
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8533482/publications.pdf Version: 2024-02-01

HUNC-YUN LIN

#	Article	IF	CITATIONS
1	Possible Contributions of Nongenomic Actions of Thyroid Hormones to the Vasculopathic Complex of COVID-19 Infection. Endocrine Research, 2022, 47, 39-44.	1.2	0
2	Heteronemin and tetrac derivatives suppress non-small cell lung cancer growth via ERK1/2 inhibition. Food and Chemical Toxicology, 2022, , 112850.	3.6	8
3	Role of Integrin αvβ3 in Doxycycline-Induced Anti-Proliferation in Breast Cancer Cells. Frontiers in Cell and Developmental Biology, 2022, 10, 829788.	3.7	6
4	In Vivo Clearance of Apoptotic Debris From Tumor Xenografts Exposed to Chemically Modified Tetrac: Is There a Role for Thyroid Hormone Analogues in Efferocytosis?. Frontiers in Endocrinology, 2022, 13, 745327.	3.5	0
5	The power of heteronemin in cancers. Journal of Biomedical Science, 2022, 29, .	7.0	4
6	Toxicologic Concerns with Current Medical Nanoparticles. International Journal of Molecular Sciences, 2022, 23, 7597.	4.1	15
7	Nongenomic Actions of Thyroid Hormone: The Integrin Component. Physiological Reviews, 2021, 101, 319-352.	28.8	73
8	2,3,5,4′â€Tetrahydroxystilbeneâ€2â€Oâ€Î²â€ <scp>d</scp> â€glucoside promotes the effects of dental pulp st on rebuilding periodontal tissues in experimental periodontal defects. Journal of Periodontology, 2021, 92, 306-316.	tem cells 3.4	6
9	Inhibition by Thyroid Hormones of Cell Migration Activated by IGF-1 and MCP-1 in THP-1 Monocytes: Focus on Signal Transduction Events Proximal to Integrin αvβ3. Frontiers in Cell and Developmental Biology, 2021, 9, 651492.	3.7	3
10	Role of thyroid hormone-integrin αvβ3-signal and therapeutic strategies in colorectal cancers. Journal of Biomedical Science, 2021, 28, 24.	7.0	20
11	Chemically-Modified Tetraiodothyroacetic Acid (Tetrac) Induces Cancer Cell Apoptosis and Facilitates Clearance of Apoptotic Debris (Efferocytosis). Journal of the Endocrine Society, 2021, 5, A1012-A1013.	0.2	0
12	Actions of Thyroid Hormones on Thyroid Cancers. Frontiers in Endocrinology, 2021, 12, 691736.	3.5	6
13	Nano-Strategies Targeting the Integrin $\hat{I}\pm v\hat{I}^2$ 3 Network for Cancer Therapy. Cells, 2021, 10, 1684.	4.1	35
14	Effect of Estrogen on Heteronemin-Induced Anti-proliferative Effect in Breast Cancer Cells With Different Estrogen Receptor Status. Frontiers in Cell and Developmental Biology, 2021, 9, 688607.	3.7	8
15	NDAT suppresses pro-inflammatory gene expression to enhance resveratrol-induced anti-proliferation in oral cancer cells. Food and Chemical Toxicology, 2020, 136, 111092.	3.6	29
16	Platelet ATP, Thyroid Hormone Receptor on Integrin αvβ3 and Cancer Metastasis. Hormones and Cancer, 2020, 11, 13-16.	4.9	19
17	Molybdenum doping effects for bismuth vanadate photocatalysts on electrochemical performances using the solution process. International Journal of Hydrogen Energy, 2020, 45, 667-674.	7.1	10
18	NDAT Targets PI3K-Mediated PD-L1 Upregulation to Reduce Proliferation in Gefitinib-Resistant Colorectal Cancer. Cells, 2020, 9, 1830.	4.1	21

#	Article	IF	CITATIONS
19	Coronaviruses and Integrin αvβ3: Does Thyroid Hormone Modify the Relationship?. Endocrine Research, 2020, 45, 210-215.	1.2	32
20	Actions of L-thyroxine (T4) and Tetraiodothyroacetic Acid (Tetrac) on Gene Expression in Thyroid Cancer Cells. Genes, 2020, 11, 755.	2.4	9
