List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8525749/publications.pdf Version: 2024-02-01

TOM RADEN

#	Article	IF	CITATIONS
1	The functional diversity of retinal ganglion cells in the mouse. Nature, 2016, 529, 345-350.	27.8	788
2	Retinal bipolar cells: elementary building blocks of vision. Nature Reviews Neuroscience, 2014, 15, 507-519.	10.2	374
3	Open Labware: 3-D Printing Your Own Lab Equipment. PLoS Biology, 2015, 13, e1002086.	5.6	239
4	Inhibition decorrelates visual feature representations in the inner retina. Nature, 2017, 542, 439-444.	27.8	225
5	Understanding the retinal basis of vision across species. Nature Reviews Neuroscience, 2020, 21, 5-20.	10.2	191
6	A Tale of Two Retinal Domains: Near-Optimal Sampling of Achromatic Contrasts in Natural Scenes through Asymmetric Photoreceptor Distribution. Neuron, 2013, 80, 1206-1217.	8.1	162
7	Zebrafish Differentially Process Color across Visual Space to Match Natural Scenes. Current Biology, 2018, 28, 2018-2032.e5.	3.9	161
8	Benchmarking Spike Rate Inference in Population Calcium Imaging. Neuron, 2016, 90, 471-482.	8.1	154
9	Spikes in Mammalian Bipolar Cells Support Temporal Layering of the Inner Retina. Current Biology, 2013, 23, 48-52.	3.9	137
10	The â,¬100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans. PLoS Biology, 2017, 15, e2002702.	5.6	135
11	Fovea-like Photoreceptor Specializations Underlie Single UV Cone Driven Prey-Capture Behavior in Zebrafish. Neuron, 2020, 107, 320-337.e6.	8.1	91
12	The Retinal Basis of Vertebrate Color Vision. Annual Review of Vision Science, 2019, 5, 177-200.	4.4	86
13	Leveraging open hardware to alleviate the burden of COVID-19 on global health systems. PLoS Biology, 2020, 18, e3000730.	5.6	74
14	Spikes in Retinal Bipolar Cells Phase-Lock to Visual Stimuli with Millisecond Precision. Current Biology, 2011, 21, 1859-1869.	3.9	66
15	In vivo evidence that retinal bipolar cells generate spikes modulated by light. Nature Neuroscience, 2011, 14, 951-952.	14.8	56
16	Spikes and ribbon synapses in early vision. Trends in Neurosciences, 2013, 36, 480-488.	8.6	56
17	An arbitrary-spectrum spatial visual stimulator for vision research. ELife, 2019, 8, .	6.0	51
18	A Synaptic Mechanism for Temporal Filtering of Visual Signals. PLoS Biology, 2014, 12, e1001972.	5.6	44

#	Article	IF	CITATIONS
19	General features of inhibition in the inner retina. Journal of Physiology, 2017, 595, 5507-5515.	2.9	37
20	Zebrafish Retinal Ganglion Cells Asymmetrically Encode Spectral and Temporal Information across Visual Space. Current Biology, 2020, 30, 2927-2942.e7.	3.9	37
21	Bridging the Gap: establishing the necessary infrastructure and knowledge for teaching and research in neuroscience in Africa. Metabolic Brain Disease, 2014, 29, 217-220.	2.9	33
22	Type-specific dendritic integration in mouse retinal ganglion cells. Nature Communications, 2020, 11, 2101.	12.8	30
23	The retinal basis of vision in chicken. Seminars in Cell and Developmental Biology, 2020, 106, 106-115.	5.0	28
24	Primary Afferent Depolarization and Frequency Processing in Auditory Afferents. Journal of Neuroscience, 2010, 30, 14862-14869.	3.6	27
25	Openspritzer: an open hardware pressure ejection system for reliably delivering picolitre volumes. Scientific Reports, 2017, 7, 2188.	3.3	27
26	Ancestral circuits for vertebrate color vision emerge at the first retinal synapse. Science Advances, 2021, 7, eabj6815.	10.3	26
27	Studying a Light Sensor with Light: Multiphoton Imaging in theÂRetina. Neuromethods, 2019, , 225-250.	0.3	25
28	GABAA Receptors Containing the α2 Subunit Are Critical for Direction-Selective Inhibition in the Retina. PLoS ONE, 2012, 7, e35109.	2.5	22
29	Neurite-specific Ca2+ dynamics underlying sound processing in an auditory interneurone. Developmental Neurobiology, 2007, 67, 68-80.	3.0	21
30	Local Signals in Mouse Horizontal Cell Dendrites. Current Biology, 2017, 27, 3603-3615.e5.	3.9	20
31	Circuit mechanisms for colour vision in zebrafish. Current Biology, 2021, 31, R807-R820.	3.9	20
32	Spherical arena reveals optokinetic response tuning to stimulus location, size, and frequency across entire visual field of larval zebrafish. ELife, 2021, 10, .	6.0	17
33	Front leg movements and tibial motoneurons underlying auditory steering in the cricket (Gryllus) Tj ETQq1 1 0.7	784314 rg 1.7	BT <u> Q</u> verlock
34	Colourfulness as a possible measure of object proximity in the larval zebrafish brain. Current Biology, 2021, 31, R235-R236.	3.9	15
35	African neuroscience on the global stage: Nigeria as a model. European Journal of Neuroscience, 2019, 49, 1544-1551.	2.6	14
36	Two decades of neuroscience publication trends in Africa. Nature Communications, 2021, 12, 3429.	12.8	14

