David D Gutterman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8528822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Executive Summary. Chest, 2012, 141, 7S-47S.	0.8	1,452
2	Primary and Secondary Prevention of Cardiovascular Disease. Chest, 2012, 141, e637S-e668S.	0.8	435
3	Role for Hydrogen Peroxide in Flow-Induced Dilation of Human Coronary Arterioles. Circulation Research, 2003, 92, e31-40.	4.5	393
4	Mitochondrial Sources of H2O2Generation Play a Key Role in Flow-Mediated Dilation in Human Coronary Resistance Arteries. Circulation Research, 2003, 93, 573-580.	4.5	308
5	TRPV4-mediated endothelial Ca ²⁺ influx and vasodilation in response to shear stress. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H466-H476.	3.2	273
6	Flow-Induced Dilation of Human Coronary Arterioles. Circulation, 2001, 103, 1992-1998.	1.6	228
7	The Human Microcirculation. Circulation Research, 2016, 118, 157-172.	4.5	222
8	Methodology for the Development of Antithrombotic Therapy and Prevention of Thrombosis Guidelines. Chest, 2012, 141, 53S-70S.	0.8	213
9	Human Coronary Arteriolar Dilation to Bradykinin Depends on Membrane Hyperpolarization. Circulation, 1999, 99, 3132-3138.	1.6	184
10	Diabetes Mellitus Impairs Vasodilation to Hypoxia in Human Coronary Arterioles. Circulation Research, 2003, 92, 151-158.	4.5	167
11	Epoxyeicosatrienoic and dihydroxyeicosatrienoic acids dilate human coronary arterioles via BK _{Ca} channels: implications for soluble epoxide hydrolase inhibition. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H491-H499.	3.2	159
12	A Randomized Controlled Trial to Evaluate the Safety and Efficacy of Cardiac Contractility Modulation. JACC: Heart Failure, 2018, 6, 874-883.	4.1	159
13	Diversity in Mechanisms of Endotheliumâ€Đependent Vasodilation in Health and Disease. Microcirculation, 2013, 20, 239-247.	1.8	147
14	Antithrombotic Therapy for Non–ST-Segment Elevation Acute Coronary Syndromes. Chest, 2008, 133, 670S-707S.	0.8	145
15	H ₂ O ₂ -Induced Dilation in Human Coronary Arterioles: Role of Protein Kinase G Dimerization and Large-Conductance Ca ²⁺ -Activated K ⁺ Channel Activation. Circulation Research, 2012, 110, 471-480.	4.5	143
16	Redox Modulation of Vascular Tone. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 671-678.	2.4	131
17	Introduction to the Ninth Edition. Chest, 2012, 141, 48S-52S.	0.8	129
18	Activation of endothelial TRPV4 channels mediates flow-induced dilation in human coronary arterioles: role of Ca ²⁺ entry and mitochondrial ROS signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H634-H642.	3.2	123

#	Article	IF	CITATIONS
19	A Practical Algorithmic Approach to the Diagnosis and Management of Solitary Pulmonary Nodules. Chest, 2013, 143, 825-839.	0.8	123
20	Developing a New, National Approach to Surveillance for Ventilator-Associated Events. Chest, 2013, 144, 1448-1452.	0.8	110
21	Ceramide Changes the Mediator of Flow-Induced Vasodilation From Nitric Oxide to Hydrogen Peroxide in the Human Microcirculation. Circulation Research, 2014, 115, 525-532.	4.5	105
22	The mechanism of flow-induced dilation in human adipose arterioles involves hydrogen peroxide during CAD. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H93-H100.	3.2	102
23	Hydrogen Peroxide Inhibits Cytochrome P450 Epoxygenases. Circulation Research, 2008, 102, 59-67.	4.5	94
24	Critical Role for Telomerase in the Mechanism of Flow-Mediated Dilation in the Human Microcirculation. Circulation Research, 2016, 118, 856-866.	4.5	88
25	A Practical Algorithmic Approach to the Diagnosis and Management of Solitary Pulmonary Nodules. Chest, 2013, 143, 840-846.	0.8	87
26	Adventitia-dependent influences on vascular function. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1265-H1272.	3.2	85
27	Is There an Association between Athletic Amenorrhea and Endothelial Cell Dysfunction?. Medicine and Science in Sports and Exercise, 2003, 35, 377-383.	0.4	83
