
## Vincent Bulone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8526220/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                          | IF                | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 1  | Game-changing alternatives to conventional fungicides: small RNAs and short peptides. Trends in<br>Biotechnology, 2022, 40, 320-337.                                                                                                                             | 9.3               | 14           |
| 2  | A biophysical model for plant cell plate maturation based on the contribution of a spreading force.<br>Plant Physiology, 2022, 188, 795-806.                                                                                                                     | 4.8               | 8            |
| 3  | The <i> Cellulose <scp>Synthase‣ike</scp> </i> <scp> <i>F3</i> </scp> ( <scp> <i>CslF3</i> </scp> ) Gene<br>Mediates Cell Wall Polysaccharide Synthesis and Affects Root Growth and Differentiation in Barley.<br>Plant Journal, 2022, , .                       | 5.7               | 3            |
| 4  | Influence of Aqueous Phase Composition on Double Emulsion Stability and Colour Retention of Encapsulated Anthocyanins. Foods, 2022, 11, 34.                                                                                                                      | 4.3               | 8            |
| 5  | Identification and spatio-temporal expression analysis of barley genes that encode putative modular xylanolytic enzymes. Plant Science, 2021, 308, 110792.                                                                                                       | 3.6               | 0            |
| 6  | De-glycosylation and enhanced bioactivity of flavonoids from apple pomace during extraction with deep eutectic solvents. Green Chemistry, 2021, 23, 7199-7209.                                                                                                   | 9.0               | 16           |
| 7  | Production of Structurally Defined Chito-Oligosaccharides with a Single <i>N</i> -Acetylation at<br>Their Reducing End Using a Newly Discovered Chitinase from <i>Paenibacillus pabuli</i> . Journal of<br>Agricultural and Food Chemistry, 2021, 69, 3371-3379. | 5.2               | 4            |
| 8  | Genes That Mediate Starch Metabolism in Developing and Germinated Barley Grain. Frontiers in Plant<br>Science, 2021, 12, 641325.                                                                                                                                 | 3.6               | 12           |
| 9  | Phylogenomic Analyses of Nucleotide-Sugar Biosynthetic and Interconverting Enzymes Illuminate Cell<br>Wall Composition in Fungi. MBio, 2021, 12, .                                                                                                               | 4.1               | 4            |
| 10 | Full-Length Transcriptome of Thalassiosira weissflogii as a Reference Resource and Mining of Chitin-Related Genes. Marine Drugs, 2021, 19, 392.                                                                                                                  | 4.6               | 9            |
| 11 | Auxin Treatment Enhances Anthocyanin Production in the Non-Climacteric Sweet Cherry (Prunus) Tj ETQq1 1 0.7                                                                                                                                                      | '84314 rgl<br>4.1 | BT /Overlock |
| 12 | Transcriptional and biochemical analyses of gibberellin expression and content in germinated barley grain. Journal of Experimental Botany, 2020, 71, 1870-1884.                                                                                                  | 4.8               | 17           |
| 13 | Analysis of a cellulose synthase catalytic subunit from the oomycete pathogen of crops Phytophthora capsici. Cellulose, 2020, 27, 8551-8565.                                                                                                                     | 4.9               | 4            |
| 14 | Identification of Growth Inhibitors of the Fish Pathogen Saprolegnia parasitica Using in silico<br>Subtractive Proteomics, Computational Modeling, and Biochemical Validation. Frontiers in<br>Microbiology, 2020, 11, 571093.                                   | 3.5               | 6            |
| 15 | Proteomic Analysis Identifies Markers of Exposure to Cadmium Sulphide Quantum Dots (CdS QDs).<br>Nanomaterials, 2020, 10, 1214.                                                                                                                                  | 4.1               | 5            |
| 16 | <i>Arabidopsis</i> Response Regulator 6 (ARR6) Modulates Plant Cell-Wall Composition and Disease<br>Resistance. Molecular Plant-Microbe Interactions, 2020, 33, 767-780.                                                                                         | 2.6               | 46           |
| 17 | Extracellular vesicles secreted by Saccharomyces cerevisiae are involved in cell wall remodelling.<br>Communications Biology, 2019, 2, 305.                                                                                                                      | 4.4               | 106          |
