
Jianghao Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8532920/publications.pdf Version: 2024-02-01

Ιμνισμλό Sun

#	Article	IF	CITATIONS
1	Encapsulation of indole-3-carbinol and 3,3′-diindolylmethane in zein/carboxymethyl chitosan nanoparticles with controlled release property and improved stability. Food Chemistry, 2013, 139, 224-230.	8.2	195
2	Phytochemical analysis of traditional Chinese medicine using liquid chromatography coupled with mass spectrometry. Journal of Chromatography A, 2009, 1216, 2045-2062.	3.7	185
3	RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer. Analyst, The, 2009, 134, 2003.	3.5	160
4	Characterization of flavonoids in the traditional Chinese herbal medicine-Huangqin by liquid chromatography coupled with electrospray ionization mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 848, 355-362.	2.3	148
5	Profiling Polyphenols in Five Brassica Species Microgreens by UHPLC-PDA-ESI/HRMS ^{<i>n</i>} . Journal of Agricultural and Food Chemistry, 2013, 61, 10960-10970.	5.2	130
6	Analysis of triterpenoids in Ganoderma lucidum using liquid chromatography coupled with electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 2007, 18, 927-939.	2.8	126
7	UHPLC-PDA-ESI/HRMS ^{<i>n</i>} Profiling Method To Identify and Quantify Oligomeric Proanthocyanidins in Plant Products. Journal of Agricultural and Food Chemistry, 2014, 62, 9387-9400.	5.2	125
8	UHPLC-PDA-ESI/HRMS/MS ^{<i>n</i>} Analysis of Anthocyanins, Flavonol Glycosides, and Hydroxycinnamic Acid Derivatives in Red Mustard Greens (Brassica juncea Coss Variety). Journal of Agricultural and Food Chemistry, 2011, 59, 12059-12072.	5.2	121
9	Chemical compositions of chrysanthemum teas and their anti-inflammatory and antioxidant properties. Food Chemistry, 2019, 286, 8-16.	8.2	103
10	Chromatographic fingerprint analysis and characterization of furocoumarins in the roots of Angelica dahurica by HPLC/DAD/ESI-MSn technique. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47, 778-785.	2.8	101
11	Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation. Plant Physiology and Biochemistry, 2014, 82, 289-298.	5.8	99
12	Integrated Ionization Approach for RRLCâ^'MS/MS-based Metabonomics: Finding Potential Biomarkers for Lung Cancer. Journal of Proteome Research, 2010, 9, 4071-4081.	3.7	97
13	Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMSn. Food Chemistry, 2014, 146, 289-298.	8.2	96
14	Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis. Frontiers in Plant Science, 2015, 6, 831.	3.6	90
15	Comprehensive characterization of <i>C</i> -glycosyl flavones in wheat (<i>Triticum aestivum</i> L.) germ using UPLC-PDA-ESI/HRMS ⁿ and mass defect filtering. Journal of Mass Spectrometry, 2016, 51, 914-930.	1.6	80
16	Differentiation of the Four Major Species of Cinnamons (<i>C. burmannii</i> , <i>C. verum</i> , <i>C.) Tj ETQq0 (Method. Journal of Agricultural and Food Chemistry, 2014, 62, 2516-2521.</i>) 0 rgBT /0 5.2	Overlock 10 Tf 77
17	Microgreens of Brassicaceae: Genetic diversity of phytochemical concentrations and antioxidant capacity. LWT - Food Science and Technology, 2019, 101, 731-737.	5.2	77
18	Red Cabbage Microgreens Lower Circulating Low-Density Lipoprotein (LDL), Liver Cholesterol, and Inflammatory Cytokines in Mice Fed a High-Fat Diet. Journal of Agricultural and Food Chemistry, 2016, 64, 9161-9171.	5.2	76

64, 9161-9171.

