
Chris D Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8532311/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lost, gained, and regained functional and phylogenetic diversity of European mammals since 8000 years ago. Global Change Biology, 2022, 28, 5283-5293.	9.5	9
2	The effectiveness of the protected area network of Great Britain. Biological Conservation, 2021, 257, 109146.	4.1	15
3	Translating area-based conservation pledges into efficient biodiversity protection outcomes. Communications Biology, 2021, 4, 1043.	4.4	5
4	Introduced plants as novel Anthropocene habitats for insects. Global Change Biology, 2020, 26, 971-988.	9.5	9
5	Unlocking the potential of historical abundance datasets to study biomass change in flying insects. Ecology and Evolution, 2020, 10, 8394-8404.	1.9	10
6	Global extent and drivers of mammal population declines in protected areas under illegal hunting pressure. PLoS ONE, 2020, 15, e0227163.	2.5	31
7	Past, current, and potential future distributions of unique genetic diversity in a coldâ€adapted mountain butterfly. Ecology and Evolution, 2020, 10, 11155-11168.	1.9	15
8	The development of Anthropocene biotas. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190113.	4.0	41
9	The energy flow through coastal Anthropocene biotas. Frontiers in Ecology and the Environment, 2020, 18, 11-12.	4.0	1
10	Reply to Le Roux et al Current Biology, 2020, 30, R391-R392.	3.9	1
11	Title is missing!. , 2020, 15, e0227163.		0
12	Title is missing!. , 2020, 15, e0227163.		0
13	Title is missing!. , 2020, 15, e0227163.		0
14	Title is missing!. , 2020, 15, e0227163.		0
15	Title is missing!. , 2020, 15, e0227163.		0
16	Title is missing!. , 2020, 15, e0227163.		0
17	Synergistic and antagonistic effects of land use and nonâ€native species on community responses to climate change. Global Change Biology, 2019, 25, 4303-4314.	9.5	26
18	Widespread Effects of Climate Change on Local Plant Diversity. Current Biology, 2019, 29, 2905-2911.e2.	3.9	24

#	Article	IF	CITATIONS
19	Moth biomass has fluctuated over 50 years in Britain but lacks a clear trend. Nature Ecology and Evolution, 2019, 3, 1645-1649.	7.8	145
20	Reduced body sizes in climate-impacted Borneo moth assemblages are primarily explained by range shifts. Nature Communications, 2019, 10, 4612.	12.8	18
21	Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Scientific Reports, 2019, 9, 15039.	3.3	85
22	Synergistic Effects of Climate and Land-Cover Change on Long-Term Bird Population Trends of the Western USA: A Test of Modeled Predictions. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	22
23	"Insectageddon†A call for more robust data and rigorous analyses. Global Change Biology, 2019, 25, 1891-1892.	9.5	163
24	Divergent tree seedling communities indicate different trajectories of change among rain forest remnants. Diversity and Distributions, 2019, 25, 1751-1762.	4.1	1
25	Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nature Communications, 2019, 10, 4455.	12.8	82
26	Climate change vulnerability assessment of species. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10, e551.	8.1	255
27	One hundred priority questions for landscape restoration in Europe. Biological Conservation, 2018, 221, 198-208.	4.1	58
28	Can Habitat Management Mitigate Disease Impacts on Threatened Amphibians?. Conservation Letters, 2018, 11, e12375.	5.7	28
29	Population variability in species can be deduced from opportunistic citizen science records: a case study using British butterflies. Insect Conservation and Diversity, 2018, 11, 131-142.	3.0	9
30	Contrasting patterns of local richness of seedlings, saplings, and trees may have implications for regeneration in rainforest remnants. Biotropica, 2018, 50, 889-897.	1.6	10
31	Defining and delivering resilient ecological networks: Nature conservation in England. Journal of Applied Ecology, 2018, 55, 2537-2543.	4.0	56
32	Determining Whether the Impacts of Introduced Species Are Negative Cannot Be Based Solely on Science: A Response to Russell and Blackburn. Trends in Ecology and Evolution, 2017, 32, 230-231.	8.7	19
33	Climate change, climatic variation and extreme biological responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160144.	4.0	72