| 18 | Diversity and evolution of chitin synthases in oomycetes (Straminipila: Oomycota). Molecular<br>Phylogenetics and Evolution, 2019, 139, 106558.                                                                                                                  | 2.7               | 14           |

| #  | Article                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Co-evolution of Enzymes Involved in Plant Cell Wall Metabolism in the Grasses. Frontiers in Plant<br>Science, 2019, 10, 1009.                                                                                                                                                     | 3.6  | 26        |
| 20 | Composition and biosynthetic machinery of the Blumeria graminis f. sp. hordei conidia cell wall. Cell<br>Surface, 2019, 5, 100029.                                                                                                                                                | 3.0  | 7         |
| 21 | Analysis of cell wall synthesis and metabolism during early germination of Blumeria graminis f. sp.<br>hordei conidial cells induced in vitro. Cell Surface, 2019, 5, 100030.                                                                                                     | 3.0  | 11        |
| 22 | The interaction with fungal cell wall polysaccharides determines the salt tolerance of antifungal plant defensins. Cell Surface, 2019, 5, 100026.                                                                                                                                 | 3.0  | 8         |
| 23 | Structural analysis and biological activity of cell wall polysaccharides extracted from Panax ginseng marc. International Journal of Biological Macromolecules, 2019, 135, 29-37.                                                                                                 | 7.5  | 25        |
| 24 | Physiology, Metabolism, and Fossilization of Hot-Spring Filamentous Microbial Mats. Astrobiology, 2019, 19, 1442-1458.                                                                                                                                                            | 3.0  | 18        |
| 25 | Stronger cellulose microfibril network structure through the expression of cellulose-binding modules in plant primary cell walls. Cellulose, 2019, 26, 3083-3094.                                                                                                                 | 4.9  | 11        |
| 26 | The Rice Actin-Binding Protein RMD Regulates Light-Dependent Shoot Gravitropism. Plant Physiology,<br>2019, 181, 630-644.                                                                                                                                                         | 4.8  | 20        |
| 27 | Identification and Characterization of the Chitin Synthase Genes From the Fish Pathogen Saprolegnia parasitica. Frontiers in Microbiology, 2019, 10, 2873.                                                                                                                        | 3.5  | 6         |
| 28 | Lytic polysaccharide monooxygenase (LPMO) mediated production of ultra-fine cellulose nanofibres from delignified softwood fibres. Green Chemistry, 2019, 21, 5924-5933.                                                                                                          | 9.0  | 69        |
| 29 | A Novel (1,4)-β-Linked Glucoxylan Is Synthesized by Members of the <i>Cellulose Synthase-Like F</i> Gene<br>Family in Land Plants. ACS Central Science, 2019, 5, 73-84.                                                                                                           | 11.3 | 25        |
| 30 | Mitochondrial function modulates touch signalling in <i>Arabidopsis thaliana</i> . Plant Journal, 2019, 97, 623-645.                                                                                                                                                              | 5.7  | 32        |
| 31 | Comparative characterization of putative chitin deacetylases from <i>Phaeodactylum tricornutum</i><br>and <i>Thalassiosira pseudonana</i> highlights the potential for distinct chitinâ€based metabolic<br>processes in diatoms. New Phytologist, 2019, 221, 1890-1905.           | 7.3  | 21        |
| 32 | Functional Characterization of a Glycosyltransferase from the Moss <i>Physcomitrella patens</i> Involved in the Biosynthesis of a Novel Cell Wall Arabinoglucan. Plant Cell, 2018, 30, 1293-1308.                                                                                 | 6.6  | 22        |
| 33 | Genetic and environmental factors contribute to variation in cell wall composition in mature desi<br>chickpea ( <i>Cicer arietinum</i> L.) cotyledons. Plant, Cell and Environment, 2018, 41, 2195-2208.                                                                          | 5.7  | 23        |
| 34 | Ssy5 is a signaling serine protease that exhibits atypical biogenesis and marked S1 specificity. Journal of<br>Biological Chemistry, 2018, 293, 8362-8378.                                                                                                                        | 3.4  | 5         |