JIANGHAO SUN

#	Article	IF	CITATIONS
19	Study of the mass spectrometric behaviors of anthocyanins in negative ionization mode and its applications for characterization of anthocyanins and nonâ€anthocyanin polyphenols. Rapid Communications in Mass Spectrometry, 2012, 26, 1123-1133.	1.5	68
20	Metabolomic Assessment Reveals an Elevated Level of Glucosinolate Content in CaCl ₂ Treated Broccoli Microgreens. Journal of Agricultural and Food Chemistry, 2015, 63, 1863-1868.	5.2	57
21	Liquid chromatography–tandem mass spectrometry analysis of metabolites in rats after administration of prenylflavonoids from Epimediums. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 1113-1124.	2.3	53
22	Differentiation of Panax quinquefolius grown in the USA and China using LC/MS-based chromatographic fingerprinting and chemometric approaches. Analytical and Bioanalytical Chemistry, 2011, 399, 1877-1889.	3.7	48
23	Liquid chromatography–tandem mass spectrometry analysis of protocatechuic aldehyde and its phase I and II metabolites in rat. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 856, 100-107.	2.3	44
24	Analysis of multiplex endogenous estrogen metabolites in human urine using ultra-fast liquid chromatography–tandem mass spectrometry: A case study for breast cancer. Analytica Chimica Acta, 2012, 711, 60-68.	5.4	42
25	Profiling hydroxycinnamic acid glycosides, iridoid glycosides, and phenylethanoid glycosides in baobab fruit pulp (Adansonia digitata). Food Research International, 2017, 99, 755-761.	6.2	42
26	Composition of phenolic compounds in wild apple with multiple resistance mechanisms against postharvest blue mold decay. Postharvest Biology and Technology, 2017, 127, 68-75.	6.0	41
27	Characterization and profiling of phenolic amides from Cortex Lycii by ultra-high performance liquid chromatography coupled with LTQ-Orbitrap mass spectrometry. Analytical and Bioanalytical Chemistry, 2015, 407, 581-595.	3.7	40
28	Profiling of Glucosinolates and Flavonoids in <i>Rorippa indica</i> (Linn.) Hiern. (Cruciferae) by UHPLC-PDA-ESI/HRMS ^{<i>n</i>} . Journal of Agricultural and Food Chemistry, 2014, 62, 6118-6129.	5.2	39
29	Ultra High-Performance Liquid Chromatography with High-Resolution Mass Spectrometry Analysis of African Mango (<i>Irvingia gabonensis</i>) Seeds, Extract, and Related Dietary Supplements. Journal of Agricultural and Food Chemistry, 2012, 60, 8703-8709.	5.2	38
30	Chromatographic fingerprint analysis of yohimbe bark and related dietary supplements using UHPLC/UV/MS. Journal of Pharmaceutical and Biomedical Analysis, 2012, 61, 142-149.	2.8	33
31	Comparison of Flow Injection MS, NMR, and DNA Sequencing: Methods for Identification and Authentication of Black Cohosh (Actaea racemosa). Planta Medica, 2016, 82, 250-262.	1.3	32
32	Profiling the indole alkaloids in yohimbe bark with ultraâ€performance liquid chromatography coupled with ion mobility quadrupole timeâ€ofâ€flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 2591-2602.	1.5	31
33	A flow-injection mass spectrometry fingerprinting method for authentication and quality assessment of Scutellaria lateriflora-based dietary supplements. Analytical and Bioanalytical Chemistry, 2011, 401, 1577-1584.	3.7	30
34	LC-PDA-ESI/MS ^{<i>n</i>} Identification of New Anthocyanins in Purple Bordeaux Radish (Raphanus sativus L. Variety). Journal of Agricultural and Food Chemistry, 2011, 59, 6616-6627.	5.2	29
35	GLS-Finder: A Platform for Fast Profiling of Glucosinolates in <i>Brassica</i> Vegetables. Journal of Agricultural and Food Chemistry, 2016, 64, 4407-4415.	5.2	27
36	Time-Course Changes in Potential Biomarkers Detected Using a Metabonomic Approach in Walker 256 Tumor-Bearing Rats. Journal of Proteome Research, 2011, 10, 1953-1961.	3.7	26