34	A national-scale assessment of climate change impacts on species: Assessing the balance of risks and opportunities for multiple taxa. Biological Conservation, 2017, 213, 124-134.	4.1	35
35	Climate change vulnerability for species—Assessing the assessments. Global Change Biology, 2017, 23, 3704-3715.	9.5	52
36	Macro―and microclimatic interactions can drive variation in species' habitat associations. Global Change Biology, 2016, 22, 556-566.	9.5	22

#	Article	IF	CITATIONS
37	Impacts of habitat change and protected areas on alpha and beta diversity of Mexican birds. Diversity and Distributions, 2016, 22, 1245-1254.	4.1	21
38	Geographical range margins of many taxonomic groups continue to shift polewards. Biological Journal of the Linnean Society, 2015, 115, 586-597.	1.6	105
39	The effectiveness of protected areas in the conservation of species with changing geographical ranges. Biological Journal of the Linnean Society, 2015, 115, 707-717.	1.6	53
40	Quantifying the activity levels and behavioural responses of butterfly species to habitat boundaries. Ecological Entomology, 2015, 40, 823-828.	2.2	9
41	Reply to Hulme et al.: Cover of non-native species is too low to adversely affect native plant diversity at a national scale. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2990.	7.1	3
42	Predicting microscale shifts in the distribution of the butterfly <i>Plebejus argus</i> at the northern edge of its range. Ecography, 2015, 38, 998-1005.	4.5	12
43	Hydrologically driven ecosystem processes determine the distribution and persistence of ecosystem-specialist predators under climate change. Nature Communications, 2015, 6, 7851.	12.8	44
44	Rapid acceleration of plant speciation during the Anthropocene. Trends in Ecology and Evolution, 2015, 30, 448-455.	8.7	69
45	Non-native plants add to the British flora without negative consequences for native diversity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4387-4392.	7.1	93
46	The performance of protected areas for biodiversity under climate change. Biological Journal of the Linnean Society, 2015, 115, 718-730.	1.6	123
47	Individualistic sensitivities and exposure to climate change explain variation in species' distribution and abundance changes. Science Advances, 2015, 1, e1400220.	10.3	21
48	The Anthropocene Speciation Hypothesis Remains Valid: Reply to Hulme et al Trends in Ecology and Evolution, 2015, 30, 636-638.	8.7	0
49	Refugia and connectivity sustain amphibian metapopulations afflicted by disease. Ecology Letters, 2015, 18, 853-863.	6.4	68
50	High Abundances of Species in Protected Areas in Parts of their Geographic Distributions Colonized during a Recent Period of Climatic Change. Conservation Letters, 2015, 8, 97-106.	5.7	26
51	Two Species with an Unusual Combination of Traits Dominate Responses of British Grasshoppers and Crickets to Environmental Change. PLoS ONE, 2015, 10, e0130488.	2.5	22
52	Longâ€ŧerm changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and landâ€use changes. Journal of Applied Ecology, 2014, 51, 949-957.	4.0	175
53	Topographic microclimates drive microhabitat associations at the range margin of a butterfly. Ecography, 2014, 37, 732-740.	4.5	44
54	Evolution on the move: specialization on widespread resources associated with rapid range expansion in response to climate change. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20131800.	2.6	44

#	Article	IF	CITATIONS
55	Abundance changes and habitat availability drive species' responses to climate change. Nature Climate Change, 2014, 4, 127-131.	18.8	69
56	Active Management of Protected Areas Enhances Metapopulation Expansion Under Climate Change. Conservation Letters, 2014, 7, 111-118.	5.7	33
57	Quantifying rangeâ€wide variation in population trends from local abundance surveys and widespread opportunistic occurrence records. Methods in Ecology and Evolution, 2014, 5, 751-760.	5.2	56
58	Precipitation and winter temperature predict longâ€ŧerm rangeâ€scale abundance changes in Western North American birds. Global Change Biology, 2014, 20, 3351-3364.	9.5	78
59	Introduced and natural colonists show contrasting patterns of protected area association in <scp>UK</scp> wetlands. Diversity and Distributions, 2014, 20, 943-951.	4.1	15
60	Reconciling biodiversity and carbon conservation. Ecology Letters, 2013, 16, 39-47.	6.4	96
