Natalie Mrachacz-Kersting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8528711/publications.pdf

Version: 2024-02-01

236925 206112 2,777 113 25 48 g-index citations h-index papers 122 122 122 2246 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. Journal of Physiology, 2012, 590, 1669-1682.	2.9	210
2	Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. Journal of Neurophysiology, 2016, 115, 1410-1421.	1.8	189
3	Enhanced Low-Latency Detection of Motor Intention From EEG for Closed-Loop Brain-Computer Interface Applications. IEEE Transactions on Biomedical Engineering, 2014, 61, 288-296.	4.2	168
4	A Closed-Loop Brain–Computer Interface Triggering an Active Ankle–Foot Orthosis for Inducing Cortical Neural Plasticity. IEEE Transactions on Biomedical Engineering, 2014, 61, 2092-2101.	4.2	137
5	Peripheral Electrical Stimulation Triggered by Self-Paced Detection of Motor Intention Enhances Motor Evoked Potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 595-604.	4.9	129
6	A brainâ€"computer interface for single-trial detection of gait initiation from movement related cortical potentials. Clinical Neurophysiology, 2015, 126, 154-159.	1.5	112
7	Detection and classification of movement-related cortical potentials associated with task force and speed. Journal of Neural Engineering, 2013, 10, 056015.	3.5	98
8	Motor Cortex Reorganization and Impaired Function in the Transition to Sustained Muscle Pain. Cerebral Cortex, 2016, 26, 1878-1890.	2.9	95
9	Reflex and non-reflex torque responses to stretch of the human knee extensors. Experimental Brain Research, 2003, 151, 72-81.	1.5	87
10	Generative Adversarial Networks-Based Data Augmentation for Brain–Computer Interface. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 4039-4051.	11.3	85
11	Changes in Excitability of the Cortical Projections to the Human Tibialis Anterior After Paired Associative Stimulation. Journal of Neurophysiology, 2007, 97, 1951-1958.	1.8	84
12	Evidence for a supraspinal contribution to the human quadriceps long-latency stretch reflex. Experimental Brain Research, 2006, 168, 529-540.	1.5	48
13	Comparison of spatial filters and features for the detection and classification of movement-related cortical potentials in healthy individuals and stroke patients. Journal of Neural Engineering, 2015, 12, 056003.	3.5	47
14	Classification of EEG signals to identify variations in attention during motor task execution. Journal of Neuroscience Methods, 2017, 284, 27-34.	2.5	45
15	Neuropsychological and neurophysiological aspects of brainâ€computerâ€interface (BCI) control in paralysis. Journal of Physiology, 2021, 599, 2351-2359.	2.9	45
16	The optimal interstimulus interval and repeatability of paired associative stimulation when the soleus muscle is targeted. Experimental Brain Research, 2012, 221, 241-249.	1.5	42
17	Detection of Movement Related Cortical Potentials from EEG Using Constrained ICA for Brain-Computer Interface Applications. Frontiers in Neuroscience, 2017, 11, 356.	2.8	42
18	Short-Latency Crossed Inhibitory Responses in the Human Soleus Muscle. Journal of Neurophysiology, 2009, 102, 3596-3605.	1.8	41

#	Article	IF	Citations
19	Brain state–dependent stimulation boosts functional recovery following stroke. Annals of Neurology, 2019, 85, 84-95.	5.3	41
20	Decrease in force steadiness with aging is associated with increased power of the common but not independent input to motor neurons. Journal of Neurophysiology, 2018, 120, 1616-1624.	1.8	40
21	A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1674-1682.	4.9	38
22	Characterisation of the quadriceps stretch reflex during the transition from swing to stance phase of human walking. Experimental Brain Research, 2004, 159, 108-22.	1.5	33
23	Phase Modulation of the Short-Latency Crossed Spinal Response in the Human Soleus Muscle. Journal of Neurophysiology, 2011, 105, 503-511.	1.8	33
24	The effect of type of afferent feedback timed with motor imagery on the induction of cortical plasticity. Brain Research, 2017, 1674, 91-100.	2.2	28
25	Effect of wobble board training on movement strategies to maintain equilibrium on unstable surfaces. Human Movement Science, 2018, 58, 231-238.	1.4	28
26	Coherence of the Surface EMG and Common Synaptic Input to Motor Neurons. Frontiers in Human Neuroscience, 2018, 12, 207.	2.0	28
27	Crossed reflex reversal during human locomotion. Journal of Neurophysiology, 2013, 109, 2335-2344.	1.8	27
28	Sensory Stimulation Training for BCI System Based on Somatosensory Attentional Orientation. IEEE Transactions on Biomedical Engineering, 2019, 66, 640-646.	4.2	24
29	The amplitude modulation of the Quadriceps H-reflex in relation to the knee joint action during walking. Experimental Brain Research, 2006, 170, 555-566.	1.5	23
30	Interlimb communication to the knee flexors during walking in humans. Journal of Physiology, 2013, 591, 4921-4935.	2.9	23
31	Strategies for equilibrium maintenance during single leg standing on a wobble board. Gait and Posture, 2016, 44, 149-154.	1.4	22
32	Endogenous sensory discrimination and selection by a fast brain switch for a high transfer rate brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 901-910.	4.9	22
33	Discriminative Manifold Learning Based Detection of Movement-Related Cortical Potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 921-927.	4.9	22
34	Towards a mechanistic approach for the development of nonâ€invasive brainâ€computer interfaces for motor rehabilitation. Journal of Physiology, 2021, 599, 2361-2374.	2.9	22
35	Movement-related cortical potentials in paraplegic patients: abnormal patterns and considerations for BCI-rehabilitation. Frontiers in Neuroengineering, 2014, 7, 35.	4.8	21
36	Differential modulation of motor cortex plasticity in skill- and endurance-trained athletes. European Journal of Applied Physiology, 2015, 115, 1107-1115.	2.5	21