| 35 | Production of functionalised chitins assisted by fungal lytic polysaccharide monooxygenase. Green<br>Chemistry, 2018, 20, 2091-2100.                                                                                                                                              | 9.0  | 30        |
| 36 | Preparation of 4-Deoxy- <scp>L</scp> - <i>erythro</i> -5-hexoseulose Uronic Acid (DEH) and Guluronic<br>Acid Rich Alginate Using a Unique <i>exo</i> -Alginate Lyase from <i>Thalassotalea crassostreae</i> .<br>Journal of Agricultural and Food Chemistry, 2018, 66, 1435-1443. | 5.2  | 25        |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Structural Characterization of Fucoidan from <i>Laminaria hyperborea</i> : Assessment of<br>Coagulation and Inflammatory Properties and Their Structure–Function Relationship. ACS Applied Bio<br>Materials, 2018, 1, 1880-1892. | 4.6  | 52        |
| 38 | Proteomic Analysis of Plasmodesmata From Populus Cell Suspension Cultures in Relation With<br>Callose Biosynthesis. Frontiers in Plant Science, 2018, 9, 1681.                                                                   | 3.6  | 32        |
| 39 | Asexual Female Gametogenesis Involves Contact with a Sexually-Fated Megaspore in Apomictic<br><i>Hieracium</i> . Plant Physiology, 2018, 177, 1027-1049.                                                                         | 4.8  | 28        |
| 40 | Quantitative proteomics links metabolic pathways to specific developmental stages of the<br>plantâ€pathogenic oomycete <i>Phytophthora capsici</i> . Molecular Plant Pathology, 2017, 18, 378-390.                               | 4.2  | 20        |
| 41 | Proteomic insights into mannan degradation and protein secretion by the forest floor bacterium Chitinophaga pinensis. Journal of Proteomics, 2017, 156, 63-74.                                                                   | 2.4  | 34        |
| 42 | Multi-layer mucilage of Plantago ovata seeds: Rheological differences arise from variations in arabinoxylan side chains. Carbohydrate Polymers, 2017, 165, 132-141.                                                              | 10.2 | 86        |
| 43 | Spatially resolved transcriptome profiling in model plant species. Nature Plants, 2017, 3, 17061.                                                                                                                                | 9.3  | 135       |
| 44 | The Impact of Steroidal Glycoalkaloids on the Physiology of <i>Phytophthora infestans</i> , the Causative Agent of Potato Late Blight. Molecular Plant-Microbe Interactions, 2017, 30, 531-542.                                  | 2.6  | 25        |
| 45 | Flexible and Responsive Chiral Nematic Cellulose Nanocrystal/Poly(ethylene glycol) Composite Films with Uniform and Tunable Structural Color. Advanced Materials, 2017, 29, 1701323.                                             | 21.0 | 306       |
| 46 | Proteomic data on enzyme secretion and activity in the bacterium Chitinophaga pinensis. Data in Brief, 2017, 11, 484-490.                                                                                                        | 1.0  | 8         |
| 47 | Sequential fractionation of feruloylated hemicelluloses and oligosaccharides from wheat bran using subcritical water and xylanolytic enzymes. Green Chemistry, 2017, 19, 1919-1931.                                              | 9.0  | 56        |
| 48 | Isolation and Structural Characterization of Echinocystic Acid Triterpenoid Saponins from the<br>Australian Medicinal and Food Plant <i>Acacia ligulata</i> . Journal of Natural Products, 2017, 80,<br>2692-2698.               | 3.0  | 15        |
| 49 | Isolation and structural elucidation by 2D NMR of planteose, a major oligosaccharide in the mucilage<br>of chia (Salvia hispanica L.) seeds. Carbohydrate Polymers, 2017, 175, 231-240.                                          | 10.2 | 36        |
| 50 | Synthesis and Self-Assembly of Cellulose Microfibrils from Reconstituted Cellulose Synthase. Plant<br>Physiology, 2017, 175, 146-156.                                                                                            | 4.8  | 49        |
| 51 | Alteration of cell wall xylan acetylation triggers defense responses that counterbalance the immune deficiencies of plants impaired in the βâ€subunit of the heterotrimeric Gâ€protein. Plant Journal, 2017, 92, 386-399.        | 5.7  | 68        |
| 52 | Sequential extraction and characterization of fucoidans and alginates from Ecklonia radiata,<br>Macrocystis pyrifera, Durvillaea potatorum, and Seirococcus axillaris. Journal of Applied Phycology,<br>2017, 29, 1515-1526.     | 2.8  | 38        |
| 53 | The βâ€1,3â€glucanosyltransferases (Gels) affect the structure of the rice blast fungal cell wall during<br>appressoriumâ€mediated plant infection. Cellular Microbiology, 2017, 19, e12659.                                     | 2.1  | 51        |
| 54 | Quantitative Proteomic Analysis of Four Developmental Stages of Saprolegnia parasitica. Frontiers in<br>Microbiology, 2017, 8, 2658.                                                                                             | 3.5  | 21        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Comparative analysis of sterol acquisition in the oomycetes Saprolegnia parasitica and Phytophthora infestans. PLoS ONE, 2017, 12, e0170873.                                                                                                  | 2.5 | 27        |