61	Multiâ€generational longâ€distance migration of insects: studying the painted lady butterfly in the Western Palaearctic. Ecography, 2013, 36, 474-486.	4.5	137
62	The past, present and potential future distributions of coldâ€adapted bird species. Diversity and Distributions, 2013, 19, 352-362.	4.1	26
63	Edge artefacts and lost performance in national versus continental conservation priority areas. Diversity and Distributions, 2013, 19, 171-183.	4.1	44
64	Projected latitudinal and regional changes in vascular plant diversity through climate change: short-term gains and longer-term losses. Biodiversity and Conservation, 2013, 22, 1467-1483.	2.6	6
65	Range expansion through fragmented landscapes under a variable climate. Ecology Letters, 2013, 16, 921-929.	6.4	100
66	Observed and predicted effects of climate change on species abundance in protected areas. Nature Climate Change, 2013, 3, 1055-1061.	18.8	146
67	Local diversity stays about the same, regional diversity increases, and global diversity declines. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19187-19188.	7.1	69
68	Protected areas act as establishment centres for species colonizing the UK. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122310.	2.6	43
69	The Anthropocene could raise biological diversity. Nature, 2013, 502, 7-7.	27.8	96
70	Habitat associations of species show consistent but weak responses to climate. Biology Letters, 2012, 8, 590-593.	2.3	49
71	Extinction and climate change. Nature, 2012, 482, E4-E5.	27.8	34
72	Protected areas facilitate species' range expansions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14063-14068.	7.1	185

#	Article	IF	CITATIONS
73	The effect of spatial resolution on projected responses to climate warming. Diversity and Distributions, 2012, 18, 990-1000.	4.1	70
74	Temperature-Dependent Alterations in Host Use Drive Rapid Range Expansion in a Butterfly. Science, 2012, 336, 1028-1030.	12.6	154
75	Temporal variation in responses of species to four decades of climate warming. Global Change Biology, 2012, 18, 2439-2447.	9.5	42
76	Habitat associations of thermophilous butterflies are reduced despite climatic warming. Global Change Biology, 2012, 18, 2720-2729.	9.5	29
77	Local and landscape management of an expanding range margin under climate change. Journal of Applied Ecology, 2012, 49, 552-561.	4.0	34
78	The relative importance of climate and habitat in determining the distributions of species at different spatial scales: a case study with ground beetles in Great Britain. Ecography, 2012, 35, 831-838.	4.5	53
79	The Speed of Range Shifts in Fragmented Landscapes. PLoS ONE, 2012, 7, e47141.	2.5	71
80	First Estimates of Extinction Risk from Climate Change. , 2012, , 11-27.		20
81	Balancing alternative land uses in conservation prioritization. , 2011, 21, 1419-1426.		183
82	Global warming, elevational ranges and the vulnerability of tropical biota. Biological Conservation, 2011, 144, 548-557.	4.1	185
83	Climate Change and Evolutionary Adaptations at Species' Range Margins. Annual Review of Entomology, 2011, 56, 143-159.	11.8	260
84	Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends in Ecology and Evolution, 2011, 26, 216-221.	8.7	327
85	Anthropocene Park? No alternative. Trends in Ecology and Evolution, 2011, 26, 497-498.	8.7	13
86	Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science, 2011, 333, 1024-1026.	12.6	3,858
87	A framework for assessing threats and benefits to species responding to climate change. Methods in Ecology and Evolution, 2011, 2, 125-142.	5.2	109
88	Distance sampling and the challenge of monitoring butterfly populations. Methods in Ecology and Evolution, 2011, 2, 585-594.	5.2	78
89	On the approximation of continuous dispersal kernels in discreteâ€space models. Methods in Ecology and Evolution, 2011, 2, 668-681.	5.2	22
90	Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Global Ecology and Biogeography, 2011, 20, 34-45.	5.8	108

#	Article	IF	CITATIONS
91	Habitat area, quality and connectivity: striking the balance for efficient conservation. Journal of Applied Ecology, 2011, 48, 148-152.	4.0	241
92	Predicting insect phenology across space and time. Global Change Biology, 2011, 17, 1289-1300.	9.5	118
