Robert K Peet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8533040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Factors Influencing Succession: Lessons from Large, Infrequent Natural Disturbances. Ecosystems, 1998, 1, 511-523.	1.6	614
2	Plant species richness: the world records. Journal of Vegetation Science, 2012, 23, 796-802.	1.1	600
3	Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nature Chemistry, 2009, 1, 657-661.	6.6	577
4	Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	3.4	397
5	The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics, 2013, 14, 16.	1.2	386
6	How global biodiversity hotspots may go unrecognized: lessons from the North American Coastal Plain. Diversity and Distributions, 2015, 21, 236-244.	1.9	357
7	Competition and Tree Death. BioScience, 1987, 37, 586-595.	2.2	345
8	Functional trait space and the latitudinal diversity gradient. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13745-13750.	3.3	319
9	DIVERSITY AND INVASIBILITY OF SOUTHERN APPALACHIAN PLANT COMMUNITIES. Ecology, 2003, 84, 32-39.	1.5	283
10	Convergence During Secondary Forest Succession. Journal of Ecology, 1984, 72, 25.	1.9	264
11	Succession: A population process. Plant Ecology, 1980, 43, 131-140.	1.2	256
12	The Global Index of Vegetationâ€Plot Databases (GIVD): a new resource for vegetation science. Journal of Vegetation Science, 2011, 22, 582-597.	1.1	251
13	The <scp>bien r</scp> package: A tool to access the Botanical Information and Ecology Network (BIEN) database. Methods in Ecology and Evolution, 2018, 9, 373-379.	2.2	241
14	Composition and species diversity of pine-wiregrass savannas of the Green Swamp, North Carolina. Plant Ecology, 1984, 55, 163-179.	1.2	237
15	Changes in chalk-grassland structure and species richness resulting from selective nutrient additions. Journal of Vegetation Science, 1993, 4, 203-212.	1.1	205
16	The commonness of rarity: Global and future distribution of rarity across land plants. Science Advances, 2019, 5, eaaz0414.	4.7	194
17	Forest vegetation of the Colorado Front Range: Patterns of species diversity. Plant Ecology, 1978, 37, 65-78.	1.2	189
18	Putting Things in Order: The Advantages of Detrended Correspondence Analysis. American Naturalist, 1988, 131, 924-934.	1.0	188

Robert K Peet

#	Article	IF	CITATIONS
19	sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 2019, 30, 161-186.	1.1	185
20	Relative Diversity Indices. Ecology, 1975, 56, 496-498.	1.5	154
21	Standards for associations and alliances of the U.S. National Vegetation Classification. Ecological Monographs, 2009, 79, 173-199.	2.4	144
22	Habitat area and climate stability determine geographical variation in plant species range sizes. Ecology Letters, 2013, 16, 1446-1454.	3.0	130
23	A comparative framework for broadâ€scale plotâ€based vegetation classification. Applied Vegetation Science, 2015, 18, 543-560.	0.9	126
24	Co-occurrence based assessment of habitat generalists and specialists: a new approach for the measurement of niche width. Journal of Ecology, 2007, 95, 707-722.	1.9	124
25	Population Dynamics in Loblolly Pine Stands: Changes in Skewness and Size Inequality. Ecology, 1989, 70, 1153-1167.	1.5	117
26	A Gradient Analysis of Southern Wisconsin Forests. Ecology, 1977, 58, 485-499.	1.5	115
27	High-elevation rock outcrop vegetation of the Southern Appalachian Mountains. Journal of Vegetation Science, 1996, 7, 703-722.	1.1	110
28	A network approach for inferring species associations from coâ€occurrence data. Ecography, 2016, 39, 1139-1150.	2.1	96
29	High species mobility in species-rich plant communities: An intercontinental comparison. Folia Geobotanica Et Phytotaxonomica, 1994, 29, 439-448.	0.4	93
30	PREDICTION OF RARE-PLANT OCCURRENCE: A SOUTHERN APPALACHIAN EXAMPLE. , 1998, 8, 909-920.		93
31	Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species. Journal of Biogeography, 2018, 45, 895-916.	1.4	92
32	Limited sampling hampers "big data―estimation of species richness in a tropical biodiversity hotspot. Ecology and Evolution, 2015, 5, 807-820.	0.8	91
33	Shifts in trait means and variances in North American tree assemblages: species richness patterns are loosely related to the functional space. Ecography, 2015, 38, 649-658.	2.1	89
34	CONNECTING FINE- AND BROAD-SCALE SPECIES–AREA RELATIONSHIPS OF SOUTHEASTERN U.S. FLORA. Ecology, 2005, 86, 1172-1177.	1.5	88
35	Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography, 2016, 39, 194-203.	2.1	86
36	Gradient Analysis of Latitudinal Variation in Southern Rocky Mountain Forests. Journal of Biogeography, 1991, 18, 123.	1.4	74

