Howard E Epstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8530098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tundra vegetation change and impacts on permafrost. Nature Reviews Earth & Environment, 2022, 3, 68-84.	29.7	87
2	Remote Sensing of Tundra Ecosystems Using High Spectral Resolution Reflectance: Opportunities and Challenges. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	14
3	An Object-Based Approach for Mapping Tundra Ice-Wedge Polygon Troughs from Very High Spatial Resolution Optical Satellite Imagery. Remote Sensing, 2021, 13, 558.	4.0	17
4	Climate drivers of Arctic tundra variability and change using an indicators framework. Environmental Research Letters, 2021, 16, 055019.	5.2	14
5	Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environmental Research Letters, 2021, 16, 015001.	5.2	39
6	Spatial patterns of arctic tundra vegetation properties on different soils along the Eurasia Arctic Transect, and insights for a changing Arctic. Environmental Research Letters, 2021, 16, 014008.	5.2	5
7	Climatic Aridity Shapes Post-Fire Interactions between Ceanothus spp. and Douglas-Fir (Pseudotsuga) Tj ETQq1 1	0,784314 2.1	rgBT /Overl
8	Understanding the Effects of Optimal Combination of Spectral Bands on Deep Learning Model Predictions: A Case Study Based on Permafrost Tundra Landform Mapping Using High Resolution Multispectral Satellite Imagery. Journal of Imaging, 2020, 6, 97.	3.0	22
9	Bridging science, art, and community in the new Arctic. Polar Journal, 2020, 10, 195-200.	0.8	0
10	Assessing Temperate Forest Growth and Climate Sensitivity in Response to a Longâ€Term Wholeâ€Watershed Acidification Experiment. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005560.	3.0	5
11	Elevation and Climate Effects on Vegetation Greenness in an Arid Mountain-Basin System of Central Asia. Remote Sensing, 2020, 12, 1665.	4.0	14
12	Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook. Remote Sensing of Environment, 2020, 246, 111872.	11.0	82
13	Complexity revealed in the greening of the Arctic. Nature Climate Change, 2020, 10, 106-117.	18.8	447
14	Disequilibrium of fire-prone forests sets the stage for a rapid decline in conifer dominance during the 21st century. Scientific Reports, 2018, 8, 6749.	3.3	85
15	Spatial Heterogeneity of the Temporal Dynamics of Arctic Tundra Vegetation. Geophysical Research Letters, 2018, 45, 9206-9215.	4.0	40
16	Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. Environmental Research Letters, 2017, 12, 055003.	5.2	81
17	Vulnerability to forest loss through altered postfire recovery dynamics in a warming climate in the Klamath Mountains. Global Change Biology, 2017, 23, 4117-4132.	9.5	154
18	Complex terrain influences ecosystem carbon responses to temperature and precipitation. Global Biogeochemical Cycles, 2017, 31, 1306-1317.	4.9	15

HOWARD E EPSTEIN

#	Article	IF	CITATIONS
19	Differentiating among Four Arctic Tundra Plant Communities at Ivotuk, Alaska Using Field Spectroscopy. Remote Sensing, 2016, 8, 51.	4.0	36
20	Climate Drivers Linked to Changing Seasonality of Alaska Coastal Tundra Vegetation Productivity. Earth Interactions, 2015, 19, 1-29.	1.5	34
21	Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra. Environmental Research Letters, 2014, 9, 025004.	5.2	54
22	Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology, 2014, 20, 1264-1277.	9.5	225
23	Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Annals of Botany, 2014, 114, 1-16.	2.9	240
24	Patterned-ground facilitates shrub expansion in Low Arctic tundra. Environmental Research Letters, 2013, 8, 015035.	5.2	81
25	Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra. Remote Sensing, 2013, 5, 4229-4254.	4.0	167
26	A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI. Remote Sensing Letters, 2012, 3, 403-411.	1.4	120
27	Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environmental Research Letters, 2012, 7, 015506.	5.2	212
28	Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects. Environmental Research Letters, 2012, 7, 015504.	5.2	101
29	Complex terrain leads to bidirectional responses of soil respiration to interâ€annual water availability. Global Change Biology, 2012, 18, 749-756.	9.5	40
30	Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters, 2011, 6, 045509.	5.2	1,021
31	On the spatial heterogeneity of net ecosystem productivity in complex landscapes. Ecosphere, 2011, 2, art86.	2.2	22
32	Recent changes in phenology over the northern high latitudes detected from multi-satellite data. Environmental Research Letters, 2011, 6, 045508.	5.2	197
33	Circumpolar Arctic Tundra Vegetation Change Is Linked to Sea Ice Decline. Earth Interactions, 2010, 14, 1-20.	1.5	332
34	Spatial and temporal controls on watershed ecohydrology in the northern Rocky Mountains. Water Resources Research, 2010, 46, .	4.2	50
35	Vegetation greening in the canadian arctic related to decadal warming. Journal of Environmental Monitoring, 2009, 11, 2231.	2.1	148
36	Phytomass patterns across a temperature gradient of the North American arctic tundra. Journal of Geophysical Research, 2008, 113, .	3.3	42

HOWARD E EPSTEIN

#	Article	IF	CITATIONS
37	Role of Land-Surface Changes in Arctic Summer Warming. Science, 2005, 310, 657-660.	12.6	1,186
38	Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sensing of Environment, 2004, 89, 281-308.	11.0	522
39	Vegetation-soil-thaw-depth relationships along a low-arctic bioclimate gradient, Alaska: synthesis of information from the ATLAS studies. Permafrost and Periglacial Processes, 2003, 14, 103-123.	3.4	159
40	Greening of arctic Alaska, 1981–2001. Geophysical Research Letters, 2003, 30, .	4.0	289