93	Maintaining northern peatland ecosystems in a changing climate: effects of soil moisture, drainage and drain blocking on craneflies. Global Change Biology, 2011, 17, 2991-3001.	9.5	60
94	Habitat microclimates drive fineâ€scale variation in extreme temperatures. Oikos, 2011, 120, 1-8.	2.7	398
95	Hybridisation and climate change: brown argus butterflies in Britain (Polyommatus subgenus Aricia). Insect Conservation and Diversity, 2011, 4, 192-199.	3.0	37
96	The influence of temporal variation on relationships between ecosystem services. Biodiversity and Conservation, 2011, 20, 3285-3294.	2.6	36
97	Habitat re-creation strategies for promoting adaptation of species to climate change. Conservation Letters, 2011, 4, 289-297.	5.7	57
98	Spatial covariation between freshwater and terrestrial ecosystem services. , 2011, 21, 2034-2048.		65
99	Climate, climate change and range boundaries. Diversity and Distributions, 2010, 16, 488-495.	4.1	493
100	Linking habitat use to range expansion rates in fragmented landscapes: a metapopulation approach. Ecography, 2010, 33, 73-82.	4.5	48
101	The impact of proxy-based methods on mapping the distribution of ecosystem services. Journal of Applied Ecology, 2010, 47, 377-385.	4.0	405
102	REVIEW: The identification of priority policy options for UK nature conservation. Journal of Applied Ecology, 2010, 47, 955-965.	4.0	58
103	Heterogeneous landscapes promote population stability. Ecology Letters, 2010, 13, 473-484.	6.4	233
104	Comparing organic farming and land sparing: optimizing yield and butterfly populations at a landscape scale. Ecology Letters, 2010, 13, 1358-1367.	6.4	138
105	Representation of ecosystem services by tiered conservation strategies. Conservation Letters, 2010, 3, 184-191.	5.7	18
106	Error propagation associated with benefits transfer-based mapping of ecosystem services. Biological Conservation, 2010, 143, 2487-2493.	4.1	75
107	Assisted colonization in a changing climate: a testâ€study using two U.K. butterflies. Conservation Letters, 2009, 2, 46-52.	5.7	133
108	Elevation increases in moth assemblages over 42 years on a tropical mountain. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1479-1483.	7.1	350

#	Article	IF	CITATIONS
109	Modelling the effect of habitat fragmentation on range expansion in a butterfly. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1421-1427.	2.6	61
110	Surrogacy and persistence in reserve selection: landscape prioritization for multiple taxa in Britain. Journal of Applied Ecology, 2009, 46, 82-91.	4.0	33
111	Spatial covariance between biodiversity and other ecosystem service priorities. Journal of Applied Ecology, 2009, 46, 888-896.	4.0	292
112	Climate change, connectivity and conservation decision making: back to basics. Journal of Applied Ecology, 2009, 46, 964-969.	4.0	360
113	Dynamic distribution modelling: predicting the present from the past. Ecography, 2009, 32, 5-12.	4.5	41
114	Changes in habitat specificity of species at their climatic range boundaries. Ecology Letters, 2009, 12, 1091-1102.	6.4	101
115	Predicting range overlap in two closely related species of spiders. Insect Conservation and Diversity, 2009, 2, 135-141.	3.0	3
116	Ecosystem service benefits of contrasting conservation strategies in a human-dominated region. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2903-2911.	2.6	104
117	Metapopulation responses to patch connectivity and quality are masked by successional habitat dynamics. Ecology, 2009, 90, 1608-1619.	3.2	70
118	Using distribution models to test alternative hypotheses about a species' environmental limits and recovery prospects. Biological Conservation, 2009, 142, 488-499.	4.1	48
119	Climate change and translocations: The potential to re-establish two regionally-extinct butterfly species in Britain. Biological Conservation, 2009, 142, 2114-2121.	4.1	32
120	Managing successional species: Modelling the dependence of heath fritillary populations on the spatial distribution of woodland management. Biological Conservation, 2009, 142, 2743-2751.	4.1	29
121	Chapter 2 Climate Change and Species' Distributions: An Alien Future?. , 2009, , 19-29.		3
122	Using habitat distribution models to evaluate largeâ€scale landscape priorities for spatially dynamic species. Journal of Applied Ecology, 2008, 45, 228-238.	4.0	37