21	Combined Treatment of Heteronemin and Tetrac Induces Antiproliferation in Oral Cancer Cells. Marine Drugs, 2020, 18, 348.	4.6	12
22	Integrin αvβ3 in the Mediating Effects of Dihydrotestosterone and Resveratrol on Breast Cancer Cell Proliferation. International Journal of Molecular Sciences, 2020, 21, 2906.	4.1	19
23	Thyroid Hormones Interaction With Immune Response, Inflammation and Non-thyroidal Illness Syndrome. Frontiers in Cell and Developmental Biology, 2020, 8, 614030.	3.7	62
24	Thyroid hormone-induced expression of inflammatory cytokines interfere with resveratrol-induced anti-proliferation of oral cancer cells. Food and Chemical Toxicology, 2019, 132, 110693.	3.6	26
25	Phthalate exposure alters gut microbiota composition and IgM vaccine response in human newborns. Food and Chemical Toxicology, 2019, 132, 110700.	3.6	43
26	Leptin-derived peptides block leptin-induced proliferation by reducing expression of pro-inflammatory genes in hepatocellular carcinoma cells. Food and Chemical Toxicology, 2019, 133, 110808.	3.6	10
27	The Role of Thyroid Hormones in Hepatocyte Proliferation and Liver Cancer. Frontiers in Endocrinology, 2019, 10, 532.	3.5	33
28	Tetrac and NDAT Induce Anti-proliferation via Integrin αvβ3 in Colorectal Cancers With Different K-RAS Status. Frontiers in Endocrinology, 2019, 10, 130.	3.5	22
29	Dental Pulp Stem Cell Transplantation with 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside Accelerates Alveolar Bone Regeneration in Rats. Journal of Endodontics, 2019, 45, 435-441.	3.1	15
30	Resveratrol antagonizes thyroid hormone-induced expression of checkpoint and proliferative genes in oral cancer cells. Journal of Dental Sciences, 2019, 14, 255-262.	2.5	26
31	Action of Reverse T3 on Cancer Cells. Endocrine Research, 2019, 44, 148-152.	1.2	20
32	Herbal Medicines Attenuate PD-L1 Expression to Induce Anti-Proliferation in Obesity-Related Cancers. Nutrients, 2019, 11, 2979.	4.1	13
33	How thyroid hormone works depends upon cell type, receptor type, and hormone analogue: implications in cancer growth. Discovery Medicine, 2019, 27, 111-117.	0.5	8
34	Thyroid Hormone in the Clinic and Breast Cancer. Hormones and Cancer, 2018, 9, 139-143.	4.9	38
35	Thyroid Hormone Promotes \hat{l}^2 -Catenin Activation and Cell Proliferation in Colorectal Cancer. Hormones and Cancer, 2018, 9, 156-165.	4.9	22
36	Resveratrol induces sumoylated COX-2-dependent anti-proliferation in human prostate cancer LNCaP cells. Food and Chemical Toxicology, 2018, 112, 67-75.	3.6	29

#	Article	IF	CITATIONS
37	Tetrac downregulates β-catenin and HMGA2 to promote the effect of resveratrol in colon cancer. Endocrine-Related Cancer, 2018, 25, 279-293.	3.1	33
38	Thyroxine inhibits resveratrol-caused apoptosis by PD-L1 in ovarian cancer cells. Endocrine-Related Cancer, 2018, 25, 533-545.	3.1	46
39	In tumor cells, thyroid hormone analogues non-immunologically regulate PD-L1 and PD-1 accumulation that is anti-apoptotic. Oncotarget, 2018, 9, 34033-34037.	1.8	12
40	Heteronemin Induces Anti-Proliferation in Cholangiocarcinoma Cells via Inhibiting TGF-β Pathway. Marine Drugs, 2018, 16, 489.	4.6	13
41	Bioactivity of Thyroid Hormone Analogs at Cancer Cells. Frontiers in Endocrinology, 2018, 9, 739.	3.5	30
42	Enhancement by Nano-Diamino-Tetrac of Antiproliferative Action of Gefitinib on Colorectal Cancer Cells: Mediation by EGFR Sialylation and PI3K Activation. Hormones and Cancer, 2018, 9, 420-432.	4.9	25