28	Vascular control in humans: focus on the coronary microcirculation. Basic Research in Cardiology, 2009, 104, 211-227.	5.9	81
29	Association Between the Female Athlete Triad and Endothelial Dysfunction in Dancers. Clinical Journal of Sport Medicine, 2011, 21, 119-125.	1.8	80
30	Resistance and aerobic exercise protects against acute endothelial impairment induced by a single exposure to hypertension during exertion. Journal of Applied Physiology, 2011, 110, 1013-1020.	2.5	75
31	Beyond vasodilatation: non-vasomotor roles of epoxyeicosatrienoic acids in the cardiovascular system. Trends in Pharmacological Sciences, 2007, 28, 32-38.	8.7	74
32	Guidelines for the measurement of vascular function and structure in isolated arteries and veins. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H77-H111.	3.2	74
33	Vascular Dysfunction in Preeclampsia. Cells, 2021, 10, 3055.	4.1	73
34	Bradykinin-Induced Dilation of Human Coronary Arterioles Requires NADPH Oxidase–Derived Reactive Oxygen Species. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 739-745.	2.4	71
35	Cardiac contractility modulation: mechanisms of action in heart failure with reduced ejection fraction and beyond. European Journal of Heart Failure, 2019, 21, 14-22.	7.1	71
36	Cardiac contractility modulation improves longâ€ŧerm survival and hospitalizations in heart failure with reduced ejection fraction. European Journal of Heart Failure, 2019, 21, 1103-1113.	7.1	69

#	Article	IF	CITATIONS
37	Role of PGC-1α in Vascular Regulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1467-1474.	2.4	68
38	Vascular Dysfunction in Hyperglycemia. Circulation Research, 2002, 90, 5-7.	4.5	66
39	Cardiac contractility modulation: a novel approach for the treatment of heart failure. Heart Failure Reviews, 2016, 21, 645-660.	3.9	64
40	Transition in the mechanism of flow-mediated dilation with aging and development of coronary artery disease. Basic Research in Cardiology, 2017, 112, 5.	5.9	64
41	Silent Myocardial Ischemia. Circulation Journal, 2009, 73, 785-797.	1.6	62
42	Mechanisms of Vascular Dysfunction in COPD and Effects of a Novel Soluble Epoxide Hydrolase Inhibitor in Smokers. Chest, 2017, 151, 555-563.	0.8	62
43	Vascular autophagy in health and disease. Basic Research in Cardiology, 2020, 115, 41.	5.9	58
44	Endothelial cytoskeletal elements are critical for flow-mediated dilation in human coronary arterioles. Medical and Biological Engineering and Computing, 2008, 46, 469-478.	2.8	57
45	Vascular Actions of Angiotensin 1–7 in the Human Microcirculation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1254-1262.	2.4	55
46	An acute rise in intraluminal pressure shifts the mediator of flow-mediated dilation from nitric oxide to hydrogen peroxide in human arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1587-H1593.	3.2	54
47	Endotheliumâ€Derived Hyperpolarization and Coronary Vasodilation: Diverse and Integrated Roles of Epoxyeicosatrienoic Acids, Hydrogen Peroxide, and Gap Junctions. Microcirculation, 2016, 23, 15-32.	1.8	53
48	Regulation of the human coronary microcirculation. Journal of Molecular and Cellular Cardiology, 2012, 52, 814-821.	1.9	49
49	Acute Exertion Elicits a H ₂ O ₂ -Dependent Vasodilator Mechanism in the Microvasculature of Exercise-Trained but Not Sedentary Adults. Hypertension, 2015, 65, 140-145.	2.7	48
50	Contribution of K _V 1.5 Channel to Hydrogen Peroxide–Induced Human Arteriolar Dilation and Its Modulation by Coronary Artery Disease. Circulation Research, 2017, 120, 658-669.	4.5	43
51	Improvement of long-term survival by cardiac contractility modulation in heart failure patients: A case–control study. International Journal of Cardiology, 2016, 206, 122-126.	1.7	42
52	Cardiac contractility modulation signals improve exercise intolerance and maladaptive regulation of cardiac key proteins for systolic and diastolic function in HFpEF. International Journal of Cardiology, 2016, 203, 1061-1066.	1.7	42