#	Article	IF	CITATIONS
37	Species-specific motion detectors. Nature, 2016, 535, 45-46.	27.8	13
38	A low-cost hyperspectral scanner for natural imaging and the study of animal colour vision above and under water. Scientific Reports, 2019, 9, 10799.	3.3	13
39	Neurite-specific Ca2+ dynamics underlying sound processing in an auditory interneurone. Journal of Neurobiology, 2007, 67, 68-80.	3.6	13
40	Vertebrate vision: Lessons from non-model species. Seminars in Cell and Developmental Biology, 2020, 106, 1-4.	5.0	12
41	LED Zappelin': An open source LED controller for arbitrary spectrum visual stimulation and optogenetics during 2-photon imaging. HardwareX, 2020, 8, e00127.	2.2	11
42	Distinct synaptic transfer functions in same-type photoreceptors. ELife, 2021, 10, .	6.0	10
43	Dynamics of free intracellular Ca ²⁺ during synaptic and spike activity of cricket tibial motoneurons. European Journal of Neuroscience, 2009, 29, 1357-1368.	2.6	9
44	lmaging Ca ²⁺ Dynamics in Cone Photoreceptor Axon Terminals of the Mouse Retina. Journal of Visualized Experiments, 2015, , e52588.	0.3	9
45	Early Vision: Where (Some of) the Magic Happens. Current Biology, 2013, 23, R1096-R1098.	3.9	8
46	TReND in Africa: Toward a Truly Global (Neuro)science Community. Neuron, 2020, 107, 412-416.	8.1	8
47	Visual Neuroscience: A Retinal Ganglion Cell to Report Image Focus?. Current Biology, 2017, 27, R139-R141.	3.9	7
48	Spectral inference reveals principal cone-integration rules of the zebrafish inner retina. Current Biology, 2021, 31, 5214-5226.e4.	3.9	6
49	Spikeling: A low-cost hardware implementation of a spiking neuron for neuroscience teaching and outreach. PLoS Biology, 2018, 16, e2006760.	5.6	4
50	Motion Vision: A New Mechanism in the Mammalian Retina. Current Biology, 2019, 29, R933-R935.	3.9	4
51	What the Zebrafish's Eye Tells the Zebrafish's Brain: Retinal Ganglion Cells for Prey Capture and Colour Vision. SSRN Electronic Journal, 0, , .	0.4	4
52	Non-telecentric two-photon microscopy for 3D random access mesoscale imaging. Nature Communications, 2022, 13, 544.	12.8	4
53	Is our retina really upside down?. Current Biology, 2022, 32, R300-R303.	3.9	4
54	Retinal Physiology: Non-Bipolar-Cell Excitatory Drive in the Inner Retina. Current Biology, 2016, 26, R706-R708.	3.9	2

#	Article	IF	CITATIONS
55	Zebrafish Differentially Process Colour Across Visual Space to Match Natural Scenes. SSRN Electronic Journal, 0, , .	0.4	2
56	Motorische Kontrolle der akustischen Orientierung von Grillen. E-Neuroforum, 2008, 14, 267-273.	0.1	0
57	Neurowissenschaften in Afrika – Kooperationen und Perspektiven. E-Neuroforum, 2013, 19, 73-74.	0.1	0