Ruohe Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/852912/publications.pdf

Version: 2024-02-01

687363 794594 1,377 19 13 19 citations h-index g-index papers 1935 19 19 19 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	The UVR8 UV-B Photoreceptor: Perception, Signaling and Response. The Arabidopsis Book, 2013, 11, e0164.	0.5	213
2	How plants cope with UV-B: from perception to response. Current Opinion in Plant Biology, 2017, 37, 42-48.	7.1	156
3	Kaempferol 3â€ <i>O</i> àêrhamnosideâ€7â€ <i>O</i> âerhamnoside is an endogenous flavonol inhibitor of polar auxin transport in <i>Arabidopsis</i> shoots. New Phytologist, 2014, 201, 466-475.	7.3	154
4	Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation. Journal of Experimental Botany, 2012, 63, 2465-2478.	4.8	146
5	Ultraviolet-B-mediated induction of protein–protein interactions in mammalian cells. Nature Communications, 2013, 4, 1779.	12.8	128
6	COP1 is required for UV-B–induced nuclear accumulation of the UVR8 photoreceptor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4415-22.	7.1	119
7	UV-B Perception and Acclimation in <i>Chlamydomonas reinhardtii</i> . Plant Cell, 2016, 28, 966-983.	6.6	116
8	Two Distinct Domains of the UVR8 Photoreceptor Interact with COP1 to Initiate UV-B Signaling in Arabidopsis. Plant Cell, 2015, 27, 202-213.	6.6	102
9	Constitutively active UVR8 photoreceptor variant in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20326-20331.	7.1	87
10	Pivotal roles of Tomato photoreceptor SIUVR8 in seedling development and UV-B stress tolerance. Biochemical and Biophysical Research Communications, 2020, 522, 177-183.	2.1	35
11	Revisiting chromatin binding of the Arabidopsis UV-B photoreceptor UVR8. BMC Plant Biology, 2016, 16, 42.	3.6	33
12	Activation and negative feedback regulation of <i>SIHY5 </i> transcription by the SIBBX20/21–SIHY5 transcription factor module in UV-B signaling. Plant Cell, 2022, 34, 2038-2055.	6.6	18
13	Plants contain two distinct classes of functional tryptophan synthase beta proteins. Phytochemistry, 2010, 71, 1667-1672.	2.9	14
14	The Câ€terminal 17 amino acids of the photoreceptor UVR8 is involved in the fineâ€tuning of UVâ€B signaling. Journal of Integrative Plant Biology, 2020, 62, 1327-1340.	8.5	13
15	PIF3 Integrates Light and Low Temperature Signaling. Trends in Plant Science, 2018, 23, 93-95.	8.8	12
16	Cooling Down Thermomorphogenesis by UV-B Signaling. Trends in Plant Science, 2017, 22, 447-449.	8.8	11
17	Pivotal roles of ELONGATED HYPOCOTYL5 in regulation of plant development and fruit metabolism in tomato. Plant Physiology, 2022, 189, 527-540.	4.8	10
18	Tomato SIRUP is a negative regulator of UV-B photomorphogenesis. Molecular Horticulture, 2021, 1, .	5.8	6

#	Article	IF	CITATIONS
19	Expression of Tomato UVR8 in Arabidopsis reveals conserved photoreceptor function. Plant Science, 2021, 303, 110766.	3.6	4