| 56 | The Oxidosqualene Cyclase from the Oomycete Saprolegnia parasitica Synthesizes Lanosterol as a Single Product. Frontiers in Microbiology, 2016, 7, 1802.                                                                                      | 3.5 | 5         |
| 57 | Comparative "Golgi―Proteome Study of Lolium multiflorum and Populus trichocarpa. Proteomes,<br>2016, 4, 23.                                                                                                                                   | 3.5 | 6         |
| 58 | Proteomic Analysis of a Poplar Cell Suspension Culture Suggests a Major Role of Protein S-Acylation in Diverse Cellular Processes. Frontiers in Plant Science, 2016, 7, 477.                                                                  | 3.6 | 23        |
| 59 | Computational studies of the binding profile of phosphoinositide PtdIns (3,4,5) P3 with the pleckstrin homology domain of an oomycete cellulose synthase. Scientific Reports, 2016, 6, 20555.                                                 | 3.3 | 7         |
| 60 | Arid awakening: new opportunities for Australian plant natural product research. Rangeland Journal,<br>2016, 38, 467.                                                                                                                         | 0.9 | 5         |
| 61 | Genetics, Transcriptional Profiles, and Catalytic Properties of the UDP-Arabinose Mutase Family from<br>Barley. Biochemistry, 2016, 55, 322-334.                                                                                              | 2.5 | 13        |
| 62 | The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium. Plant Cell, 2016, 28, 1009-1024.                                                                                                                       | 6.6 | 65        |
| 63 | Carbon Flux and Carbohydrate Gene Families in Pineapple. Tropical Plant Biology, 2016, 9, 200-213.                                                                                                                                            | 1.9 | 8         |
| 64 | Structural and functional characterization of the microtubule interacting and trafficking domains of two oomycete chitin synthases. FEBS Journal, 2016, 283, 3072-3088.                                                                       | 4.7 | 7         |
| 65 | The barley ( <i>Hordeum vulgare</i> ) cellulose synthaseâ€like D2 gene ( <i>HvCslD2</i> ) mediates<br>penetration resistance to hostâ€adapted and nonhost isolates of the powdery mildew fungus. New<br>Phytologist, 2016, 212, 421-433.      | 7.3 | 52        |
| 66 | A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose<br>microfibril formation in vitro. Proceedings of the National Academy of Sciences of the United States<br>of America, 2016, 113, 11360-11365. | 7.1 | 80        |
| 67 | Enzyme-assisted extraction of carbohydrates from the brown alga Ecklonia radiata : Effect of enzyme<br>type, pH and buffer on sugar yield and molecular weight profiles. Process Biochemistry, 2016, 51,<br>1503-1510.                        | 3.7 | 62        |
| 68 | Insight into the adsorption profiles of the Saprolegnia monoica chitin synthase MIT domain on POPA<br>and POPC membranes by molecular dynamics simulation studies. Physical Chemistry Chemical Physics,<br>2016, 18, 5281-5290.               | 2.8 | 11        |
| 69 | (1,3;1,4)-β-Glucan Biosynthesis by the CSLF6 Enzyme: Position and Flexibility of Catalytic Residues<br>Influence Product Fine Structure. Biochemistry, 2016, 55, 2054-2061.                                                                   | 2.5 | 37        |
| 70 | A GH115 α-glucuronidase from Schizophyllum commune contributes to the synergistic enzymatic deconstruction of softwood glucuronoarabinoxylan. Biotechnology for Biofuels, 2016, 9, 2.                                                         | 6.2 | 72        |
| 71 | Proteomic profile of the plant-pathogenic oomycete <i>Phytophthora capsici</i> in response to the fungicide pyrimorph. Proteomics, 2015, 15, 2972-2982.                                                                                       | 2.2 | 27        |
| 72 | Diversity of Aquatic Pseudomonas Species and Their Activity against the Fish Pathogenic Oomycete<br>Saprolegnia. PLoS ONE, 2015, 10, e0136241.                                                                                                | 2.5 | 36        |

| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Diverse Nitrogen Sources in Seminal Fluid Act in Synergy To Induce Filamentous Growth of Candida albicans. Applied and Environmental Microbiology, 2015, 81, 2770-2780.                                                                                     | 3.1  | 7         |
| 74 | Erratum for Belmonte et al., Role of Pathogen-Derived Cell Wall Carbohydrates and Prostaglandin E<br><sub>2</sub> in Immune Response and Suppression of Fish Immunity by the Oomycete Saprolegnia<br>parasitica. Infection and Immunity, 2015, 83, 454-454. | 2.2  | 0         |
| 75 | Lipopeptide biosynthesis in Pseudomonas fluorescens is regulated by the protease complex ClpAP. BMC<br>Microbiology, 2015, 15, 29.                                                                                                                          | 3.3  | 18        |