53	YAP1-TEAD1 signaling controls angiogenesis and mitochondrial biogenesis through PGC1α. Microvascular Research, 2018, 119, 73-83.	2.5	42
54	PGC-1α (Peroxisome Proliferator–Activated Receptor γ Coactivator 1-α) Overexpression in Coronary Artery Disease Recruits NO and Hydrogen Peroxide During Flow-Mediated Dilation and Protects Against Increased Intraluminal Pressure. Hypertension, 2017, 70, 166-173.	2.7	41

#	Article	IF	CITATIONS
55	Heart Failure: a Major Cardiovascular Complication of Diabetes Mellitus. Current Diabetes Reports, 2016, 16, 116.	4.2	40
56	Mitochondrial signaling in the vascular endothelium: beyond reactive oxygen species. Basic Research in Cardiology, 2016, 111, 26.	5.9	39
57	Telomerase reverse transcriptase protects against angiotensin II-induced microvascular endothelial dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H1053-H1060.	3.2	37
58	Clinical effects of long-term cardiac contractility modulation (CCM) in subjects with heart failure caused by left ventricular systolic dysfunction. Clinical Research in Cardiology, 2017, 106, 893-904.	3.3	33
59	Ischemic conditioning increases strength and volitional activation of paretic muscle in chronic stroke: a pilot study. Journal of Applied Physiology, 2018, 124, 1140-1147.	2.5	33
60	Detrimental effects of chemotherapy on human coronary microvascular function. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H705-H710.	3.2	31
61	Cardiac contractility modulation treatment in patients with symptomatic heart failure despite optimal medical therapy and cardiac resynchronization therapy (CRT). International Journal of Cardiology, 2019, 277, 173-177.	1.7	31
62	Roles of <scp>NADPH</scp> oxidase and mitochondria in flowâ€induced vasodilation of human adipose arterioles: <scp>ROS</scp> â€induced <scp>ROS</scp> release in coronary artery disease. Microcirculation, 2017, 24, e12380.	1.8	30
63	Is microvascular dysfunction a systemic disorder with common biomarkers found in the heart, brain, and kidneys? — A scoping review. Microvascular Research, 2021, 134, 104123.	2.5	28
64	Two weeks of ischemic conditioning improves walking speed and reduces neuromuscular fatigability in chronic stroke survivors. Journal of Applied Physiology, 2019, 126, 755-763.	2.5	26
65	Impaired dilation of coronary arterioles during increases in myocardial O2 consumption with hyperglycemia. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E868-E874.	3.5	24
66	Manipulation of the Sphingolipid Rheostat Influences the Mediator of Flowâ€Induced Dilation in the Human Microvasculature. Journal of the American Heart Association, 2019, 8, e013153.	3.7	23
67	Visualization and quantification of mitochondrial structure in the endothelium of intact arteries. Cardiovascular Research, 2019, 115, 1546-1556.	3.8	21
68	Cardiac contractility modulation in heart failure patients: Randomized comparison of signal delivery through one vs. two ventricular leads. Journal of Cardiology, 2017, 69, 326-332.	1.9	20
69	Effects of age-dependent changes in cell size on endothelial cell proliferation and senescence through YAP1. Aging, 2019, 11, 7051-7069.	3.1	20
70	The vascular renin-angiotensin system contributes to blunted vasodilation induced by transient high pressure in human adipose microvessels. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H25-H32.	3.2	18
71	Mitochondria-regulated formation of endothelium-derived extracellular vesicles shifts the mediator of flow-induced vasodilation. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H1096-H1104.	3.2	17
72	Regular Aerobic, Resistance, and Cross-Training Exercise Prevents Reduced Vascular Function Following a High Sugar or High Fat Mixed Meal in Young Healthy Adults. Frontiers in Physiology, 2018, 9, 183.	2.8	16

