-333.	1.9	59
182	Phenotypic characterization of hypomyelination and congenital cataract. Annals of Neurology, 2007, 62, 121-127.	2.8	39
183	Caveolin-1 Deficiency (â^'/â^') Conveys Premalignant Alterations in Mammary Epithelia, with Abnormal Lumen Formation, Growth Factor Independence, and Cell Invasiveness. American Journal of Pathology, 2006, 168, 292-309.	1.9	66
184	Caveolin-1 Mutations in Human Breast Cancer. American Journal of Pathology, 2006, 168, 1998-2013.	1.9	92
185	Stromal and Epithelial Caveolin-1 Both Confer a Protective Effect Against Mammary Hyperplasia and Tumorigenesis. American Journal of Pathology, 2006, 169, 1784-1801.	1.9	75
186	Identification of Phosphocaveolin-1 as a Novel Protein Tyrosine Phosphatase 1B Substrateâ€. Biochemistry, 2006, 45, 234-240.	1.2	40
187	SOCS proteins and caveolin-1 as negative regulators of endocrine signaling. Trends in Endocrinology and Metabolism, 2006, 17, 150-158.	3.1	47
188	Deficiency of hyccin, a newly identified membrane protein, causes hypomyelination and congenital cataract. Nature Genetics, 2006, 38, 1111-1113.	9.4	82
189	Genetic ablation of caveolin-1 in mammary epithelial cells increases milk production and hyper-activates STAT5a signaling. Cancer Biology and Therapy, 2006, 5, 292-297.	1.5	26
190	A Novel Role for Caveolin-1 in B Lymphocyte Function and the Development of Thymus-Independent Immune Responses. Cell Cycle, 2006, 5, 1865-1871.	1.3	46
191	Caveolin-1, Mammary Stem Cells, and Estrogen-Dependent Breast Cancers: Figure 1 Cancer Research, 2006, 66, 10647-10651.	0.4	58
192	Pharmacological rescue of the dystrophin-glycoprotein complex in Duchenne and Becker skeletal muscle explants by proteasome inhibitor treatment. American Journal of Physiology - Cell Physiology, 2006, 290, C577-C582.	2.1	57
193	Loss of Caveolin-1 Causes the Hyper-Proliferation of Intestinal Crypt Stem Cells, with Increased Sensitivity to Whole Body ?-Radiation. Cell Cycle, 2005, 4, 1817-1825.	1.3	73
194	ATR/TEM8 is highly expressed in epithelial cells liningBacillus anthracis'three sites of entry: implications for the pathogenesis of anthrax infection. American Journal of Physiology - Cell Physiology, 2005, 288, C1402-C1410.	2.1	98
195	Caveolin-1-Deficient Mice Have An Increased Mammary Stem Cell Population with Upregulation of Wnt/?-Catenin Signaling. Cell Cycle, 2005, 4, 1808-1816.	1.3	69
196	Impaired Phagocytosis in Caveolin-1 Deficient Macrophages. Cell Cycle, 2005, 4, 1599-1607.	1.3	59
197	Muscle-specific interaction of caveolin isoforms: differential complex formation between caveolins in fibroblastic vs. muscle cells. American Journal of Physiology - Cell Physiology, 2005, 288, C677-C691.	2.1	59
198	Tyrosine Phosphorylation of Caveolin-2 at Residue 27: Differences in the Spatial and Temporal Behavior of Phospho-Cav-2 (pY19 and pY27)â€. Biochemistry, 2004, 43, 13694-13706.	1.2	24

Federica Sotgia

#	Article	IF	CITATIONS
199	Localization of Phospho-β-dystroglycan (pY892) to an Intracellular Vesicular Compartment in Cultured Cells and Skeletal Muscle Fibers in Vivoâ€. Biochemistry, 2003, 42, 7110-7123.	1.2	48
200	Proteasome Inhibitor (MG-132) Treatment of mdx Mice Rescues the Expression and Membrane Localization of Dystrophin and Dystrophin-Associated Proteins. American Journal of Pathology, 2003, 163, 1663-1675.	1.9	111
201	Phosphofructokinase Muscle-Specific Isoform Requires Caveolin-3 Expression for Plasma Membrane Recruitment and Caveolar Targeting. American Journal of Pathology, 2003, 163, 2619-2634.	1.9	32
202	Absence of Caveolin-1 Sensitizes Mouse Skin to Carcinogen-Induced Epidermal Hyperplasia and Tumor Formation. American Journal of Pathology, 2003, 162, 2029-2039.	1.9	149
203	Phenotypic behavior of caveolin-3 R26Q, a mutant associated with hyperCKemia, distal myopathy, and rippling muscle disease. American Journal of Physiology - Cell Physiology, 2003, 285, C1150-C1160.	2.1	43
204	Intracellular Retention of Glycosylphosphatidyl Inositol-Linked Proteins in Caveolin-Deficient Cells. Molecular and Cellular Biology, 2002, 22, 3905-3926.	1.1	82
205	Impairment of Caveolae Formation and T-System Disorganization in Human Muscular Dystrophy with Caveolin-3 Deficiency. American Journal of Pathology, 2002, 160, 265-270.	1.9	117
206	Tyrosine Phosphorylation of β-Dystroglycan at Its WW Domain Binding Motif, PPxY, Recruits SH2 Domain Containing Proteinsâ€. Biochemistry, 2001, 40, 14585-14592.	1.2	87
207	Caveolin-3 Directly Interacts with the C-terminal Tail of β-Dystroglycan. Journal of Biological Chemistry, 2000, 275, 38048-38058.	1.6	181
208	Localization of the human caveolin-3 gene to the D3S18/D3S4163/D3S4539 locus (3p25), in close proximity to the human oxytocin receptor gene. FEBS Letters, 1999, 452, 177-180.	1.3	21
209	Increased Number of Caveolae and Caveolin-3 Overexpression in Duchenne Muscular Dystrophy. Biochemical and Biophysical Research Communications, 1999, 261, 547-550.	1.0	93
210	Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nature Genetics, 1998, 18, 365-368.	9.4	555
211	Identification and characterization of a new human cDNA from chromosome 21q22.3 encoding a basic nuclear protein. Human Genetics, 1998, 102, 289-293.	1.8	29
212	Molecular Genetics of the Caveolin Gene Family: Implications for Human Cancers, Diabetes, Alzheimer Disease, and Muscular Dystrophy. American Journal of Human Genetics, 1998, 63, 1578-1587.	2.6	171