| 76 | Exploiting Mycosporines as Natural Molecular Sunscreens for the Fabrication of UV-Absorbing Green<br>Materials. ACS Applied Materials & Interfaces, 2015, 7, 16558-16564.                                                                                   | 8.0  | 63        |
| 77 | The pineapple genome and the evolution of CAM photosynthesis. Nature Genetics, 2015, 47, 1435-1442.                                                                                                                                                         | 21.4 | 472       |
| 78 | Multiple-response optimization of the acidic treatment of the brown alga Ecklonia radiata for the sequential extraction of fucoidan and alginate. Bioresource Technology, 2015, 197, 302-309.                                                               | 9.6  | 66        |
| 79 | Impact of microcrystalline cellulose material attributes: A case study on continuous twin screw granulation. International Journal of Pharmaceutics, 2015, 478, 705-717.                                                                                    | 5.2  | 53        |
| 80 | Deciphering the uniqueness of <scp>M</scp> ucoromycotina cell walls by combining biochemical and phylogenomic approaches. Environmental Microbiology, 2015, 17, 1649-1662.                                                                                  | 3.8  | 51        |
| 81 | Phenylcoumaran Benzylic Ether Reductase Prevents Accumulation of Compounds Formed under<br>Oxidative Conditions in Poplar Xylem. Plant Cell, 2014, 26, 3775-3791.                                                                                           | 6.6  | 43        |
| 82 | Endosidin 7 Specifically Arrests Late Cytokinesis and Inhibits Callose Biosynthesis, Revealing Distinct<br>Trafficking Events during Cell Plate Maturation. Plant Physiology, 2014, 165, 1019-1034.                                                         | 4.8  | 47        |
| 83 | Transcript and Metabolite Profiling for the Evaluation of Tobacco Tree and Poplar as Feedstock for the Bio-based Industry. Journal of Visualized Experiments, 2014, , .                                                                                     | 0.3  | 3         |
| 84 | APP: an Automated Proteomics Pipeline for the analysis of mass spectrometry data based on multiple open access tools. BMC Bioinformatics, 2014, 15, 441.                                                                                                    | 2.6  | 20        |
| 85 | Hot-water extracts from the inner bark of Norway spruce with immunomodulating activities.<br>Carbohydrate Polymers, 2014, 101, 699-704.                                                                                                                     | 10.2 | 44        |
| 86 | Role of Pathogen-Derived Cell Wall Carbohydrates and Prostaglandin E <sub>2</sub> in Immune<br>Response and Suppression of Fish Immunity by the Oomycete Saprolegnia parasitica. Infection and<br>Immunity, 2014, 82, 4518-4529.                            | 2.2  | 49        |
| 87 | Dimerization of a flocculent protein from <i>Moringa oleifera</i> : experimental evidence and <i>in silico</i> interpretation. Journal of Biomolecular Structure and Dynamics, 2014, 32, 406-415.                                                           | 3.5  | 13        |
| 88 | Accumulation of <i>N</i> -Acetylglucosamine Oligomers in the Plant Cell Wall Affects Plant<br>Architecture in a Dose-Dependent and Conditional Manner  Â. Plant Physiology, 2014, 165, 290-308.                                                             | 4.8  | 25        |
| 89 | Functional characterization of a tyrosinase gene from the oomycete Saprolegnia parasitica by RNAi silencing. Fungal Biology, 2014, 118, 621-629.                                                                                                            | 2.5  | 12        |
| 90 | Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity. Green Chemistry, 2013, 15, 3404.                                                                                         | 9.0  | 129       |

| #   | Article                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Distinctive Expansion of Potential Virulence Genes in the Genome of the Oomycete Fish Pathogen Saprolegnia parasitica. PLoS Genetics, 2013, 9, e1003272.                                                                                                            | 3.5  | 221       |
| 92  | Quantitative Proteomics Reveals that Plasma Membrane Microdomains From Poplar Cell Suspension<br>Cultures Are Enriched in Markers of Signal Transduction, Molecular Transport, and Callose<br>Biosynthesis. Molecular and Cellular Proteomics, 2013, 12, 3874-3885. | 3.8  | 45        |
| 93  | BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in<br>vitro cellulose synthesis. Proceedings of the National Academy of Sciences of the United States of<br>America, 2013, 110, 17856-17861.                        | 7.1  | 211       |
| 94  | Analyses of Extracellular Carbohydrates in Oomycetes Unveil the Existence of Three Different Cell<br>Wall Types. Eukaryotic Cell, 2013, 12, 194-203.                                                                                                                | 3.4  | 122       |