JIANGHAO SUN

#	Article	IF	CITATIONS
37	FlavonQ: An Automated Data Processing Tool for Profiling Flavone and Flavonol Glycosides with Ultra-High-Performance Liquid Chromatography–Diode Array Detection–High Resolution Accurate Mass–Mass Spectrometry. Analytical Chemistry, 2015, 87, 9974-9981.	6.5	26
38	Identification and determination of major flavonoids in rat serum by HPLC–UV and HPLC–MS methods following oral administration of Dalbergia odorifera extract. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 829, 35-44.	2.3	25
39	HPLC method for the determination and pharmacokinetic studies of four triterpenoids in rat plasma after oral administration ofGanoderma lucidum extract. Biomedical Chromatography, 2007, 21, 389-396.	1.7	23
40	Profiling glucosinolate metabolites in human urine and plasma after broccoli consumption using non-targeted and targeted metabolomic analyses. Food Chemistry, 2020, 309, 125660.	8.2	23
41	Development of a Comprehensive Flavonoid Analysis Computational Tool for Ultrahigh-Performance Liquid Chromatography-Diode Array Detection-High-Resolution Accurate Mass-Mass Spectrometry Data. Analytical Chemistry, 2017, 89, 7388-7397.	6.5	22
42	Chemical Compositions of Cold-Pressed Broccoli, Carrot, and Cucumber Seed Flours and Their in Vitro Gut Microbiota Modulatory, Anti-inflammatory, and Free Radical Scavenging Properties. Journal of Agricultural and Food Chemistry, 2018, 66, 9309-9317.	5.2	21
43	Challenges of developing a valid dietary glucosinolate database. Journal of Food Composition and Analysis, 2017, 64, 78-84.	3.9	20
44	Chemical profile and in vitro gut microbiota modulatory, anti-inflammatory and free radical scavenging properties of chrysanthemum morifolium cv. Fubaiju. Journal of Functional Foods, 2019, 58, 114-122.	3.4	20
45	Study the effects of drying processes on chemical compositions in daylily flowers using flow injection mass spectrometric fingerprinting method and chemometrics. Food Research International, 2017, 102, 493-503.	6.2	19
46	A Non-targeted Approach to Chemical Discrimination Between Green Tea Dietary Supplements and Green Tea Leaves by HPLC/MS. Journal of AOAC INTERNATIONAL, 2011, 94, 487-497.	1.5	18
47	Profiling of Polyphenols and Clucosinolates in Kale and Broccoli Microgreens Grown under Chamber and Windowsill Conditions by Ultrahigh-Performance Liquid Chromatography High-Resolution Mass Spectrometry. ACS Food Science & Technology, 2022, 2, 101-113.	2.7	18
48	Chemical analysis and classification of black pepper (Piper nigrum L.) based on their country of origin using mass spectrometric methods and chemometrics. Food Research International, 2021, 140, 109877.	6.2	17
49	Use of flow injection mass spectrometric fingerprinting and chemometrics for differentiation of three black cohosh species. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 105, 121-129.	2.9	16
50	Feruloyl dopamine-O-hexosides are efficient marker compounds as orthogonal validation for authentication of black cohosh (Actaea racemosa)—an UHPLC-HRAM-MS chemometrics study. Analytical and Bioanalytical Chemistry, 2017, 409, 2591-2600.	3.7	16
51	The analysis of phenolic compounds in daylily using UHPLC-HRMS ⁿ and evaluation of drying processing method by fingerprinting and metabolomic approaches. Journal of Food Processing and Preservation, 2018, 42, e13325.	2.0	16
52	A high fat, high cholesterol diet leads to changes in metabolite patterns in pigs – A metabolomic study. Food Chemistry, 2015, 173, 171-178.	8.2	15
53	The chemical composition of a cold-pressed milk thistle seed flour extract, and its potential health beneficial properties. Food and Function, 2019, 10, 2461-2470.	4.6	15
54	Chemical Composition of Tomato Seed Flours, and Their Radical Scavenging, Anti-Inflammatory and Gut Microbiota Modulating Properties. Molecules, 2021, 26, 1478.	3.8	15