#	Article	IF	Citations
37	Influence of dual-tasking with different levels of attention diversion on characteristics of the movement-related cortical potential. Brain Research, 2017, 1674, 10-19.	2.2	21
38	A Multi-Class BCI Based on Somatosensory Imagery. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1508-1515.	4.9	21
39	Crossed spinal soleus muscle communication demonstrated by Hâ€reflex conditioning. Muscle and Nerve, 2011, 43, 845-850.	2.2	20
40	Short-latency crossed spinal responses are impaired differently in sub-acute and chronic stroke patients. Clinical Neurophysiology, 2012, 123, 541-549.	1.5	20
41	Factors of Influence on the Performance of a Short-Latency Non-Invasive Brain Switch: Evidence in Healthy Individuals and Implication for Motor Function Rehabilitation. Frontiers in Neuroscience, 2015, 9, 527.	2.8	20
42	A Multi-Class Tactile Brain–Computer Interface Based on Stimulus-Induced Oscillatory Dynamics. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 3-10.	4.9	20
43	Human stretch reflex pathways reexamined. Journal of Neurophysiology, 2014, 111, 602-612.	1.8	19
44	Induction of plasticity in the human motor cortex by pairing an auditory stimulus with TMS. Frontiers in Human Neuroscience, 2014, 8, 398.	2.0	18
45	Effects of wobble board training on singleâ€leg landing neuromechanics. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 972-982.	2.9	18
46	Acquisition of a simple motor skill: task-dependent adaptation and long-term changes in the human soleus stretch reflex. Journal of Neurophysiology, 2019, 122, 435-446.	1.8	18
47	Brain-computer interface based motor and cognitive rehabilitation after stroke – state of the art, opportunity, and barriers: summary of the BCI Meeting 2016 in Asilomar. Brain-Computer Interfaces, 2017, 4, 53-59.	1.8	17
48	Decoding Covert Somatosensory Attention by a BCI System Calibrated With Tactile Sensation. IEEE Transactions on Biomedical Engineering, 2018, 65, 1689-1695.	4.2	17
49	Modulation of soleus stretch reflexes during walking in people with chronic incomplete spinal cord injury. Experimental Brain Research, 2019, 237, 2461-2479.	1.5	17
50	Technologically-advanced assessment of upper-limb spasticity: a pilot study. European Journal of Physical and Rehabilitation Medicine, 2018, 54, 536-544.	2.2	15
51	Convergence of ipsi- and contralateral muscle afferents on common interneurons mediating reciprocal inhibition of ankle plantarflexors in humans. Experimental Brain Research, 2017, 235, 1555-1564.	1.5	14
52	Influence of attention alternation on movement-related cortical potentials in healthy individuals and stroke patients. Clinical Neurophysiology, 2017, 128, 165-175.	1.5	13
53	Continuous 2D control via state-machine triggered by endogenous sensory discrimination and a fast brain switch. Journal of Neural Engineering, 2019, 16, 056001.	3.5	13
54	Dynamics of movementâ€related cortical potentials and sensorimotor oscillations during palmar grasp movements. European Journal of Neuroscience, 2020, 51, 1962-1970.	2.6	13