| 95  | Aphanomyces euteiches Cell Wall Fractions Containing Novel Glucan-Chitosaccharides Induce<br>Defense Genes and Nuclear Calcium Oscillations in the Plant Host Medicago truncatula. PLoS ONE,<br>2013, 8, e75039.                                                    | 2.5  | 41        |
| 96  | Deciphering the Molecular Functions of Sterols in Cellulose Biosynthesis. Frontiers in Plant Science, 2012, 3, 84.                                                                                                                                                  | 3.6  | 42        |
| 97  | Functional characterization of the pleckstrin homology domain of a cellulose synthase from the<br>oomycete Saprolegnia monoica. Biochemical and Biophysical Research Communications, 2012, 417,<br>1248-1253.                                                       | 2.1  | 9         |
| 98  | Molecular Structure and Stability of Phospholipid Monolayers Probed by Vibrational Sum Frequency<br>Spectroscopy (VSFS). Biophysical Journal, 2012, 102, 591a.                                                                                                      | 0.5  | 2         |
| 99  | Radiometric and spectrophotometric in vitro assays of glycosyltransferases involved in plant cell wall carbohydrate biosynthesis. Nature Protocols, 2012, 7, 1634-1650.                                                                                             | 12.0 | 32        |
| 100 | Supported Phospholipid Monolayers. The Molecular Structure Investigated by Vibrational Sum<br>Frequency Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 10617-10629.                                                                                      | 3.1  | 40        |
| 101 | Callose Biosynthesis Regulates Symplastic Trafficking during Root Development. Developmental Cell, 2011, 21, 1144-1155.                                                                                                                                             | 7.0  | 394       |
| 102 | A molecular dynamics study of the thermal response of crystalline cellulose lβ. Cellulose, 2011, 18, 207-221.                                                                                                                                                       | 4.9  | 39        |
| 103 | Comparative proteomic profiles of the marine cyanobacterium <i>Trichodesmium erythraeum</i> IMS101 under different nitrogen regimes. Proteomics, 2011, 11, 406-419.                                                                                                 | 2.2  | 34        |
| 104 | The surface structure of well-ordered native cellulose fibrils in contact with water. Carbohydrate Research, 2010, 345, 97-100.                                                                                                                                     | 2.3  | 36        |
| 105 | Biosynthesis of Callose and Cellulose by Detergent Extracts of Tobacco Cell Membranes and Quantification of the Polymers Synthesized <i>in vitro</i> , Journal of Integrative Plant Biology, 2010, 52, 221-233.                                                     | 8.5  | 34        |
| 106 | What Do We Really Know about Cellulose Biosynthesis in Higher Plants?. Journal of Integrative Plant<br>Biology, 2010, 52, 161-175.                                                                                                                                  | 8.5  | 154       |
| 107 | Tools for Cellulose Analysis in Plant Cell Walls. Plant Physiology, 2010, 153, 420-426.                                                                                                                                                                             | 4.8  | 58        |
| 108 | Chitin Synthases from Saprolegnia Are Involved in Tip Growth and Represent a Potential Target for<br>Anti-Oomycete Drugs. PLoS Pathogens, 2010, 6, e1001070.                                                                                                        | 4.7  | 61        |

| #   | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Phospholipid Monolayers Probed by Vibrational Sum Frequency Spectroscopy: Instability of<br>Unsaturated Phospholipids. Biophysical Journal, 2010, 98, L50-L52.                                                                     | 0.5  | 74        |
| 110 | Cell Wall Polysaccharide Synthases Are Located in Detergent-Resistant Membrane Microdomains in Oomycetes. Applied and Environmental Microbiology, 2009, 75, 1938-1949.                                                             | 3.1  | 20        |
| 111 | Activation of <i>β</i> -Glucan Synthases by Wall-Bound Purple Acid Phosphatase in Tobacco Cells  Â.<br>Plant Physiology, 2009, 150, 1822-1830.                                                                                     | 4.8  | 56        |
| 112 | Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461, 393-398.                                                                                                               | 27.8 | 1,405     |
| 113 | Biosynthetic Enzymes for (1,3)-β-Glucans and (1,3;1,6)-β-Glucans in Protozoans and Chromistans. , 2009, ,<br>233-258.                                                                                                              |      | 1         |