#	Article	IF	CITATIONS
73	5,6-δ-DHTL, a stable metabolite of arachidonic acid, is a potential EDHF that mediates microvascular dilation. Free Radical Biology and Medicine, 2017, 103, 87-94.	2.9	14
74	Critical Interaction Between Telomerase and Autophagy in Mediating Flow-Induced Human Arteriolar Vasodilation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 446-457.	2.4	14
75	Endothelial dysfunction as a complication of anti-cancer therapy. , 2022, 237, 108116.		14
76	Low-Fat Diet Designed for Weight Loss But Not Weight Maintenance Improves Nitric Oxide-Dependent Arteriolar Vasodilation in Obese Adults. Nutrients, 2019, 11, 1339.	4.1	13
77	Folic Acid Supplementation Improves Vascular Function in Professional Dancers With Endothelial Dysfunction. PM and R, 2011, 3, 1005-1012.	1.6	11
78	Microvascular Adaptations to Exercise: Protective Effect of PGC-1 Alpha. American Journal of Hypertension, 2018, 31, 240-246.	2.0	11
79	Lysophosphatidic acid acts on LPA ₁ receptor to increase H ₂ O ₂ during flowâ€induced dilation in human adipose arterioles. British Journal of Pharmacology, 2018, 175, 4266-4280.	5.4	11
80	Physiological Consequences of Coronary Arteriolar Dysfunction and Its Influence on Cardiovascular Disease. Physiology, 2018, 33, 338-347.	3.1	11
81	The impact of standing desks on cardiometabolic and vascular health. Vascular Medicine, 2021, 26, 374-382.	1.5	11
82	Impaired Hyperemic Response to Exercise Post Stroke. PLoS ONE, 2015, 10, e0144023.	2.5	11
83	The Relationship Between Blood Flow and Motor Unit Firing Rates in Response to Fatiguing Exercise Post-stroke. Frontiers in Physiology, 2019, 10, 545.	2.8	10
84	Crossing signals: bioactive lipids in the microvasculature. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1185-H1197.	3.2	9
85	Prolonged endothelial-dysfunction in human arterioles following infection with SARS-CoV-2. Cardiovascular Research, 2022, 118, 18-19.	3.8	9
86	Shakerâ€related voltageâ€gated K ⁺ channel expression and vasomotor function in human coronary resistance arteries. Microcirculation, 2018, 25, e12431.	1.8	7
87	Redox Regulation of the Microcirculation. , 2019, 10, 229-259.		7
88	Regenerative Angiogenesis. Circulation Research, 2017, 120, 1379-1380.	4.5	6
89	Can improvement in hormonal and energy balance reverse cardiovascular risk factors in athletes with amenorrhea?. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H487-H495.	3.2	5
90	Two weeks of remote ischemic conditioning improves brachial artery flow mediated dilation in chronic stroke survivors. Journal of Applied Physiology, 2020, 129, 1348-1354.	2.5	5

#	Article	IF	CITATIONS
91	Unveiling the Mechanism of Coronary Metabolic Vasodilation. Circulation Research, 2015, 117, 589-591.	4.5	4
92	Why publish in the <i>American Journal of Physiology-Heart and Circulatory Physiology</i> ?. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H221-H223.	3.2	4
93	Sweat the small stuff: The human microvasculature and heart disease. Microcirculation, 2021, 28, e12658.	1.8	4
94	NADPH oxidase 4 contributes to TRPV4-mediated endothelium-dependent vasodilation in human arterioles by regulating protein phosphorylation of TRPV4 channels. Basic Research in Cardiology, 2022, 117, 24.	5.9	4
95	First, Do No Harm. Chest, 2012, 142, 5-8.	0.8	3
96	Shock associated with endothelial dysfunction in omental microvessels. European Journal of Clinical Investigation, 2017, 47, 30-37.	3.4	3
97	The Yin and Yang of endothelium-derived vasodilator factors. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H892-H894.	3.2	2
98	Myocardin and Kv1 Channels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2454-2456.	2.4	2
99	Hypertension preserves the magnitude of microvascular flowâ€mediated dilation following transient elevation in intraluminal pressure. Physiological Reports, 2021, 9, e14507.	1.7	2
100	Richard E. Kerber, MD, 1939–2016. Journal of the American Heart Association, 2017, 6, .	3.7	1
101	Risk-Based Disease Surveillance. Chest, 2019, 155, 458-459.	0.8	1