#	Article	IF	Citations
55	An Accurate, Versatile, and Robust Brain Switch for Neurorehabilitation. Springer Briefs in Electrical and Computer Engineering, 2014, , 47-61.	0.5	12
56	Detection of movement intention from single-trial movement-related cortical potentials using random and non-random paradigms. Brain-Computer Interfaces, 2015, 2, 29-39.	1.8	12
57	Performance of Brain–Computer Interfacing Based on Tactile Selective Sensation and Motor Imagery. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 60-68.	4.9	12
58	Sensory Feedback in Interlimb Coordination: Contralateral Afferent Contribution to the Short-Latency Crossed Response during Human Walking. PLoS ONE, 2017, 12, e0168557.	2.5	11
59	Spinal plasticity in robot-mediated therapy for the lower limbs. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 81.	4.6	10
60	Comparison of the Efficacy of a Real-Time and Offline Associative Brain-Computer-Interface. Frontiers in Neuroscience, 2018, 12, 455.	2.8	10
61	Shortâ€katency crossed responses in the human biceps femoris muscle. Journal of Physiology, 2015, 593, 3657-3671.	2.9	9
62	The effect of crossed reflex responses on dynamic stability during locomotion. Journal of Neurophysiology, 2015, 114, 1034-1040.	1.8	9
63	Reducing the Calibration Time in Somatosensory BCI by Using Tactile ERD. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 1870-1876.	4.9	9
64	A Novel Brain-Computer Interface for Chronic Stroke Patients. Biosystems and Biorobotics, 2014, , 51-61.	0.3	8
65	Effect of motor learning with different complexities on EEG spectral distribution and performance improvement. Biomedical Signal Processing and Control, 2021, 66, 102447.	5.7	8
66	Robustness of movement detection techniques from motor execution: Single trial movement related cortical potential., $2015,$		7
67	Evidence for a Supraspinal Contribution to the Human Crossed Reflex Response During Human Walking. Frontiers in Human Neuroscience, 2018, 12, 260.	2.0	7
68	Brain-Computer Interface Research: A State-of-the-Art Summary 7. Springer Briefs in Electrical and Computer Engineering, 2019, , 1-9.	0.5	7
69	Movement Related Cortical Potentials and Sensory Motor Rhythms during Self Initiated and Cued Movements. Biosystems and Biorobotics, 2014, , 701-707.	0.3	7
70	Detection of Movement Intentions through a Single Channel of Electroencephalography. Biosystems and Biorobotics, 2014, , 465-472.	0.3	6
71	Interlimb communication following unexpected changes in treadmill velocity during human walking. Journal of Neurophysiology, 2015, 113, 3151-3158.	1.8	6
72	Paired Associative Stimulation Targeting the Tibialis Anterior Muscle using either Mono or Biphasic Transcranial Magnetic Stimulation. Frontiers in Human Neuroscience, 2017, 11, 197.	2.0	6

#	Article	IF	Citations
7 3	Brain-computer interfaces for stroke rehabilitation: summary of the 2016 BCI Meeting in Asilomar. Brain-Computer Interfaces, 2018, 5, 41-57.	1.8	6
74	Delayed muscle onset soreness in the gastrocnemius muscle attenuates the spinal contribution to interlimb communication. European Journal of Applied Physiology, 2018, 118, 2393-2402.	2.5	6
75	Classification of Movement Preparation Between Attended and Distracted Self-Paced Motor Tasks. IEEE Transactions on Biomedical Engineering, 2019, 66, 3060-3071.	4.2	6
76	Online control of an assistive active glove by slow cortical signals in patients with amyotrophic lateral sclerosis. Journal of Neural Engineering, 2021, 18, 046085.	3.5	6
77	Participant-specific classifier tuning increases the performance of hand movement detection from EEG in patients with amyotrophic lateral sclerosis. Journal of Neural Engineering, 2021, 18, 056023.	3.5	6
78	Comparison of EEG spatial filters for movement related cortical potential detection., 2016, 2016, 1576-1579.		5
79	Detection of Movement Intention from Movement-Related Cortical Potentials with Different Paradigms. Biosystems and Biorobotics, 2014, , 237-244.	0.3	4
80	Online Adaptive Synchronous BCI System with Attention Variations. Springer Briefs in Electrical and Computer Engineering, 2019, , 31-41.	0.5	4
81	Real-time neurofeedback is effective in reducing diversion of attention from a motor task in healthy individuals and patients with amyotrophic lateral sclerosis. Journal of Neural Engineering, 2020, 17, 036017.	3.5	4
82	Influence of external cues on synchronized Brain-Computer Interface based on movement related cortical potentials. , 2015 , , .		3
83	Tactile Stimulation Training to Enhance MRCP Detection in Chronic Stroke Patients. Lecture Notes in Computer Science, 2017, , 354-363.	1.3	3
84	Common Spatial Pattern with Polarity Check for reducing delay latency in detection of MRCP based BCI system. , 2017, , .		3
85	Short-interval intracortical inhibition and facilitation targeting upper and lower limb muscles. Scientific Reports, 2021, 11, 21993.	3.3	3
86	Precise Temporal Association between Cortical Potentials Evoked by Motor Imagination and Afference Induces Cortical Plasticity. Brain Stimulation, 2017, 10, 413.	1.6	2
87	Effect of Attention Variation in Stroke Patients: Analysis of Single Trial Movement-Related Cortical Potentials. Biosystems and Biorobotics, 2017, , 983-987.	0.3	2
88	A software for testing and training visuo-motor coordination for upper limb control. Journal of Neuroscience Methods, 2019, 324, 108310.	2.5	2
89	Adaptive learning in the detection of Movement Related Cortical Potentials improves usability of associative Brain-Computer Interfaces., 2019, 2019, 3079-3082.		2
90	Brain-State Dependent Peripheral Nerve Stimulation for Plasticity Induction Targeting Upper-Limb. Biosystems and Biorobotics, 2019, , 1061-1065.	0.3	2