43	Tetraiodothyroacetic acid (tetrac), integrin αvβ3 and disabling of immune checkpoint defense. Future Medicinal Chemistry, 2018, 10, 1637-1639.	2.3	8
44	Nano-diamino-tetrac (NDAT) inhibits PD-L1 expression which is essential for proliferation in oral cancer cells. Food and Chemical Toxicology, 2018, 120, 1-11.	3.6	19
45	Nano-Diamino-Tetrac (NDAT) Enhances Resveratrol-Induced Antiproliferation by Action on the RRM2 Pathway in Colorectal Cancers. Hormones and Cancer, 2018, 9, 349-360.	4.9	22
46	Resveratrol inhibits human leiomyoma cell proliferation via crosstalk between integrin αvβ3 and IGF-1R. Food and Chemical Toxicology, 2018, 120, 346-355.	3.6	34
47	Contributions of Thyroid Hormone to Cancer Metastasis. Biomedicines, 2018, 6, 89.	3.2	39
48	Inhibitory Effect of Anoectochilus formosanus Extract on Hyperglycemia-Related PD-L1 Expression and Cancer Proliferation. Frontiers in Pharmacology, 2018, 9, 807.	3.5	24
49	Molecular Basis of Nongenomic Actions of Thyroid Hormone. Vitamins and Hormones, 2018, 106, 67-96.	1.7	35
50	Demonstration of the Receptor Site for Thyroid Hormone on Integrin $\hat{I}\pm\nu\hat{I}^23$. Methods in Molecular Biology, 2018, 1801, 61-65.	0.9	12
51	Radioresistance of cancer cells, integrin αvl²3 and thyroid hormone. Oncotarget, 2018, 9, 37069-37075.	1.8	21
52	Roles of Resveratrol as Signaling Sensor and Gatekeeper. , 2018, , 115-144.		0
53	Targeted delivery of cisplatin to tumor xenografts via the nanoparticle component of nano-diamino-tetrac. Nanomedicine, 2017, 12, 195-205.	3.3	38
54	Therapeutic applications of resveratrol and its derivatives on periodontitis. Annals of the New York Academy of Sciences, 2017, 1403, 101-108.	3.8	40

#	Article	IF	CITATIONS
55	Mechanisms of action of nonpeptide hormones on resveratrolâ€induced antiproliferation of cancer cells. Annals of the New York Academy of Sciences, 2017, 1403, 92-100.	3.8	19
56	Targeted delivery of paclitaxel and doxorubicin to cancer xenografts via the nanoparticle of nano-diamino-tetrac. International Journal of Nanomedicine, 2017, Volume 12, 1305-1315.	6.7	40
57	Leptin OB3 peptide suppresses leptin-induced signaling and progression in ovarian cancer cells. Journal of Biomedical Science, 2017, 24, 51.	7.0	19
58	Biological Mechanisms by Which Antiproliferative Actions of Resveratrol Are Minimized. Nutrients, 2017, 9, 1046.	4.1	11
59	Crosstalk between integrin $\hat{I}\pm v \hat{I}^2 3$ and ER $\hat{I}\pm$ contributes to thyroid hormone-induced proliferation of ovarian cancer cells. Oncotarget, 2017, 8, 24237-24249.	1.8	43
60	Actions of Thyroid Hormone Analogues on Chemokines. Journal of Immunology Research, 2016, 2016, 1-7.	2.2	28
61	2,3,5,4′-Tetrahydroxystilbene-2-O- <i>β</i> -glucoside Isolated from Polygoni Multiflori Ameliorates the Development of Periodontitis. Mediators of Inflammation, 2016, 2016, 1-12.	3.0	30
62	Thyroid Hormone, Cancer, and Apoptosis. , 2016, 6, 1221-1237.		82
63	The combination of tetraiodothyroacetic acid and cetuximab inhibits cell proliferation in colorectal cancers with different K-ras status. Steroids, 2016, 111, 63-70.	1.8	29
64	Possible contributions of thyroid hormone replacement to specific behaviors of cancer. Biomedicine and Pharmacotherapy, 2016, 84, 655-659.	5.6	5
65	Actions of l-thyroxine and Nano-diamino-tetrac (Nanotetrac) on PD-L1 in cancer cells. Steroids, 2016, 114, 59-67.	1.8	63