| 114 | Identification of the cellulose synthase genes from the Oomycete Saprolegnia monoica and effect of cellulose synthesis inhibitors on gene expression and enzyme activity. Fungal Genetics and Biology, 2009, 46, 759-767.          | 2.1  | 27        |
| 115 | An update on the nomenclature for the cellulose synthase genes in Populus. Trends in Plant Science, 2009, 14, 248-254.                                                                                                             | 8.8  | 112       |
| 116 | Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating. Soft Matter, 2009, 5, 4124.                                                                | 2.7  | 83        |
| 117 | Plasma membrane microdomains from hybrid aspen cells are involved in cell wall polysaccharide biosynthesis. Biochemical Journal, 2009, 420, 93-103.                                                                                | 3.7  | 46        |
| 118 | Cell Wall Chitosaccharides Are Essential Components and Exposed Patterns of the Phytopathogenic<br>Oomycete <i>Aphanomyces euteiches</i> . Eukaryotic Cell, 2008, 7, 1980-1993.                                                    | 3.4  | 77        |
| 119 | Cellulose Synthesis in <i>Phytophthora infestans</i> Is Required for Normal Appressorium Formation and Successful Infection of Potato. Plant Cell, 2008, 20, 720-738.                                                              | 6.6  | 133       |
| 120 | MAP20, a Microtubule-Associated Protein in the Secondary Cell Walls of Hybrid Aspen, Is a Target of<br>the Cellulose Synthesis Inhibitor 2,6-Dichlorobenzonitrile Á. Plant Physiology, 2008, 148, 1283-1294.                       | 4.8  | 76        |
| 121 | Identification and Preliminary Characterization of a New Chemical Affecting Glucosyltransferase<br>Activities Involved in Plant Cell Wall Biosynthesis. Molecular Plant, 2008, 1, 977-989.                                         | 8.3  | 31        |
| 122 | A survey of cellulose biosynthesis in higher plants. Plant Biotechnology, 2008, 25, 315-322.                                                                                                                                       | 1.0  | 15        |
| 123 | In Vitro Synthesis and Analysis of Plant (1→3)-β-d-glucans and Cellulose: A Key Step Towards the<br>Characterization of Glucan Synthases. , 2007, , 123-145.                                                                       |      | 8         |
| 124 | Identification of the first Oomycete annexin as a (1→3)-β-d-glucan synthase activator. Molecular<br>Microbiology, 2006, 62, 552-565.                                                                                               | 2.5  | 23        |
| 125 | Polymorphism of curdlan and (1→3)-β-d-glucans synthesized in vitro: A 13C CP-MAS and X-ray diffraction<br>analysis. Carbohydrate Polymers, 2006, 66, 199-207.                                                                      | 10.2 | 22        |
| 126 | Cell suspension cultures of Populus tremula × P. tremuloides exhibit a high level of cellulose<br>synthase gene expression that coincides with increased in vitro cellulose synthase activity.<br>Protoplasma, 2006, 228, 221-229. | 2.1  | 26        |

| #   | Article                                                                                                                                                                                                                                                                           | IF               | CITATIONS    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 127 | Immobilisation of oligo-peptidic probes for microarray implementation: Characterisation by FTIR,<br>Atomic Force Microscopy and 2D fluorescence. Journal of Chromatography B: Analytical<br>Technologies in the Biomedical and Life Sciences, 2005, 822, 304-310.                 | 2.3              | 17           |
| 128 | Synthesis, preliminary characterization, and application of novel surfactants from highly branched xyloglucan oligosaccharides. Glycobiology, 2005, 15, 437-445.                                                                                                                  | 2.5              | 40           |
| 129 | Structural characterization by 13C-NMR spectroscopy of products synthesized in vitro by polysaccharide synthases using 13C-enriched glycosyl donors: application to a UDP-glucose:(1->3)-Â-D-glucan synthase from blackberry (Rubus fruticosus). Glycobiology, 2004, 14, 775-781. | 2.5              | 22           |
| 130 | In vitro synthesis of (13)glucan (callose) and cellulose by detergent extracts of membranes from cell suspension cultures of hybrid aspen. Cellulose, 2004, 11, 313-327.                                                                                                          | 4.9              | 58           |
| 131 | In vitro synthesis of a crystalline (1 3,1 4)-beta-d-glucan by a mutated (1 3,1 4)-beta-d-glucanase from<br>Bacillus. Biochemical Journal, 2004, 380, 635-641.                                                                                                                    | 3.7              | 47           |