102	Utility of discovery approach using proteomics to create a biomarker profile for coronary microvascular dysfunction. Microvascular Research, 2020, 129, 103985.	2.5	1
103	Pulling back the curtain on anthracycline cardiotoxicity: the hidden role of the microcirculation. Cardiovascular Research, 2021, , .	3.8	1
104	Vasodilator and Vasoprotective Actions of Angiotensin 1â€7 in the Human Microcirculation – Role of Telomerase. FASEB Journal, 2015, 29, 789.3.	0.5	1
105	Impaired Microvascular Endothelial Function in Preeclampsia. FASEB Journal, 2020, 34, 1-1.	0.5	1
106	Effect of Community and Socio-Economic Factors on Cardiovascular, Cancer and Cardio-Oncology Patients with COVID-19. Covid, 2022, 2, 350-368.	1.5	1
107	Relationships among norepinephrine levels, exercise capacity, and chronotropic responses in heart failure failure Reviews, 2022, , 1.	3.9	1
108	Reply to Boedtkjer and Aalkjaer. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H687-H688.	3.2	1

#	Article	IF	CITATIONS
109	A New Application for CPAP in Preventing Atrial Fibrillation. Chest, 2013, 143, 1198-1199.	0.8	Ο
110	Adapt or Perish. Circulation Research, 2017, 120, 1081-1083.	4.5	0
111	Type 2 Diabetes Mellitus and Ex Vivo High Glucose Exposure Induce a Switch in the Mechanism of Microvascular Dilation That is Rescued by Activation of Autophagy. FASEB Journal, 2021, 35, .	0.5	Ο
112	Human Microvascular Reactivity In Vivo Using Incident Dark Field Videomicroscopy. FASEB Journal, 2021, 35, .	0.5	0
113	Antiâ€Cancer Therapy Provokes Human Microvascular Endothelial Dysfunction via Circulating Mitochondrial DNA and TLR9 Activation. FASEB Journal, 2021, 35, .	0.5	Ο
114	Role of AMPK in Determining the Mediator of Flow Induced Dilation in the Human Microvasculature. FASEB Journal, 2021, 35, .	0.5	0
115	Prolonged Endothelial Dysfunction in Human Arterioles with SARS oVâ€2. FASEB Journal, 2021, 35, .	0.5	Ο
116	Investigation of the Dual Functional Role of Ceramide in the Human Microcirculation. FASEB Journal, 2021, 35, .	0.5	0
117	Change in out-of-hospital 12-lead ECG diagnostic classification following resuscitation from cardiac arrest. Resuscitation, 2021, 169, 45-52.	3.0	0
118	Ebselen Reduces Kv1 Channel Nitration and Restores Kv1 Channel Function in Diabetic Rat Coronary Arteries. FASEB Journal, 2006, 20, A284.	0.5	0
119	The complex role of hydrogen peroxide (H2O2) in acetylcholineâ€induced dilation of human mucosal intestinal microvessels. FASEB Journal, 2006, 20, A282.	0.5	0
120	Downâ€regulation of Intermediate Conductance Calciumâ€activated Potassium Channel (IKCa) Inhibits Human Coronary Smooth Muscle Cell (HCSMC) Proliferation. FASEB Journal, 2006, 20, .	0.5	0
121	Resistance and aerobic exercise protects against endothelial dysfunction induced by acute exertion. FASEB Journal, 2007, 21, A935.	0.5	0
122	Catalase inhibition effect on exogenous hydrogen peroxide induced vasoconstriction in diseased human arterioles. FASEB Journal, 2008, 22, 1148.15.	0.5	0
123	Role of TRPV4 channels in agonistâ€induced endothelial Ca2+ entry and vasodilation: Evidence from TRPV4â€deficient mice. FASEB Journal, 2008, 22, 1181.4.	0.5	0
124	Exercise Protects Against Endothelial Dysfunction During Oral Glucose and High Fat Load. FASEB Journal, 2008, 22, 1235.14.	0.5	0
125	TRPV4 channel mediates flowâ€induced dilation in mouse small mesenteric arteries. FASEB Journal, 2008, 22, 964.9.	0.5	0
126	2008 George E. Brown Memorial Lecture—Flow-Induced Vasodilation in the Human Heart: Unique Endothelial Mechanisms and Clinical Insights. Circulation, 2008, 118, .	1.6	0

#	Article	IF	CITATIONS
127	Role of mitochondria in flowâ€induced dilation of human adipose arterioles from subjects with and without coronary artery disease. FASEB Journal, 2009, 23, 1006.3.	0.5	Ο
128	Unmasking a role for nitric oxide in acetylcholineâ€ i nduced vasodilation in diseased human coronary arterioles FASEB Journal, 2009, 23, .	0.5	0