66	<i>Polygonum multiflorum</i> Decreases Airway Allergic Symptoms in a Murine Model of Asthma. The American Journal of Chinese Medicine, 2016, 44, 133-147.	3.8	8
67	Integrin β3 and LKB1 are independently involved in the inhibition of proliferation by lovastatin in human intrahepatic cholangiocarcinoma. Oncotarget, 2016, 7, 362-373.	1.8	22
68	Novel leptin OB3 peptide-induced signaling and progression in thyroid cancers: Comparison with leptin. Oncotarget, 2016, 7, 27641-27654.	1.8	10
69	Thyroid Hormone, Hormone Analogs, and Angiogenesis. , 2015, 6, 353-362.		54
70	Lovastatin overcomes gefitinib resistance through TNF-α signaling in human cholangiocarcinomas with different LKB1 statuses <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2015, 6, 23857-23873.	1.8	25
71	Mechanisms of dihydrotestosterone action on resveratrol-induced anti-proliferation in breast cancer cells with different ERα status. Oncotarget, 2015, 6, 35866-35879.	1.8	36
72	Thyroid Hormone and P-Glycoprotein in Tumor Cells. BioMed Research International, 2015, 2015, 1-8.	1.9	31

#	Article	IF	CITATIONS
73	Thyroid Hormones Crosstalk with Growth Factors: Old Facts and New Hypotheses. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2015, 15, 71-85.	0.5	22
74	Recurrence of Differentiated Thyroid Carcinoma During Full TSH Suppression: Is the Tumor Now Thyroid Hormone Dependent?. Hormones and Cancer, 2015, 6, 7-12.	4.9	15
75	Low thyroid hormone levels improve survival in murine model for ocular melanoma. Oncotarget, 2015, 6, 11038-11046.	1.8	34
76	Thyroid hormone and anti-apoptosis in tumor cells. Oncotarget, 2015, 6, 14735-14743.	1.8	50
77	Nanotetrac targets integrin αvβ3 on tumor cells to disorder cell defense pathways and block angiogenesis. OncoTargets and Therapy, 2014, 7, 1619.	2.0	40
78	Anti-proliferative and gene expression actions of resveratrol in breast cancer cells <i>in vitro</i> . Oncotarget, 2014, 5, 12891-12907.	1.8	66
79	Suppression of pancreatic cancer by sulfated non-anticoagulant low molecular weight heparin. Cancer Letters, 2014, 350, 25-33.	7.2	27
80	Modulation of angiogenesis by thyroid hormone and hormone analogues: implications for cancer management. Angiogenesis, 2014, 17, 463-469.	7.2	67
81	Thyroid hormone inhibition in L6 myoblasts of IGF-I-mediated glucose uptake and proliferation: new roles for integrin αvβ3. American Journal of Physiology - Cell Physiology, 2014, 307, C150-C161.	4.6	46
82	Biologically active leptin-related synthetic peptides activate STAT3 via phosphorylation of ERK1/2 and PI-3K. Peptides, 2014, 57, 95-100.	2.4	14
83	Cancer Cell Gene Expression Modulated from Plasma Membrane Integrin αvβ3 by Thyroid Hormone and Nanoparticulate Tetrac. Frontiers in Endocrinology, 2014, 5, 240.	3.5	91
84	Tetraiodothyroacetic acid (tetrac) receptor on integrin αvβ3: tetrac blocks activation of the integrin response to tumor cell irradiation (974.6). FASEB Journal, 2014, 28, 974.6.	0.5	0
85	Small Molecule Hormone or Hormone-Like Ligands of Integrin αVβ3: Implications for Cancer Cell Behavior. Hormones and Cancer, 2013, 4, 335-342.	4.9	41
86	Adjunctive Input to the Nuclear Thyroid Hormone Receptor from the Cell Surface Receptor for the Hormone. Thyroid, 2013, 23, 1503-1509.	4.5	35
87	Mechanisms of ceramideâ€induced COXâ€2â€dependent apoptosis in human ovarian cancer OVCARâ€3 cells partially overlapped with resveratrol. Journal of Cellular Biochemistry, 2013, 114, 1940-1954.	2.6	39
