Jeroen Bussmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8528607/publications.pdf Version: 2024-02-01

IEDOEN RUSSMANN

#	Article	IF	CITATIONS
1	Meningeal lymphatic endothelial cells fulfill scavenger endothelial cell function and cooperate with microglia in waste removal from the brain. Glia, 2022, 70, 35-49.	4.9	11
2	Investigating 3R In Vivo Approaches for Bioâ€Distribution and Efficacy Evaluation of Nucleic Acid Nanocarriers: Studies on Peptideâ€Mimicking Ionizable Lipid. Small, 2022, , 2107768.	10.0	1
3	Anionic Lipid Nanoparticles Preferentially Deliver mRNA to the Hepatic Reticuloendothelial System. Advanced Materials, 2022, 34, e2201095.	21.0	66
4	Regenerating vascular mural cells in zebrafish fin blood vessels are not derived from pre-existing mural cells and differentially require Pdgfrb signalling for their development. Development (Cambridge), 2022, 149, .	2.5	10
5	Stabilin 1 and 2 are important regulators for cellular uptake of apolipoprotein B-containing lipoproteins in zebrafish. Atherosclerosis, 2022, 346, 18-25.	0.8	7
6	Together is Better: mRNA Coâ€Encapsulation in Lipoplexes is Required to Obtain Ratiometric Coâ€Đelivery and Protein Expression on the Single Cell Level. Advanced Science, 2022, 9, e2102072.	11.2	13
7	Development of curcumin-loaded zein nanoparticles for transport across the blood–brain barrier and inhibition of glioblastoma cell growth. Biomaterials Science, 2021, 9, 7092-7103.	5.4	46
8	Zebrafish Embryos as a Predictive Animal Model to Study Nanoparticle Behavior in vivo. Bio-protocol, 2021, 11, e4173.	0.4	7
9	Stabilin-1 is required for the endothelial clearance of small anionic nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 34, 102395.	3.3	17
10	Stab2-Mediated Clearance of Supramolecular Polymer Nanoparticles in Zebrafish Embryos. Biomacromolecules, 2020, 21, 1060-1068.	5.4	8
11	Zebrafish as a preclinical in vivo screening model for nanomedicines. Advanced Drug Delivery Reviews, 2019, 151-152, 152-168.	13.7	107
12	Directing Nanoparticle Biodistribution through Evasion and Exploitation of Stab2-Dependent Nanoparticle Uptake. ACS Nano, 2018, 12, 2138-2150.	14.6	173
13	Lipid bilayer-coated mesoporous silica nanoparticles carrying bovine hemoglobin towards an erythrocyte mimic. International Journal of Pharmaceutics, 2018, 543, 169-178.	5.2	25
14	Dynamics of dual-fluorescent polymersomes with durable integrity in living cancer cells and zebrafish embryos. Biomaterials, 2018, 168, 54-63.	11.4	15
15	Endoglin controls blood vessel diameter through endothelial cell shape changes in response to haemodynamic cues. Nature Cell Biology, 2017, 19, 653-665.	10.3	174
16	Inhibition of cross-species CXCR4 signaling by the small molecule IT1t impairs triple negative breast cancer early metastases in zebrafish. DMM Disease Models and Mechanisms, 2016, 9, 141-53.	2.4	45
17	Drug Delivery via Cell Membrane Fusion Using Lipopeptide Modified Liposomes. ACS Central Science, 2016, 2, 621-630.	11.3	163
18	Mesoporous Silica Nanoparticles with Large Pores for the Encapsulation and Release of Proteins. ACS Applied Materials & Interfaces, 2016, 8, 32211-32219.	8.0	111

JEROEN BUSSMANN

#	Article	IF	CITATIONS
19	Chemokine-Guided Angiogenesis Directs Coronary Vasculature Formation in Zebrafish. Developmental Cell, 2015, 33, 442-454.	7.0	117
20	Chemokineâ€guided cell migration and motility in zebrafish development. EMBO Journal, 2015, 34, 1309-1318.	7.8	63
21	Sox7 controls arterial specification in conjunction with <i>hey2</i> and <i>efnb2</i> function. Development (Cambridge), 2015, 142, 1695-704.	2.5	45
22	Arteries are formed by vein-derived endothelial tip cells. Nature Communications, 2014, 5, 5758.	12.8	165
23	<i>Entpd5</i> is essential for skeletal mineralization and regulates phosphate homeostasis in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21372-21377.	7.1	91
24	Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling. Development (Cambridge), 2011, 138, 1717-1726.	2.5	178
25	Rapid BAC selection for <i>tol2</i> -mediated transgenesis in zebrafish. Development (Cambridge), 2011, 138, 4327-4332.	2.5	160
26	Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk. Development (Cambridge), 2010, 137, 2653-2657.	2.5	176
27	Role of Delta-like-4/Notch in the Formation and Wiring of the Lymphatic Network in Zebrafish. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1695-1702.	2.4	118
28	von Hippel-Lindau tumor suppressor mutants faithfully model pathological hypoxia-driven angiogenesis and vascular retinopathies in zebrafish. DMM Disease Models and Mechanisms, 2010, 3, 343-353.	2.4	94
29	von Hippel-Lindau tumor suppressor mutants faithfully model pathological hypoxia-driven angiogenesis and vascular retinopathies in zebrafish. Development (Cambridge), 2010, 137, e1106-e1106.	2.5	2
30	ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nature Genetics, 2009, 41, 396-398.	21.4	409
31	Rotation and Asymmetric Development of the Zebrafish Heart Requires Directed Migration of Cardiac Progenitor Cells. Developmental Cell, 2008, 14, 287-297.	7.0	109
32	ccm1 cell autonomously regulates endothelial cellular morphogenesis and vascular tubulogenesis in zebrafish. Human Molecular Genetics, 2008, 17, 2424-2432.	2.9	100
33	Zebrafish VEGF Receptors: A Guideline to Nomenclature. PLoS Genetics, 2008, 4, e1000064.	3.5	66
34	Early Endocardial Morphogenesis Requires Scl/Tal1. PLoS Genetics, 2007, 3, e140.	3.5	144
35	The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nature Immunology, 2005, 6, 295-302.	14.5	377
36	Transcriptome profiling of adult zebrafish at the late stage of chronic tuberculosis due to Mycobacterium marinum infection. Molecular Immunology, 2005, 42, 1185-1203.	2.2	129