| 132 | Structural and Morphological Diversity of (1→3)-β-d-Glucans Synthesizedin Vitroby Enzymes<br>fromSaprolegnia monoÃ <sup>-</sup> ca. Comparison with a Correspondingin VitroProduct from Blackberry (Rubus) Tj ETQq0                                                               | 0 <b>2.</b> 5gBT | /Overlock 10 |
| 133 | Mutated Barley (1,3)-β-d -Glucan Endohydrolases Synthesize Crystalline (1,3)-β-d -Glucans. Journal of<br>Biological Chemistry, 2002, 277, 30102-30111.                                                                                                                            | 3.4              | 79           |
| 134 | In Vitro Versus in VivoCellulose Microfibrils from Plant Primary Wall Synthases: Structural Differences. Journal of Biological Chemistry, 2002, 277, 36931-36939.                                                                                                                 | 3.4              | 141          |
| 135 | Recent Developments in the Field of In Vitro Biosynthesis of Plant β-Glucans. ACS Symposium Series, 2002, , 65-77.                                                                                                                                                                | 0.5              | 1            |
| 136 | Biosynthesis of (1→3)-β-d-glucan (callose) by detergent extracts of a microsomal fraction<br>fromArabidopsis thaliana. FEBS Journal, 2001, 268, 4628-4638.                                                                                                                        | 0.2              | 58           |
| 137 | Characterisation of Horse Dander Allergen Glycoproteins Using Amino Acid and Glycan Structure<br>Analyses. International Archives of Allergy and Immunology, 2000, 123, 220-227.                                                                                                  | 2.1              | 11           |
| 138 | The effect of amino acid modifying reagents on the activity of a (1→3)-β-glucan synthase from Italian<br>ryegrass (Lolium multiflorum) endosperm. Phytochemistry, 1999, 50, 9-15.                                                                                                 | 2.9              | 9            |
| 139 | Separation of horse dander allergen proteins by two-dimensional electrophoresis. Molecular characterisation and identification of Equ c 2.0101 and Equ c 2.0102 as lipocalin proteins. FEBS Journal, 1998, 253, 202-211.                                                          | 0.2              | 30           |
| 140 | A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence<br>similarities. Biochemical Journal, 1997, 326, 929-939.                                                                                                                        | 3.7              | 722          |
| 141 | A 34-kilodalton polypeptide is associated with 1,3-β-ghican synthase activity from the fungus<br>Saprolegnia monoica. FEMS Microbiology Letters, 1996, 140, 145-150.                                                                                                              | 1.8              | 0            |
| 142 | A 34-kilodalton polypeptide is associated with 1,3-β-ghican synthase activity from the fungus<br>Saprolegnia monoica. FEMS Microbiology Letters, 1996, 140, 145-150.                                                                                                              | 1.8              | 9            |
| 143 | In vitro synthesis of a microfibrillar (13)-beta-glucan by a ryegrass (Lolium multiflorum) endosperm<br>(13)-beta-glucan synthase enriched by product entrapment. Plant Journal, 1995, 8, 213-225.                                                                                | 5.7              | 42           |
| 144 | Synthesis in vitro of crystalline chitin by a solubilized enzyme from the cellulosic fungus Saprolegnia monoica. Journal of General Microbiology, 1993, 139, 2117-2122.                                                                                                           | 2.3              | 15           |

| #   | Article                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Separation and partial peptide characterization of β1–3 glucan synthase from Saprolegnia. Plant<br>Science, 1992, 82, 145-153.                     | 3.6 | 19        |
| 146 | Characterization of chitin and chitin synthase from the cellulosic cell wall fungusSaprolegnia<br>monoi¨ca. Experimental Mycology, 1992, 16, 8-21. | 1.6 | 58        |
| 147 | Chitin pleomorphism in the cellulosic cell wall fungus <i>Saprolegnia</i> . FEMS Microbiology Letters, 1992, 100, 405-409.                         | 1.8 | 5         |
| 148 | Chitin pleomorphism in the cellulosic cell wall fungus Saprolegnia. FEMS Microbiology Letters, 1992, 100, 405-409.                                 | 1.8 | 8         |
| 149 | Chitin pleomorphism in the cellulosic cell wall fungus Saprolegnia. FEMS Microbiology Letters, 1992, 100, 405-409.                                 | 1.8 | 0         |
| 150 | Separation and Partial Purification of 1,3-β-Glucan and 1,4-β-Glucan Synthases from Saprolegnia. Plant<br>Physiology, 1990, 94, 1748-1755.         | 4.8 | 34        |
| 151 | Bacterial Cellulose-based Biomimetic Composites. , 0, , .                                                                                          |     | 8         |