Robert K Peet

#	Article	IF	CITATIONS
37	Long-term change in ground-layer vegetation of deciduous forests of the North Carolina Piedmont, USA. Journal of Ecology, 2005, 93, 202-213.	1.9	71
38	Gradient analysis of forests of the Sangre de Cristo Range, Colorado. Canadian Journal of Botany, 1990, 68, 193-201.	1.2	70
39	THE ECOLOGICAL SIGNIFICANCE OF LOBED AND TOOTHED LEAVES IN TEMPERATE FOREST TREES. Ecology, 1997, 78, 1250-1255.	1.5	70
40	Tree damage risk factors associated with large, infrequent wind disturbances of Carolina forests. Forestry, 2008, 81, 317-334.	1.2	67
41	Perspectives: Towards a language for mapping relationships among taxonomic concepts. Systematics and Biodiversity, 2009, 7, 5-20.	0.5	67
42	Prediction of man's impact on plant species diversity. , 1983, , 41-54.		66
43	Latitudinal Variation in Southern Rocky Mountain Forests. Journal of Biogeography, 1978, 5, 275.	1.4	64
44	Multi-scale environmental heterogeneity as a predictor of plant species richness. Landscape Ecology, 2011, 26, 851-864.	1.9	64
45	Time and space in the community structure of a species-rich limestone grassland. Journal of Vegetation Science, 1995, 6, 729-740.	1.1	63
46	Patterns and drivers of plant functional group dominance across the Western Hemisphere: a macroecological re-assessment based on a massive botanical dataset. Botanical Journal of the Linnean Society, 2016, 180, 141-160.	0.8	59
47	Global patterns and drivers of alpine plant species richness. Global Ecology and Biogeography, 2021, 30, 1218-1231.	2.7	59
48	Change in pattern diversity during secondary succession in Estonian forests. Journal of Vegetation Science, 1993, 4, 489-498.	1.1	56
49	Ecological Classification of Longleaf Pine Woodlands. , 2007, , 51-93.		55
50	Integration of Local and Regional Speciesâ€Area Relationships from Spaceâ€Time Species Accumulation. American Naturalist, 2006, 168, 133-143.	1.0	51
51	Natural disturbances and the physiognomy of pine savannas: A phenomenological model. Applied Vegetation Science, 2006, 9, 83-96.	0.9	49
52	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	2.7	49
53	VegBank – a permanent, open-access archive for vegetation-plot data. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 233-241.	0.2	45
54	A plant growth form dataset for the New World. Ecology, 2016, 97, 3243-3243.	1.5	44