123	Future novel threats and opportunities facing UK biodiversity identified by horizon scanning. Journal of Applied Ecology, 2008, 45, 821-833.	4.0	130
124	Exporting the ecological effects of climate change. EMBO Reports, 2008, 9, S28-33.	4.5	6
125	Where within a geographical range do species survive best? A matter of scale. Insect Conservation and Diversity, 2008, 1, 2-8.	3.0	39
126	Changes in the composition of British butterfly assemblages over two decades. Global Change Biology, 2008, 14, 1464-1474.	9.5	76

#	Article	IF	CITATIONS
127	The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biology Letters, 2008, 4, 568-572.	2.3	309
128	Aligning Conservation Priorities Across Taxa in Madagascar with High-Resolution Planning Tools. Science, 2008, 320, 222-226.	12.6	484
129	Assisted Colonization and Rapid Climate Change. Science, 2008, 321, 345-346.	12.6	786
130	Escape from natural enemies during climateâ€driven range expansion: a case study. Ecological Entomology, 2008, 33, 413-421.	2.2	137
131	DIRECT AND INDIRECT EFFECTS OF CLIMATE AND HABITAT FACTORS ON BUTTERFLY DIVERSITY. Ecology, 2007, 88, 605-611.	3.2	356
132	MINIMUM VIABLE METAPOPULATION SIZE, EXTINCTION DEBT, AND THE CONSERVATION OF A DECLINING SPECIES. , 2007, 17, 1460-1473.		109
133	Multispecies conservation planning: identifying landscapes for the conservation of viable populations using local and continental species priorities. Journal of Applied Ecology, 2007, 44, 253-262.	4.0	46
134	Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science, 2006, 313, 351-354.	12.6	2,359
135	Range retractions and extinction in the face of climate warming. Trends in Ecology and Evolution, 2006, 21, 415-416.	8.7	353
136	Thermal range predicts bird population resilience to extreme high temperatures. Ecology Letters, 2006, 9, 1321-1330.	6.4	135
137	Towards European climate risk surfaces: the extent and distribution of analogous and non-analogous climates 1931-2100. Global Ecology and Biogeography, 2006, 15, 395-405.	5.8	80
138	Changing habitat associations of a thermally constrained species, the silver-spotted skipper butterfly, in response to climate warming. Journal of Animal Ecology, 2006, 75, 247-256.	2.8	151
139	The identification of 100 ecological questions of high policy relevance in the UK. Journal of Applied Ecology, 2006, 43, 617-627.	4.0	395
140	The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology, 2006, 12, 450-455.	9.5	1,214
141	Impacts of climate warming and habitat loss on extinctions at species' low-latitude range boundaries. Global Change Biology, 2006, 12, 1545-1553.	9.5	271
142	Quantifying components of risk for European woody species under climate change. Global Change Biology, 2006, 12, 1788-1799.	9.5	85
143	Can occupancy patterns be used to predict distributions in widely separated geographic regions?. Oecologia, 2006, 149, 396-405.	2.0	9
144	Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1465-1470.	2.6	288

#	Article	IF	CITATIONS
145	The Value of Biodiversity in Reserve Selection: Representation, Species Weighting, and Benefit Functions. Conservation Biology, 2005, 19, 2009-2014.	4.7	150
146	A northward shift of range margins in British Odonata. Global Change Biology, 2005, 11, 502-506.	9.5	393
147	Selection for discontinuous life-history traits along a continuous thermal gradient in the butterfly Aricia agestis. Ecological Entomology, 2005, 30, 613-619.	2.2	52
148	The re-expansion and improving status of the silver-spotted skipper butterfly (Hesperia comma) in Britain: a metapopulation success story. Biological Conservation, 2005, 124, 189-198.	4.1	85
149	Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1885-1891.	2.6	465
150	Metapopulation Dynamics in Changing Environments. , 2004, , 489-514.		46
151	Combining probabilities of occurrence with spatial reserve design. Journal of Applied Ecology, 2004, 41, 252-262.	4.0	175
152	Extinction risk from climate change. Nature, 2004, 427, 145-148.	27.8	5,985
153	Uncertainty in predictions of extinction risk/Effects of changes in climate and land use/Climate change and extinction risk (reply). Nature, 2004, 430, 34-34.	27.8	47
154	Spatial patterns in species distributions reveal biodiversity change. Nature, 2004, 432, 393-396.	27.8	214
