
Benedetta Mazzinghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8526292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glomerular stem cells. , 2022, , 321-330.		0
2	Clinical and Genetic Characterization of Patients with Bartter and Gitelman Syndrome. International Journal of Molecular Sciences, 2022, 23, 5641.	4.1	4
3	MO033WHOLE-EXOME SEQUENCING AS A FIST-LINE DIAGNOSTIC TOOL IN BARTTER AND GITELMAN SYNDROME. Nephrology Dialysis Transplantation, 2021, 36, .	0.7	0
4	Look Alike, Sound Alike: Phenocopies in Steroid-Resistant Nephrotic Syndrome. International Journal of Environmental Research and Public Health, 2020, 17, 8363.	2.6	10
5	Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells. Science Translational Medicine, 2020, 12, .	12.4	46
6	Bioengineering strategies for nephrologists: kidney was not built in a day. Expert Opinion on Biological Therapy, 2020, 20, 467-480.	3.1	26
7	Reverse Phenotyping after Whole-Exome Sequencing in Steroid-Resistant Nephrotic Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 89-100.	4.5	60
8	Endocycle-related tubular cell hypertrophy and progenitor proliferation recover renal function after acute kidney injury. Nature Communications, 2018, 9, 1344.	12.8	185
9	Regenerating the kidney using human pluripotent stem cells and renal progenitors. Expert Opinion on Biological Therapy, 2018, 18, 795-806.	3.1	20
10	FO057WHOLE-EXOME SEQUENCING FOR PERSONALIZED MANAGEMENT OF IDIOPATHIC NEPHROTIC SYNDROME. Nephrology Dialysis Transplantation, 2018, 33, i43-i43.	0.7	0
11	The genetic and clinical spectrum of a large cohort of patients with distal renal tubular acidosis. Kidney International, 2017, 91, 1243-1255.	5.2	79
12	MO072GENETIC AND CLINICAL CHARACTERIZATION OF A LARGE COHORT OF PATIENTS WITH DISTAL RENAL TUBULAR ACIDOSIS AND CLINICAL CHARACTERIZATION OF A LARGE COHORT OF PATIENTS WITH DISTAL RENAL TUBULAR ACIDOSIS. Nephrology Dialysis Transplantation, 2017, 32, iii76-iii77.	0.7	0
13	Principles of Kidney Regeneration. , 2017, , 973-988.		2
14	Lessons from genetics: is it time to revise the therapeutic approach to children with steroid-resistant nephrotic syndrome?. Journal of Nephrology, 2016, 29, 543-550.	2.0	14
15	Biologic modulation in renal regeneration. Expert Opinion on Biological Therapy, 2016, 16, 1403-1415.	3.1	3
16	Next generation sequencing and functional analysis of patient urine renal progenitor-derived podocytes to unravel the diagnosis underlying refractory lupus nephritis. Nephrology Dialysis Transplantation, 2016, 31, 1541-1545.	0.7	11
17	Human Urine-Derived Renal Progenitors for Personalized Modeling of Genetic Kidney Disorders. Journal of the American Society of Nephrology: JASN, 2015, 26, 1961-1974.	6.1	74
18	Heterogeneous Genetic Alterations in Sporadic Nephrotic Syndrome Associate with Resistance to Immunosuppression. Journal of the American Society of Nephrology: JASN, 2015, 26, 230-236.	6.1	84

Benedetta Mazzinghi

#	Article	IF	CITATIONS
19	Therapeutic implications of novel mutations of the RFX6 gene associated with early-onset diabetes. Pharmacogenomics Journal, 2015, 15, 49-54.	2.0	18
20	Podocyte Regeneration Driven by Renal Progenitors Determines Glomerular Disease Remission and Can Be Pharmacologically Enhanced. Stem Cell Reports, 2015, 5, 248-263.	4.8	112
21	Proteinuria Impairs Podocyte Regeneration by Sequestering Retinoic Acid. Journal of the American Society of Nephrology: JASN, 2013, 24, 1756-1768.	6.1	116
22	MicroRNA-324-3p Promotes Renal Fibrosis and Is a Target of ACE Inhibition. Journal of the American Society of Nephrology: JASN, 2012, 23, 1496-1505.	6.1	84
23	Characterization of Renal Progenitors Committed Toward Tubular Lineage and Their Regenerative Potential in Renal Tubular Injury. Stem Cells, 2012, 30, 1714-1725.	3.2	280
24	Frequency of regulatory T cells in peripheral blood and in tumourâ€infiltrating lymphocytes correlates with poor prognosis in renal cell carcinoma. BJU International, 2011, 107, 1500-1506.	2.5	115
25	Regeneration and the kidney. Current Opinion in Nephrology and Hypertension, 2010, 19, 248-253.	2.0	25
26	Notch Activation Differentially Regulates Renal Progenitors Proliferation and Differentiation Toward the Podocyte Lineage in Glomerular Disorders. Stem Cells, 2010, 28, 1674-1685.	3.2	152
27	Comparison between VDR analogs and current immunosuppressive drugs in relation to CXCL10 secretion by human renal tubular cells. Transplant International, 2010, 23, 914-23.	1.6	14
28	Renal Progenitor Cells Contribute to Hyperplastic Lesions of Podocytopathies and Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2009, 20, 2593-2603.	6.1	173
29	Regeneration of Glomerular Podocytes by Human Renal Progenitors. Journal of the American Society of Nephrology: JASN, 2009, 20, 322-332.	6.1	483
30	Seladinâ€1 and testicular germ cell tumours: new insights into cisplatin responsiveness. Journal of Pathology, 2009, 219, 491-500.	4.5	13
31	The Role of Endothelial Progenitor Cells in Acute Kidney Injury. Blood Purification, 2009, 27, 261-270.	1.8	36
32	T cells specific for Candida albicans antigens and producing type 2 cytokines in lesional mucosa of untreated HIV-infected patients with pseudomembranous oropharyngeal candidiasis. Microbes and Infection, 2008, 10, 166-174.	1.9	10
33	Toll-Like Receptors 3 and 4 Are Expressed by Human Bone Marrow-Derived Mesenchymal Stem Cells and Can Inhibit Their T-Cell Modulatory Activity by Impairing Notch Signaling. Stem Cells, 2008, 26, 279-289.	3.2	429
34	Human immature myeloid dendritic cells trigger a TH2-polarizing program via Jagged-1/Notch interaction. Journal of Allergy and Clinical Immunology, 2008, 121, 1000-1005.e8.	2.9	66
35	Activation of p38MAPK mediates the angiostatic effect of the chemokine receptor CXCR3-B. International Journal of Biochemistry and Cell Biology, 2008, 40, 1764-1774.	2.8	60
36	Essential but differential role for CXCR4 and CXCR7 in the therapeutic homingof human renal progenitor cells. Journal of Experimental Medicine, 2008, 205, 479-490.	8.5	245