#	Article	IF	CITATIONS
55	Forest structure as a predictor of tree species diversity in the North Carolina Piedmont. Journal of Vegetation Science, 2016, 27, 1151-1163.	1.1	44
56	Size and Age Structure of Conifers Forests. Ecology, 1984, 65, 1685-1689.	1.5	42
57	Species–area relationships in continuous vegetation: Evidence from Palaearctic grasslands. Journal of Biogeography, 2020, 47, 72-86.	1.4	42
58	Variation in species richness and species pool size across a pH gradient in forests of the southern Blue Ridge Mountains. Folia Geobotanica, 2003, 38, 391-401.	0.4	41
59	Circumpolar Arctic Vegetation Classification. Phytocoenologia, 2018, 48, 181-201.	1.2	40
60	Resolving relationships and phylogeographic history of the Nyssa sylvatica complex using data from RAD-seq and species distribution modeling. Molecular Phylogenetics and Evolution, 2018, 126, 1-16.	1.2	39
61	Plant Functional Diversity and the Biogeography of Biomes in North and South America. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	38
62	Multi-scale phylogenetic structure in coastal dune plant communities across the globe. Journal of Plant Ecology, 2014, 7, 101-114.	1.2	37
63	Patterns of floodplain sediment deposition along the regulated lower Roanoke River, North Carolina: Annual, decadal, centennial scales. Geomorphology, 2015, 228, 666-680.	1.1	35
64	A Vegetation Classification of Fire-Dependent Pinelands of Florida. Castanea, 2010, 75, 153-189.	0.2	34
65	Changes in plant species richness following reduced fire frequency and drought in one of the most speciesâ€rich savannas in North America. Journal of Vegetation Science, 2014, 25, 1426-1437.	1.1	34
66	Benchmarking plant diversity of Palaearctic grasslands and other open habitats. Journal of Vegetation Science, 2021, 32, e13050.	1.1	34
67	Vegâ€X – an exchange standard for plotâ€based vegetation data. Journal of Vegetation Science, 2011, 22, 598-609.	1.1	33
68	The EcoVeg approach in the Americas: U.S., Canadian and International Vegetation Classifications. Phytocoenologia, 2018, 48, 215-237.	1.2	33
69	Bank erosion along the dam-regulated lower Roanoke River, North Carolina. , 2009, , .		33
70	A model of geographical, environmental and regional variation in vegetation composition of pyrogenic grasslands of Florida. Journal of Biogeography, 2009, 36, 1600-1612.	1.4	30
71	A review of the heterogeneous landscape of biodiversity databases: Opportunities and challenges for a synthesized biodiversity knowledge base. Global Ecology and Biogeography, 2022, 31, 1242-1260.	2.7	29

#	Article	IF	CITATIONS
73	Bootstrapped ordination: a method for estimating sampling effects in indirect gradient analysis. Plant Ecology, 1989, 80, 153-165.	1.2	26
74	Twenty-Six Years of Change in a Pinus strobus, Acer saccharum Forest, Lake Itasca, Minnesota. Bulletin of the Torrey Botanical Club, 1984, 111, 61.	0.6	25
75	The relationship between niche breadth and range size of beech (<i>Fagus</i>) species worldwide. Journal of Biogeography, 2021, 48, 1240-1253.	1.4	25
76	The influence of carbon - nutrient balance on herb and woody plant abundance in temperate forest understories. Journal of Vegetation Science, 2006, 17, 217.	1.1	25
77	Vegetation-plot database of the Carolina Vegetation Survey. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 243-253.	0.2	25
78	Alien species pool influences the level of habitat invasion in intercontinental exchange of alien plants. Global Ecology and Biogeography, 2014, 23, 1366-1375.	2.7	23
79	Intercontinental comparison of habitat levels of invasion between temperate North America and Europe. Ecology, 2015, 96, 3363-3373.	1.5	23
80	Hurricane disturbances, tree diversity, and succession in North Carolina Piedmont forests, USA. Journal of Forestry Research, 2019, 30, 219-231.	1.7	23
81	Robert H. Whittaker (1920?1980): The man and his work. Plant Ecology, 1982, 48, 97-122.	1.2	21
82	Classification and description of alluvial plant communities of the Piedmont region, North Carolina, USA. Applied Vegetation Science, 2011, 14, 485-505.	0.9	21
83	Similar factors underlie tree abundance in forests in native and alien ranges. Global Ecology and Biogeography, 2020, 29, 281-294.	2.7	21
84	The influence of carbon—nutrient balance on herb and woody plant abundance in temperate forest understories. Journal of Vegetation Science, 2006, 17, 217-226.	1.1	19
85	A MULTISCALE STUDY OF VASCULAR PLANTS IN A NORTH CAROLINA PIEDMONT FOREST. Ecology, 2007, 88, 2674-2674.	1.5	19
86	Niche expansion after competitor extinction? A comparative assessment of habitat generalists and specialists in the tree floras of south-eastern North America and south-eastern Europe. Journal of Biogeography, 2011, 38, 840-853.	1.4	19
87	Scaleâ€dependent responses of longleaf pine vegetation to fire frequency and environmental context across two decades. Journal of Ecology, 2015, 103, 998-1008.	1.9	19
88	Progress in vegetation science: Trends over the past three decades and new horizons. Journal of Vegetation Science, 2019, 30, 1-4.	1.1	19
89	The plant diversity sampling design for The National Ecological Observatory Network. Ecosphere, 2019, 10, e02603.	1.0	19
90	Shade tolerance and mycorrhizal type may influence sapling susceptibility to conspecific negative density dependence. Journal of Ecology, 2020, 108, 325-336.	1.9	19