155	Changes in Dispersal during Species' Range Expansions. American Naturalist, 2004, 164, 378-395.	2.1	286
156	Ecological dynamics of extinct species in empty habitat networks. 1. The role of habitat pattern and quantity, stochasticity and dispersal. Oikos, 2003, 102, 449-464.	2.7	38
157	Ecological dynamics of extinct species in empty habitat networks. 2. The role of host plant dynamics. Oikos, 2003, 102, 465-477.	2.7	27
158	Premating barriers to gene exchange and their implications for the structure of a mosaic hybrid zone between Chorthippus brunneus and C. jacobsi (Orthoptera: Acrididae). Journal of Evolutionary Biology, 2003, 17, 108-119.	1.7	39
159	Measuring dispersal and detecting departures from a random walk model in a grasshopper hybrid zone. Ecological Entomology, 2003, 28, 129-138.	2.2	14
160	Foray Search: An Effective Systematic Dispersal Strategy in Fragmented Landscapes. American Naturalist, 2003, 161, 905-915.	2.1	92
161	Migration and Allee effects in the six-spot burnet moth Zygaena filipendulae. Ecological Entomology, 2002, 27, 317-325.	2.2	35
162	Short–term studies underestimate 30-generation changes in a butterfly metapopulation. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 563-569.	2.6	53

#	Article	IF	CITATIONS
163	Responses of butterflies to twentieth century climate warming: implications for future ranges. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2163-2171.	2.6	363
164	The influence of thermal ecology on the distribution of three nymphalid butterflies. Journal of Applied Ecology, 2002, 39, 43-55.	4.0	85
165	Large-Scale Patterns of Distribution and Persistence at the Range Margins of a Butterfly. Ecology, 2002, 83, 3357.	3.2	5
166	METAPOPULATIONS OF FOUR LEPIDOPTERAN HERBIVORES ON A SINGLE HOST PLANT,LOTUS CORNICULATUS. Ecology, 2001, 82, 1371-1386.	3.2	29
167	Metapopulations of Four Lepidopteran Herbivores on a Single Host Plant, Lotus corniculatus. Ecology, 2001, 82, 1371.	3.2	25
168	Impacts of landscape structure on butterfly range expansion. Ecology Letters, 2001, 4, 313-321.	6.4	176
169	Density-distribution relationships in British butterflies. I. The effect of mobility and spatial scale. Journal of Animal Ecology, 2001, 70, 410-425.	2.8	154
170	Density-distribution relationships in British butterflies. II. An assessment of mechanisms. Journal of Animal Ecology, 2001, 70, 426-441.	2.8	52
171	Dispersal behaviour of individuals in metapopulations of two British butterflies. Oikos, 2001, 95, 416-424.	2.7	90
172	Title is missing!. , 2001, 5, 55-63.		41
173	Ecological and evolutionary processes at expanding range margins. Nature, 2001, 411, 577-581.	27.8	765
174	Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature, 2001, 414, 65-69.	27.8	1,096
175	Climate and recent range changes in butterflies. , 2001, , 77-88.		7
176	Spatial Pattern and Dynamics of an Annual Woodland Herb. , 2001, , 139-161.		0
177	Habitat-based statistical models for predicting the spatial distribution of butterflies and day-flying moths in a fragmented landscape. Journal of Applied Ecology, 2000, 37, 60-72.	4.0	100
178	Thermal ecology of gregarious and solitary nettle-feeding nymphalid butterfly larvae. Oecologia, 2000, 122, 1-10.	2.0	69
179	The distribution and decline of a widespread butterfly Lycaena phlaeas in a pastoral landscape. Ecological Entomology, 2000, 25, 285-294.	2.2	44
180	Dispersal and extinction in fragmented landscapes. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 139-145.	2.6	321

#	Article	IF	CITATIONS
181	Marginal range expansion in a host-limited butterfly species Gonepteryx rhamni. Ecological Entomology, 2000, 25, 165-170.	2.2	30
182	Metapopulation structure depends on spatial scale in the hostâ€specific moth <i>Wheeleria spilodactylus</i> (Lepidoptera: Pterophoridae). Journal of Animal Ecology, 2000, 69, 935-951.	2.8	4
183	Metapopulation structure depends on spatial scale in the host-specific moth Wheeleria spilodactylus (Lepidoptera: Pterophoridae). Journal of Animal Ecology, 2000, 69, 935-951.	2.8	31
184	Intraspecific variation in habitat availability among ectothermic animals near their climatic limits and their centres of range. Functional Ecology, 1999, 13, 55-64.	3.6	114
185	The spatial structure of populations. Journal of Animal Ecology, 1999, 68, 647-657.	2.8	331