129	Effect of Nitric Oxide Synthase and growth conditions on hydrogen peroxide production in cultured endothelial cells during shear stress. FASEB Journal, 2010, 24, 602.6.	0.5	Ο
130	Decreased Telomerase Activity Converts the Mechanism of FMD from NO to H 2 O 2 in Human and Mouse Arterioles. FASEB Journal, 2012, 26, 676.1.	0.5	0
131	The Vascular Renin Angiotensin System Contributes to Endothelial Dysfunction Induced by Acute High Pressure in Human Adipose Microvessels. FASEB Journal, 2012, 26, 676.8.	0.5	Ο
132	NADPH oxidaseâ€dependent reactive oxygen species are involved in flowâ€induced dilation of human adipose arterioles. FASEB Journal, 2012, 26, 863.3.	0.5	0
133	Influence of obesity on insulinâ€mediated dilation in the human microcirculation. FASEB Journal, 2012, 26, 866.2.	0.5	Ο
134	Arachidonic acidâ€induced dilation in human coronary arterioles: role of endothelial TRPV4â€mediated and membrane potentialâ€sensitive Ca2+ entry. FASEB Journal, 2012, 26, .	0.5	0
135	Role of hydrogen peroxide and epoxyeicosatrienoic acids in arachidonic acidâ€induced dilation of human coronary arterioles. FASEB Journal, 2013, 27, 687.12.	0.5	Ο
136	Plasticity in the Microvasculature of Conditioned Weight Lifters After Acute High Pressure Stress. FASEB Journal, 2013, 27, 1136.1.	0.5	0
137	Inhibition of Neutral Sphingomyelinase Prevents High Pressureâ€Induced Shift in the Mediator of Endotheliumâ€Dependent Dilation from NO to H2O2. FASEB Journal, 2013, 27, 901.1.	0.5	Ο
138	Inhibition of the vascular reninâ€angiotensin system preserves nitric oxideâ€mediated vasodilation in human adipose arterioles after transient high pressure stress (676.9). FASEB Journal, 2014, 28, 676.9.	0.5	0
139	LPAâ€induced activation of LPA 1 receptor leads to the loss of NOâ€mediated flowâ€induced dilation in human microvessels. FASEB Journal, 2018, 32, 713.15.	0.5	Ο
140	H 2 O 2 Regulates Arachidonic Acidâ€induced TRPV4â€mediated Vasodilation in Human Coronary Arterioles. FASEB Journal, 2018, 32, 846.10.	0.5	0
141	Dysbacteriosis an Inciting Cause of Endothelial Dysfunction mediated through Mitochondrial DNA Interactions. FASEB Journal, 2018, 32, 582.3.	0.5	Ο
142	Mechanisms of TRPV4 channel activation in human arteriolar endothelial cells: A structureâ€activity study with arachidonic acid and analogs. FASEB Journal, 2019, 33, 684.9.	0.5	0
143	Integrative Effects of Autophagy and Telomerase on Arteriolar Flowâ€Mediated Dilation in Health and Coronary Artery Disease. FASEB Journal, 2019, 33, 684.2.	0.5	0
144	Role of AMPK in Adiponectinâ€Mediated Restoration of Nitric Oxideâ€Dependent Flow Induced Dilation in the Human Microvasculature. FASEB Journal, 2020, 34, 1-1.	0.5	0

#	Article	IF	CITATIONS
145	NADPH Oxidase 2 and 4 Contribute to Endotheliumâ€Dependent Dilation in Healthy Human Arterioles. FASEB Journal, 2020, 34, 1-1.	0.5	0
146	Reply to De Mey et al American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H683-H684.	3.2	0
147	The Role of Angiotensin 1â€7 in Isolated Human Arterioles with SARS oVâ€2. FASEB Journal, 2022, 36, .	0.5	0
148	Examining the role of Drp1 in ageâ€related microvascular dysfunction. FASEB Journal, 2022, 36, .	0.5	0
149	Circulating Factors Provoke Endothelial Dysfunction in the Human Microcirculation Following Doxorubicin Chemotherapy. FASEB Journal, 2022, 36, .	0.5	0
150	Mitochondrial Telomerase Prevents Chemotherapyâ€Induced Cardiovascular Toxicity. FASEB Journal, 2022, 36, .	0.5	0
151	Stratification by Race Reveals Disparate Vascular Toxicity in Response to Anti ancer Therapies. FASEB Journal, 2022, 36, .	0.5	0
152	Take charge during treatment: A planned exercise protocol to evaluate disparities and cardiovascular outcomes in Black and White patients with breast cancer undergoing treatment Journal of Clinical	1.6	0

152 outcomes in Black and White patients with bro Oncology, 2022, 40, TPS12138-TPS12138.