#	Article	IF	CITATIONS
91	Disentangling native and alien plant diversity in coastal sand dune ecosystems worldwide. Journal of Vegetation Science, 2021, 32, .	1.1	19
92	<i>Plantâ€Oâ€Matic</i> : a dynamic and mobile guide to all plants of the Americas. Methods in Ecology and Evolution, 2016, 7, 960-965.	2.2	18
93	A multipleâ€scale assessment of longâ€ŧerm aspen persistence and elevational range shifts in the Colorado Front Range. Ecological Monographs, 2016, 86, 244-260.	2.4	18
94	The relationship of woody plant size and leaf nutrient content to largeâ€scale productivity for forests across the Americas. Journal of Ecology, 2019, 107, 2278-2290.	1.9	18
95	Fineâ€grain beta diversity of Palaearctic grassland vegetation. Journal of Vegetation Science, 2021, 32, e13045.	1.1	18
96	Succession, regression and loss: does evidence of saltwater exposure explain recent changes in the tree communities of North Carolina's Coastal Plain?. Annals of Botany, 2020, 125, 255-264.	1.4	17
97	Global functional variation in alpine vegetation. Journal of Vegetation Science, 2021, 32, e13000.	1.1	17
98	The adaptive challenge of extreme conditions shapes evolutionary diversity of plant assemblages at continental scales. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
99	Ordination as a Tool for Analyzing Complex Data Sets. , 1980, , 171-174.		15
100	The Alaska Arctic Vegetation Archive (AVA-AK). Phytocoenologia, 2016, 46, 221-229.	1.2	14
101	Vegetation Structure of Field Margins and Adjacent Forests in Agricultural Landscapes of the North Carolina Piedmont. Castanea, 2009, 74, 327-339.	0.2	13
102	Predicting Microstegium vimineum invasion in natural plant communities of the southern Blue Ridge Mountains, USA. Biological Invasions, 2013, 15, 1217-1230.	1.2	13
103	Ecosystem Convergence. American Naturalist, 1978, 112, 441-444.	1.0	13
104	The nativeâ€exotic species richness relationship varies with spatial grain of measurement and environmental conditions. Ecology, 2017, 98, 3086-3095.	1.5	12
105	Fire-Maintained Pine Savannas and Woodlands of the Southeastern United States Coastal Plain. , 2018, , 39-62.		12
106	Carolina Vegetation Survey: an initiative to improve regional implementation of the U.S. National Vegetation Classification. Phytocoenologia, 2018, 48, 171-179.	1.2	12
107	The Journal of Vegetation Science in 1995 — with some remarks on citation statistics. Journal of Vegetation Science, 1995, 6, 1-4.	1.1	11
108	Ecoinformatics and global change – an overdue liaison. Journal of Vegetation Science, 2011, 22, 577-581.	1.1	10