186	Birds extend their ranges northwards. Nature, 1999, 399, 213-213.	27.8	689
187	Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 1999, 399, 579-583.	27.8	1,874
188	Population differentiation and conservation of endemic races: the butterfly, Plebejus argus. Animal Conservation, 1999, 2, 15-21.	2.9	20
189	Detecting decline in a formerly widespread species: how common is the common blue butterfly Polyommatus icarus?. Ecography, 1999, 22, 643-650.	4.5	50
190	Torch-light Transect Surveys for Moths. , 1999, 3, 15-24.		15
191	The distribution of plant species in urban vegetation fragments. , 1999, 14, 493-507.		131
192	Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia, 1999, 121, 165-170.	2.0	209
193	Dispersal, distribution, patch network and metapopulation dynamics of the dingy skipper butterfly () Tj ETQq1 1	0.784314 2.0	rgBT /Overlo
194	Climate and habitat availability determine 20th century changes in a butterfly's range margin. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1197-1206.	2.6	276
195	Flight morphology in fragmented populations of a rare British butterfly, Hesperia comma. Biological Conservation, 1999, 87, 277-283.	4.1	102
196	Evolutionary consequences of habitat fragmentation in a localized butterfly. Journal of Animal Ecology, 1998, 67, 485-497.	2.8	110
197	Modification of the triangle method of degreeâ€day accumulation to allow for behavioural thermoregulation in insects. Journal of Applied Ecology, 1998, 35, 921-927.	4.0	16
198	Scale-Dependent Evolution of Specialization in a Checkerspot Butterfly: From Individuals to Metapopulations and Ecotypes. , 1998, , 343-374.		22

#	Article	IF	CITATIONS
199	Three ways of assessing metapopulation structure in the butterfly Plebejus argus. Ecological Entomology, 1997, 22, 283-293.	2.2	109
200	Butterfly Metapopulations. , 1997, , 359-386.		175
201	Nettle-feeding nymphalid butterflies: temperature, development and distribution. Ecological Entomology, 1997, 22, 390-398.	2.2	65
202	Area-dependent migration by ringlet butterflies generates a mixture of patchy population and metapopulation attributes. Oecologia, 1997, 109, 229-234.	2.0	89
203	Correlated extinctions, colonizations and population fluctuations in a highly connected ringlet butterfly metapopulation. Oecologia, 1997, 109, 235-241.	2.0	98
204	Genetic Analysis of Founder Bottlenecks in the Rare British Butterfly Plebejus argus. Analisis Genetico de Cuellos de Botella en la Mariposa Britanica Plebejus argus. Conservation Biology, 1997, 11, 648-661.	4.7	82
205	Spatial Synchrony and Asynchrony in Butterfly Population Dynamics. Journal of Animal Ecology, 1996, 65, 85.	2.8	215
206	Effects of Habitat Patch Size and Isolation on Dispersal by Hesperia comma Butterflies: Implications for Metapopulation Structure. Journal of Animal Ecology, 1996, 65, 725.	2.8	309
207	Catastrophic Extinction of Population Sources in a Butterfly Metapopulation. American Naturalist, 1996, 148, 957-975.	2.1	139
208	Evolutionary Responses of a Butterfly Metapopulation to Human- and Climate-Caused Environmental Variation. American Naturalist, 1996, 148, S9-S39.	2.1	135
209	Open Corridors Appear to Facilitate Dispersal by Ringlet Butterflies (Aphantopus hyperantus) between Woodland Clearings. Conservation Biology, 1996, 10, 1359-1365.	4.7	111
210	Testing a Metapopulation Model of Coexistence in the Insect Community on Ragwort (Senecio) Tj ETQq0 0 0 rgl	3T /Overlo 2.1	ck 10 Tf 50 3
211	Butterfly Conservation Management. Annual Review of Entomology, 1995, 40, 57-83.	11.8	5
212	Metapopulation dynamics and conservation: A spatially explicit model applied to butterflies. Biological Conservation, 1994, 68, 167-180.	4.1	326
213	Difficulties in deducing dynamics from static distributions. Trends in Ecology and Evolution, 1994, 9, 300.	8.7	12
214	Extinction, Colonization, and Metapopulations: Environmental Tracking by Rare Species. Conservation Biology, 1994, 8, 373-378.	4.7	238
215	Correlates of speed of evolution of host preference in a set of twelve populations of the butterfly <i>Euphydryas editha</i> . Ecoscience, 1994, 1, 107-114.	1.4	53
216	The effect of earthworms and snails in a simple plant community. Oecologia, 1993, 95, 171-178.	2.0	101

