Matthew D Shortridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8533972/publications.pdf

Version: 2024-02-01

840776 888059 17 640 11 17 citations h-index g-index papers 20 20 20 1147 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comprehensive computational design of ordered peptide macrocycles. Science, 2017, 358, 1461-1466.	12.6	146
2	Estimating Proteinâ^'Ligand Binding Affinity Using High-Throughput Screening by NMR. ACS Combinatorial Science, 2008, 10, 948-958.	3.3	95
3	Structure based approaches for targeting non-coding RNAs with small molecules. Current Opinion in Structural Biology, 2015, 30, 79-88.	5.7	73
4	Development of Small Molecules with a Noncanonical Binding Mode to HIV-1 Trans Activation Response (TAR) RNA. Journal of Medicinal Chemistry, 2016, 59, 11148-11160.	6.4	72
5	A Macrocyclic Peptide Ligand Binds the Oncogenic MicroRNA-21 Precursor and Suppresses Dicer Processing. ACS Chemical Biology, 2017, 12, 1611-1620.	3.4	57
6	Analysis of metabolomic PCA data using tree diagrams. Analytical Biochemistry, 2010, 399, 58-63.	2.4	54
7	An ultra-high affinity ligand of HIV-1 TAR reveals the RNA structure recognized by P-TEFb. Nucleic Acids Research, 2019, 47, 1523-1531.	14.5	37
8	A Multi-Step NMR Screen for the Identification and Evaluation of Chemical Leads for Drug Discovery. Combinatorial Chemistry and High Throughput Screening, 2009, 12, 285-295.	1.1	21
9	Structure of the RNA Specialized Translation Initiation Element that Recruits eIF3 to the 5′-UTR of c-Jun. Journal of Molecular Biology, 2020, 432, 1841-1855.	4.2	16
10	Structure and function of <i>Pseudomonas aeruginosa</i> protein PA1324 (21–170). Protein Science, 2009, 18, 606-618.	7.6	13
11	Correlation between Protein Function and Ligand Binding Profiles. Journal of Proteome Research, 2011, 10, 2538-2545.	3.7	12
12	Structural and Functional Similarity between the Bacterial Type III Secretion System Needle Protein PrgI and the Eukaryotic Apoptosis Bcl-2 Proteins. PLoS ONE, 2009, 4, e7442.	2.5	11
13	Bacterial protein structures reveal phylum dependent divergence. Computational Biology and Chemistry, 2011, 35, 24-33.	2.3	10
14	Efficient NMR Screening Approach to Discover Small Molecule Fragments Binding Structured RNA. ACS Medicinal Chemistry Letters, 2021, 12, 1253-1260.	2.8	9
15	A Small Cyclic βâ€Hairpin Peptide Mimics the Rbfox2 RNA Recognition Motif and Binds to the Precursor miRNA 20b. ChemBioChem, 2019, 20, 931-939.	2.6	6
16	A Slow Dynamic RNA Switch Regulates Processing of microRNA-21. Journal of Molecular Biology, 2022, 434, 167694.	4.2	4
17	1H, 13C, and 15N NMR assignments for the helicase interaction domain of Staphylococcus aureus DnaG primase. Biomolecular NMR Assignments, 2012, 6, 35-38.	0.8	2