#	Article	IF	CITATIONS
91	Associative Plasticity Induced by a Brain–Computer Interface Based on Movement-Related Cortical Potentials. , 2018, , 669-684.		2
92	W5.3 Movement related cortical potentials: asynchronous versus synchronous brain computer interfaces. Clinical Neurophysiology, 2011, 122, S16.	1.5	1
93	Stretch Reflex Conditioning in Humans $\hat{a} \in \text{``Implications for Function. Biosystems and Biorobotics, 2014, , 103-111.}$	0.3	1
94	Influence of Spontaneous Rhythm on Movement-Related Cortical Potential - A Preliminary Neurofeedback Study. Lecture Notes in Computer Science, 2017, , 90-98.	1.3	1
95	Modulation of Cortical Excitability with BCI for Stroke Rehabilitation. , 2019, , .		1
96	Adaptive Brain-Computer Interface with Attention Alterations in Patients with Amyotrophic Lateral Sclerosis., 2020, 2020, 3188-3191.		1
97	Brainâ€computer interfaces and plasticity of the human nervous system. Journal of Physiology, 2021, 599, 2349-2350.	2.9	1
98	Functionality of the Contralateral Biceps Femoris Reflex Response during Human Walking. Biosystems and Biorobotics, 2014, , 765-773.	0.3	1
99	Effect of Feedback Type on the Effectiveness of a Novel Associative BCI Protocol Targeting the Tibialis Anterior Muscle. Biosystems and Biorobotics, 2017, , 13-17.	0.3	1
100	Exploring the EEG Signatures of Musculoskeletal Pain. Biosystems and Biorobotics, 2019, , 734-738.	0.3	1
101	The potential of imagination and artificial afference in stroke rehabilitation. , 2012, , .		0
102	A Brain-Computer-Interface to Combat Musculoskeletal Pain. Springer Briefs in Electrical and Computer Engineering, 2017, , 123-130.	0.5	0
103	Cortical oscillatory dynamics of tactile selective sensation - for a novel type of somatosensory Brain-computer Interface., 2017, 2017, 1656-1659.		0
104	Evaluating the effectiveness of different external cues on non-invasive brain-computer interfaces., 2017, 2017, 2782-2785.		0
105	Effect of attention division on movement detection and execution in dual-task conditions. , 2017, , .		0
106	Recent Advances in Brain-Computer Interface Researchâ€"A Summary of the 2017 BCI Award and BCI Research Trends. Springer Briefs in Electrical and Computer Engineering, 2019, , 115-127.	0.5	0
107	Selection of Temporal Features for the Detection of Movement Intention in patients with Amyotrophic Lateral Sclerosis., 2021,,.		0
108	Cortical Contribution to Crossed Reflexes in Walking Humans. Biosystems and Biorobotics, 2014, , 575-583.	0.3	0

#	Article	IF	CITATIONS
109	The Role of Afferent Feedback from the Human Knee Extensors in Their Control during Human Movement. , 2014, , 1-49.		О
110	The Changing Brain: Bidirectional Learning Between Algorithm and User. Springer Briefs in Electrical and Computer Engineering, 2015, , 115-125.	0.5	0
111	Towards Online Functional Brain Mapping and Monitoring During Awake Craniotomy Surgery Using ECoG-Based Brain-Surgeon Interface (BSI). Springer Briefs in Electrical and Computer Engineering, 2017, , 91-96.	0.5	O
112	The Efficacy of a Real-Time vs an Offline Associative Brain-Computer-Interface. Biosystems and Biorobotics, 2019, , 893-896.	0.3	0
113	Brain State-Dependent Peripheral Nerve Stimulation for Plasticity Induction in Stroke Patients. Biosystems and Biorobotics, 2019, , 1066-1070.	0.3	0