Benedetta Mazzinghi

#	Article	IF	CITATIONS
37	Pharmacological Modulation of Stem Cell Function. Current Medicinal Chemistry, 2007, 14, 1129-1139.	2.4	45
38	Regenerative Potential of Embryonic Renal Multipotent Progenitors in Acute Renal Failure. Journal of the American Society of Nephrology: JASN, 2007, 18, 3128-3138.	6.1	194
39	Methimazole inhibits CXC chemokine ligand 10 secretion in human thyrocytes. Journal of Endocrinology, 2007, 195, 145-155.	2.6	54
40	PF-4/CXCL4 and CXCL4L1 exhibit distinct subcellular localization and a differentially regulated mechanism of secretion. Blood, 2007, 109, 4127-4134.	1.4	62
41	Phenotypic and functional features of human Th17 cells. Journal of Experimental Medicine, 2007, 204, 1849-1861.	8.5	1,689
42	Pretransplant serum FT3 levels in kidney graft recipients are useful for identifying patients with higher risk for graft failure. Clinical Endocrinology, 2007, 68, 070907132242007-???.	2.4	24
43	Resistin as an Intrahepatic Cytokine. American Journal of Pathology, 2006, 169, 2042-2053.	3.8	142
44	Role for Interferon-Î ³ in the Immunomodulatory Activity of Human Bone Marrow Mesenchymal Stem Cells. Stem Cells, 2006, 24, 386-398.	3.2	1,226
45	A young woman with oedema. Internal and Emergency Medicine, 2006, 1, 209-215.	2.0	1
46	Isolation and Characterization of Multipotent Progenitor Cells from the Bowman's Capsule of Adult Human Kidneys. Journal of the American Society of Nephrology: JASN, 2006, 17, 2443-2456.	6.1	648
47	High CXCL10 Expression in Rejected Kidneys and Predictive Role of Pretransplant Serum CXCL10 for Acute Rejection And Chronic Allograft Nephropathy. Transplantation, 2005, 79, 1215-1220.	1.0	86
48	Nephrotic Syndrome and Renal Failure After Allogeneic Stem Cell Transplantation: Novel Molecular Diagnostic Tools for a Challenging Differential Diagnosis. American Journal of Kidney Diseases, 2005, 46, 550-556.	1.9	35
49	CXCR3-mediated opposite effects of CXCL10 and CXCL4 on T1 or T2 cytokine production. Journal of Allergy and Clinical Immunology, 2005, 116, 1372-1379.	2.9	106
50	CD14+CD34 ^{low} Cells With Stem Cell Phenotypic and Functional Features Are the Major Source of Circulating Endothelial Progenitors. Circulation Research, 2005, 97, 314-322.	4.5	245
51	Th2 cells are less susceptible than Th1 cells to the suppressive activity of CD25+ regulatory thymocytes because of their responsiveness to different cytokines. Blood, 2004, 103, 3117-3121.	1.4	158
52	An Alternatively Spliced Variant of CXCR3 Mediates the Inhibition of Endothelial Cell Growth Induced by IP-10, Mig, and I-TAC, and Acts as Functional Receptor for Platelet Factor 4. Journal of Experimental Medicine, 2003, 197, 1537-1549.	8.5	655
53	Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood, 2003, 102, 4107-4114.	1.4	331
54	Some protein tyrosine phosphatases target in part to lipid rafts and interact with caveolin-1. Biochemical and Biophysical Research Communications, 2002, 296, 692-697.	2.1	59