Jennifer V Kuehl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8528124/publications.pdf

Version: 2024-02-01

30 papers

4,356 citations

257450 24 h-index 30 g-index

34 all docs

34 docs citations

times ranked

34

4698 citing authors

#	Article	IF	CITATIONS
1	A Simple, Cost-Effective, and Automation-Friendly Direct PCR Approach for Bacterial Community Analysis. MSystems, 2021, 6, e0022421.	3.8	6
2	Anion transport as a target of adaption to perchlorate in sulfate-reducing communities. ISME Journal, 2020, 14, 450-462.	9.8	7
3	Selective carbon sources influence the end products of microbial nitrate respiration. ISME Journal, 2020, 14, 2034-2045.	9.8	61
4	The selective pressures on the microbial community in a metal-contaminated aquifer. ISME Journal, 2019, 13, 937-949.	9.8	56
5	Mutant phenotypes for thousands of bacterial genes of unknown function. Nature, 2018, 557, 503-509.	27.8	433
6	Dissimilatory Sulfate Reduction Under High Pressure by Desulfovibrio alaskensis G20. Frontiers in Microbiology, 2018, 9, 1465.	3.5	15
7	Filling gaps in bacterial amino acid biosynthesis pathways with high-throughput genetics. PLoS Genetics, 2018, 14, e1007147.	3.5	90
8	System-Wide Adaptations of Desulfovibrio alaskensis G20 to Phosphate-Limited Conditions. PLoS ONE, 2016, 11, e0168719.	2.5	15
9	Monofluorophosphate Is a Selective Inhibitor of Respiratory Sulfate-Reducing Microorganisms. Environmental Science & Environme	10.0	69
10	Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by (per)chlorate and nitrate. ISME Journal, 2015, 9, 1295-1305.	9.8	87
11	Functional Genomics with a Comprehensive Library of Transposon Mutants for the Sulfate-Reducing Bacterium Desulfovibrio alaskensis G20. MBio, 2014, 5, e01041-14.	4.1	56
12	The genetic basis of energy conservation in the sulfate-reducing bacterium Desulfovibrio alaskensis G20. Frontiers in Microbiology, 2014, 5, 577.	3.5	61
13	Control of methionine metabolism by the <scp>SahR</scp> transcriptional regulator in <scp>P</scp> roteobacteria. Environmental Microbiology, 2014, 16, 1-8.	3.8	18
14	The energyâ€conserving electron transfer system used by <scp><i>D</i></scp> <i>esulfovibrio alaskensis</i> strain <scp>G</scp> 20 during pyruvate fermentation involves reduction of endogenously formed fumarate and cytoplasmic and membraneâ€bound complexes, <scp>Hdrâ€Flox</scp> and <scp>Rnf</scp> . Environmental Microbiology, 2014, 16, 3463-3486.	3.8	36
15	Genetic basis for nitrate resistance in Desulfovibrio strains. Frontiers in Microbiology, 2014, 5, 153.	3.5	202
16	Indirect and suboptimal control of gene expression is widespread in bacteria. Molecular Systems Biology, 2013, 9, 660.	7.2	111
17	Variation among Desulfovibrio Species in Electron Transfer Systems Used for Syntrophic Growth. Journal of Bacteriology, 2013, 195, 990-1004.	2.2	77
18	Evidence-Based Annotation of Transcripts and Proteins in the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough. Journal of Bacteriology, 2011, 193, 5716-5727.	2.2	28

#	Article	IF	CITATIONS
19	Extreme Reconfiguration of Plastid Genomes in the Angiosperm Family Geraniaceae: Rearrangements, Repeats, and Codon Usage. Molecular Biology and Evolution, 2011, 28, 583-600.	8.9	338
20	Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages. BMC Evolutionary Biology, 2010, 10, 321.	3.2	120
21	Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes. BMC Genomics, 2010, 11, 143.	2.8	64
22	Extensive Reorganization of the Plastid Genome of Trifolium subterraneum (Fabaceae) Is Associated with Numerous Repeated Sequences and Novel DNA Insertions. Journal of Molecular Evolution, 2008, 67, 696-704.	1.8	217
23	Functional Gene Losses Occur with Minimal Size Reduction in the Plastid Genome of the Parasitic Liverwort Aneura mirabilis. Molecular Biology and Evolution, 2008, 25, 393-401.	8.9	108
24	Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19369-19374.	7.1	1,016
25	Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). Molecular Phylogenetics and Evolution, 2007, 45, 547-563.	2.7	154
26	The complete mitochondrial genome of a gecko and the phylogenetic position of the Middle Eastern Teratoscincus keyserlingii. Molecular Phylogenetics and Evolution, 2005, 36, 188-193.	2.7	27
27	Identifying the Basal Angiosperm Node in Chloroplast Genome Phylogenies: Sampling One's Way Out of the Felsenstein Zone. Molecular Biology and Evolution, 2005, 22, 1948-1963.	8.9	242
28	Methods for Obtaining and Analyzing Whole Chloroplast Genome Sequences. Methods in Enzymology, 2005, 395, 348-384.	1.0	410
29	The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae). Gene, 2005, 350, 117-128.	2.2	101
30	Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences. Molecular Phylogenetics and Evolution, 2004, 33, 22-31.	2.7	102