88	Nuclear monomeric integrin αv in cancer cells is a coactivator regulated by thyroid hormone. FASEB Journal, 2013, 27, 3209-3216.	0.5	69
89	Response of Human Pancreatic Cancer Cell Xenografts to Tetraiodothyroacetic Acid Nanoparticles. Hormones and Cancer, 2013, 4, 176-185.	4.9	49
90	Molecular Mechanisms of Actions of Formulations of the Thyroid Hormone Analogue, Tetrac, on the Inflammatory Response. Endocrine Research, 2013, 38, 112-118.	1.2	23

#	Article	IF	CITATIONS
91	Tetraiodothyroacetic Acid (Tetrac), Nanotetrac and Anti-angiogenesis. , 2013, , 107-117.		2
92	Tetraiodothyroacetic acid and its nanoformulation inhibit thyroid hormone stimulation of non-small cell lung cancer cells in vitro and its growth in xenografts. Lung Cancer, 2012, 76, 39-45.	2.0	75
93	Nongenomic regulation by thyroid hormone of plasma membrane ion and small molecule pumps. Discovery Medicine, 2012, 14, 199-206.	0.5	23
94	Membrane Receptor for Thyroid Hormone: Physiologic and Pharmacologic Implications. Annual Review of Pharmacology and Toxicology, 2011, 51, 99-115.	9.4	187
95	Overlapping nongenomic and genomic actions of thyroid hormone and steroids. Steroids, 2011, 76, 829-33.	1.8	46
96	Crosstalk between Integrin αvβ3 and Estrogen Receptor-α Is Involved in Thyroid Hormone-Induced Proliferation in Human Lung Carcinoma Cells. PLoS ONE, 2011, 6, e27547.	2.5	88
97	Resveratrol and apoptosis. Annals of the New York Academy of Sciences, 2011, 1215, 79-88.	3.8	87
98	Radiosensitization and production of DNA double-strand breaks in U87MG brain tumor cells induced by tetraiodothyroacetic acid (tetrac). Cell Cycle, 2011, 10, 352-357.	2.6	34
99	Inducible COX-2-dependent apoptosis in human ovarian cancer cells. Carcinogenesis, 2011, 32, 19-26.	2.8	44
100	Pharmacodynamic Modeling of Anti-Cancer Activity of Tetraiodothyroacetic Acid in a Perfused Cell Culture System. PLoS Computational Biology, 2011, 7, e1001073.	3.2	52
101	What Is New for an Old Molecule? Systematic Review and Recommendations on the Use of Resveratrol. PLoS ONE, 2011, 6, e19881.	2.5	375
102	Identification and functions of the plasma membrane receptor for thyroid hormone analogues. Discovery Medicine, 2011, 11, 337-47.	0.5	40
103	Thyroid hormone and angiogenesis. Vascular Pharmacology, 2010, 52, 142-145.	2.1	112
104	Cytoplasm-To-Nucleus Shuttling Of Thyroid Hormone Receptor-β1 (Trβ1) Is Directed From A Plasma Membrane Integrin Receptor By Thyroid Hormone. Endocrine Research, 2009, 34, 31-42.	1.2	41
105	Modification of survival pathway gene expression in human breast cancer cells by tetraiodothyroacetic acid (tetrac). Cell Cycle, 2009, 8, 3562-3570.	2.6	109
106	The pro-apoptotic action of stilbene-induced COX-2 in cancer cells: Convergence with the anti-apoptotic effect of thyroid hormone. Cell Cycle, 2009, 8, 1877-1882.	2.6	31
107	Translational implications of nongenomic actions of thyroid hormone initiated at its integrin receptor. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E1238-E1246.	3.5	74
108	<scp>l</scp> -Thyroxine vs. 3,5,3′-triiodo- <scp>l</scp> -thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. American Journal of Physiology - Cell Physiology, 2009, 296, C980-C991.	4.6	221

#	Article	IF	CITATIONS
109	Androgen-induced human breast cancer cell proliferation is mediated by discrete mechanisms in estrogen receptor-α-positive and -negative breast cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2009, 113, 182-188.	2.5	75