#	Article	IF	CITATIONS
217	Rapid human-induced evolution of insect–host associations. Nature, 1993, 366, 681-683.	27.8	265
218	Partial recovery of a Skipper Butterfly (Hesperia comma) from Population Refuges: Lessons for Conservation in a Fragmented Landscape. Journal of Animal Ecology, 1993, 62, 472.	2.8	154
219	Rapidly Evolving Associations Among Oviposition Preferences Fail to Constrain Evolution of Insect Diet. American Naturalist, 1992, 139, 9-20.	2.1	75
220	The Difficulty of Deducing Behavior from Resource Use: An Example from Hilltopping in Checkerspot Butterflies. American Naturalist, 1992, 140, 654-664.	2.1	19
221	Spatial Dynamics of a Patchily Distributed Butterfly Species. Journal of Animal Ecology, 1992, 61, 437.	2.8	193
222	Distinguishing between â€~preference' and â€~motivation' in food choice: an example from insect oviposition. Animal Behaviour, 1992, 44, 463-471.	1.9	102
223	Specificity of an ant-lycaenid interaction. Oecologia, 1992, 91, 431-438.	2.0	33
224	The distribution and density of a lycaenid butterfly in relation to Lasius ants. Oecologia, 1992, 91, 439-446.	2.0	43
225	Distributions of occupied and vacant butterfly habitats in fragmented landscapes. Oecologia, 1992, 92, 563-567.	2.0	254
226	Habitat use and geographic ranges of butterflies from the wet lowlands of costa rica. Biological Conservation, 1991, 55, 269-281.	4.1	97
227	The influence of habitat use and foraging on the replacement of one introduced wasp species by another in New Zealand. Ecological Entomology, 1991, 16, 441-448.	2.2	40
228	Spatial and temporal variability in a butterfly population. Oecologia, 1991, 87, 577-580.	2.0	77
229	Patchiness and Spatial Pattern in the Insect Community on Ragwort Senecio jacobaea. Oikos, 1991, 62, 5.	2.7	18
230	Fewer species. Nature, 1990, 347, 237-237.	27.8	66
231	Diet divergence in two sympatric congeneric butterflies: Community or species level phenomenon?. Evolutionary Ecology, 1990, 4, 62-74.	1.2	8
232	Variation in Stage-Specific Mortality Patterns of a Specialist Herbivore on Different Host Plant Clones. Functional Ecology, 1990, 4, 721.	3.6	3
233	What Do Real Population Dynamics Tell Us About Minimum Viable Population Sizes?. Conservation Biology, 1990, 4, 324-327.	4.7	151
234	Herbivore Diets, Herbivore Colonization, and the Escape Hypothesis. Ecology, 1990, 71, 610-615.	3.2	32

#	Article	IF	CITATIONS
235	Predator-Herbivore Interactions and the Escape of Isolated Plants from Phytophagous Insects. Oikos, 1989, 55, 291.	2.7	22
236	Variation among conspecific insect populations in the mechanistic basis of diet breadth. Animal Behaviour, 1989, 37, 751-759.	1.9	71
237	Heritability of Oviposition Preference and its Relationship to Offspring Performance Within a Single Insect Population. Evolution; International Journal of Organic Evolution, 1988, 42, 977.	2.3	98
238	Behavioural Determination of Diet Breadth in Insect Herbivores: The Effect of Leaf Age on Choice of Host Species by Beetles Feeding on Passiflora Vines. Oikos, 1987, 48, 211.	2.7	28
239	Variation in Host Preference Affects Movement Patterns Within a Butterfly Population. Ecology, 1987, 68, 1262-1267.	3.2	61
240	Incorporation of a European Weed Into the Diet of a North American Herbivore. Evolution; International Journal of Organic Evolution, 1987, 41, 892.	2.3	49
241	Interactions between Hummingbirds and Butterflies at a Hamelia patens Bush. Biotropica, 1986, 18, 161.	1.6	6
242	Butterfly larvae reduce host plant survival in vicinity of alternative host species. Oecologia, 1986, 70, 113-117.	2.0	46
243	Ecology and Declining Status of the Silver-Spotted Skipper Butterfly (Hesperia comma) in Britain. Journal of Applied Ecology, 1986, 23, 365.	4.0	125
244	Specializations and polyphagy of Plebejus argus (Lepidoptera: Lycaenidae) in North Wales. Ecological Entomology, 1985, 10, 325-340.	2.2	54
245	The status and conservation of the butterfly Plebejus argus L. (Lepidoptera: Lycaenidae) in North West Britain. Biological Conservation, 1985, 33, 29-51.	4.1	54
246	Rarity, species richness and conservation: Butterflies of the Atlas Mountains in Morocco. Biological Conservation, 1985, 33, 95-117.	4.1	132
247	The status of the health fritillary butterfly Mellicta athalia Rott. in Britain. Biological Conservation, 1984, 29, 287-305.	4.1	51