JIANGHAO SUN

#	Article	IF	CITATIONS
55	Identification of marker compounds for predicting browning of fresh-cut lettuce using untargeted UHPLC-HRMS metabolomics. Postharvest Biology and Technology, 2021, 180, 111626.	6.0	13
56	Chemical composition of coldâ€pressed blackberry seed flour extract and its potential healthâ€beneficial properties. Food Science and Nutrition, 2020, 8, 1215-1225.	3.4	12
57	A computational tool for accelerated analysis of oligomeric proanthocyanidins in plants. Journal of Food Composition and Analysis, 2017, 56, 124-133.	3.9	9
58	Characterization of Maca (Lepidium meyenii/Lepidium peruvianum) Using a Mass Spectral Fingerprinting, Metabolomic Analysis, and Genetic Sequencing Approach. Planta Medica, 2020, 86, 674-685.	1.3	9
59	Botanical supplements: Detecting the transition from ingredient to product. Journal of Food Composition and Analysis, 2017, 64, 85-92.	3.9	8
60	Application of a computerâ€assisted structure elucidation program for the structural determination of a new terpenoid aldehyde with an unusual skeleton. Magnetic Resonance in Chemistry, 2017, 55, 210-213.	1.9	8
61	Determination of Variance of Secondary Metabolites in Lettuces Grown Under Different Light Sources by Flow Injection Mass Spectrometric (FIMS) Fingerprinting and ANOVA–PCA. Journal of Analysis and Testing, 2018, 2, 312-321.	5.1	8
62	Effect of nighttime UV-C irradiation of strawberry plants on phenolic content of fruit: Targeted and non-targeted metabolomic analysis. Journal of Berry Research, 2020, 10, 365-380.	1.4	8
63	Anthocyanins in processed red raspberries on the US market1,2. Journal of Berry Research, 2019, 9, 603-613.	1.4	7
64	Authentication of black cohosh (Actaea racemosa) dietary supplements based on chemometric evaluation of hydroxycinnamic acid esters and hydroxycinnamic acid amides. Analytical and Bioanalytical Chemistry, 2019, 411, 7147-7156.	3.7	7
65	Quantification of Total Glucosinolates and Isothiocyanates for Common Brassicaceous Vegetables Consumed in the US Market Using Cyclocondensation and Thiocyanate Ion Measurement Methods. Journal of Analysis and Testing, 2019, 3, 313-321.	5.1	7
66	A non-targeted approach to chemical discrimination between green tea dietary supplements and green tea leaves by HPLC/MS. Journal of AOAC INTERNATIONAL, 2011, 94, 487-97.	1.5	6
67	Soluble Free, Soluble Conjugated, and Insoluble Bound Phenolics in Tomato Seeds and Their Radical Scavenging and Antiproliferative Activities. Journal of Agricultural and Food Chemistry, 2022, 70, 9039-9047.	5.2	6
68	Classification of structural characteristics facilitate identifying steroidal saponins in Alliums using ultra-high performance liquid chromatography high-resolution mass spectrometry. Journal of Food Composition and Analysis, 2021, 102, 103994.	3.9	5
69	A systematic approach to determine the impact of elevated CO2 levels on the chemical composition of wheat (Triticum aestivum). Journal of Cereal Science, 2020, 95, 103020.	3.7	4
70	Study on Human Urinary Metabolic Profiles after Consumption of Kale and Daikon Radish using a High-resolution Mass Spectrometry-Based Non-targeted and Targeted Metabolomic Approach. Journal of Agricultural and Food Chemistry, 2020, 68, 14307-14318.	5.2	2
71	Contrast Study on Secondary Metabolite Profile between Pastas Made from Three Single Varietal Common Bean (<i>Phaseolus vulgaris</i> L.) and Durum Wheat (<i>Triticum durum</i>) . ACS Food Science & Technology, 2022, 2, 895-904.	2.7	2
72	Assignment of ¹ H and ¹³ C NMR data for iridoid glycoside derivatives. Magnetic Resonance in Chemistry, 2019, 57, S117-S122.	1.9	0

#	Article	IF	CITATIONS
73	Profiling cocoaâ€derived flavanols and their metabolites in serum, urine, liver, and intestinal contents of pigs fed flavanolâ€enriched cocoa powder (LB420). FASEB Journal, 2014, 28, .	0.5	0
74	Changes in the Intestinal Microbiota and Host Inflammatory Gene Expression in Pigs Fed a Flavanolâ€Enriched Cocoa Powder. FASEB Journal, 2015, 29, 914.4.	0.5	0