110	Resveratrol causes COXâ€2―and p53â€dependent apoptosis in head and neck squamous cell cancer cells. Journal of Cellular Biochemistry, 2008, 104, 2131-2142.	2.6	69
111	Resveratrol is pro-apoptotic and thyroid hormone is anti-apoptotic in glioma cells: both actions are integrin and ERK mediated. Carcinogenesis, 2007, 29, 62-69.	2.8	109
112	Thyroid hormone is a MAPK-dependent growth factor for thyroid cancer cells and is anti-apoptotic. Steroids, 2007, 72, 180-187.	1.8	130
113	Resveratrol-induced cyclooxygenase-2 facilitates p53-dependent apoptosis in human breast cancer cells. Molecular Cancer Therapeutics, 2006, 5, 2034-2042.	4.1	116
114	Acting via a Cell Surface Receptor, Thyroid Hormone Is a Growth Factor for Glioma Cells. Cancer Research, 2006, 66, 7270-7275.	0.9	163
115	Integrin $\hat{I} \pm V \hat{I}^2$ 3 contains a receptor site for resveratrol. FASEB Journal, 2006, 20, 1742-1744.	0.5	145
116	Integrin αVβ3 Contains a Cell Surface Receptor Site for Thyroid Hormone that Is Linked to Activation of Mitogen-Activated Protein Kinase and Induction of Angiogenesis. Endocrinology, 2005, 146, 2864-2871.	2.8	537
117	Acetylation of nuclear hormone receptor superfamily members: Thyroid hormone causes acetylation of its own receptor by a mitogen-activated protein kinase-dependent mechanism. Steroids, 2005, 70, 444-449.	1.8	46
118	Disparate Effects of Thyroid Hormone on Actions of Epidermal Growth Factor and Transforming Growth Factor-α Are Mediated by 3′,5′-Cyclic Adenosine 5′-Monophosphate-Dependent Protein Kinase II. Endocrinology, 2004, 145, 1708-1717.	2.8	60
119	Proangiogenic Action of Thyroid Hormone Is Fibroblast Growth Factor–Dependent and Is Initiated at the Cell Surface. Circulation Research, 2004, 94, 1500-1506.	4.5	215
120	Thyroid Hormone Causes Mitogen-Activated Protein Kinase-Dependent Phosphorylation of the Nuclear Estrogen Receptor. Endocrinology, 2004, 145, 3265-3272.	2.8	191
121	Resveratrol Induced Serine Phosphorylation Of p53 Causes Apoptosis In A Mutant p53 Prostate Cancer Cell Line. Journal of Urology, 2002, 168, 748-755.	0.4	139
122	Thyroid Hormone Promotes Serine Phosphorylation of p53 by Mitogen-Activated Protein Kinaseâ€. Biochemistry, 2001, 40, 2870-2878.	2.5	116
123	Differential induction of tumor necrosis factor ? and manganese superoxide dismutase by endotoxin in human monocytes: Role of protein tyrosine kinase, mitogen-activated protein kinase, and nuclear factor ?B. Journal of Cellular Physiology, 2000, 182, 381-389.	4.1	18
124	Thyroxine Promotes Association of Mitogen-activated Protein Kinase and Nuclear Thyroid Hormone Receptor (TR) and Causes Serine Phosphorylation of TR. Journal of Biological Chemistry, 2000, 275, 38032-38039.	3.4	184
125	Thyroid hormone induces activation of mitogen-activated protein kinase in cultured cells. American Journal of Physiology - Cell Physiology, 1999, 276, C1014-C1024.	4.6	199
126	Thyroid hormone promotes the phosphorylation of STAT3 and potentiates the action of epidermal growth factor in cultured cells. Biochemical Journal, 1999, 338, 427-432.	3.7	86

#	Article	IF	CITATIONS
127	Thyroid hormone promotes the phosphorylation of STAT3 and potentiates the action of epidermal growth factor in cultured cells. Biochemical Journal, 1999, 338, 427.	3.7	33
128	Thyroid Hormone Replacement Therapy in Patients with Various Types of Cancer. , 0, , .		0
129	Herbal Medicine in Uterine Fibroid. , 0, , .		2