#	Article	IF	CITATIONS
109	News from the Global Index of Vegetation-Plot Databases (GIVD): the metadata platform, available data, and their properties. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 77-82.	0.2	10
110	What constitutes evidence of community structure? A reply to van der Maarel, Noest & Palmer. Journal of Vegetation Science, 1995, 6, 753-758.	1.1	9
111	Hurricane Effects on the Piedmont Forests: Patterns and Implications. Ecological Restoration, 2008, 26, 295-298.	0.6	9
112	Tree canopy cover constrains the fertility–diversity relationship in plant communities of the southeastern United States. Ecology, 2020, 101, e03119.	1.5	8
113	Interaction of herbs and tree saplings is mediated by soil fertility and stand evergreenness in southern Appalachian forests. Journal of Vegetation Science, 2020, 31, 95-106.	1.1	7
114	Temporal Patterns in Herbaceous Layer Communities of the North Carolina Piedmont. , 2014, , 277-293.		6
115	Environmental context alters the magnitude of conspecific negative density dependence in a temperate forest. Ecosphere, 2021, 12, e03406.	1.0	5
116	Succession: A Population Process. , 1980, , 131-140.		4
117	The Journal of Vegetation Science: Volume 4. Journal of Vegetation Science, 1993, 4, 1-4.	1.1	4
118	The Ecological Significance of Lobed and Toothed Leaves in Temperature Forest Trees. Ecology, 1997, 78, 1250.	1.5	4
119	A Community Analysis for Forest Ecosystems with Natural Growth of <i>Persea</i> spp. in the Southeastern United States. Castanea, 2018, 83, 3-27.	0.2	4
120	Facilitating access to vegetation data – Introduction to the Special Volume. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 9-13.	0.2	4
121	Database Species-Area Relationships in Palaearctic Grasslands. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 321-322.	0.2	4
122	The Role of Fire in the Dynamics of Piedmont Vegetation. Managing Forest Ecosystems, 2021, , 31-62.	0.4	3
123	A Multi-scale Analysis of Plant Diversity Along Soil Nutrient Gradients. Geobotany Studies, 2016, , 425-444.	0.2	2
124	A Theory of Plant Communities: The Second Approximation. Ecology, 1989, 70, 520-521.	1.5	1
125	The Journal of Vegetation Science: Volume 3. Journal of Vegetation Science, 1992, 3, 1-2.	1.1	1
126	A Personal Perspective on Biodiversity. Conservation Biology, 1996, 10, 691-692.	2.4	1

#	Article	IF	CITATIONS
127	Longâ€ŧerm understory vegetation dynamics of mixed aspen forests in Rocky Mountain National Park, USA. Journal of Vegetation Science, 2019, 30, 121-133.	1.1	1
128	Composition and species diversity of pine-wiregrass savannas of the Green Swamp, North Carolina. , 1985, , 303-319.		1
129	Guide to GIVD's Fact Sheets. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 83-88.	0.2	1
130	Fine-grain beta diversity in Palaearctic open vegetation: variability within and between biomes and vegetation types. Vegetation Classification and Survey, 0, 2, 293-304.	0.0	1
131	Ecology of Temperate Evergreen Forests. Ecology, 1984, 65, 1334-1334.	1.5	0
132	ROBERT NEUHÀUSL DEAD. Journal of Vegetation Science, 1991, 2, 429-432.	1.1	0
133	The Journal of Vegetation Science: Volume 5. Journal of Vegetation Science, 1994, 5, 1-4.	1.1	0
134	Resolution of Respect: Michael G. Barbour (1942–2021). Bulletin of the Ecological Society of America, 2021, 102, e01882.	0.2	0