Guoming Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8525665/publications.pdf

Version: 2024-02-01

		126907	1	161849
100	3,406	33		54
papers	citations	h-index		g-index
			_	
100	100	100		3474
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Tailoring Crystallization: Towards Highâ€Performance Poly(lactic acid). Advanced Materials, 2014, 26, 6905-6911.	21.0	207
2	Facile fabrication of fast recyclable and multiple selfâ€healing epoxy materials through dielsâ€alder adduct crossâ€linker. Journal of Polymer Science Part A, 2015, 53, 2094-2103.	2.3	138
3	Chasing the "Killer―Phonon Mode for the Rational Design of Lowâ€Disorder, Highâ€Mobility Molecular Semiconductors. Advanced Materials, 2019, 31, e1902407.	21.0	126
4	How Composition Determines the Properties of Isodimorphic Poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Crystalline Random Copolymers. Macromolecules, 2015, 48, 43-57.	627 Td (s 4.8	succinate- <i>105</i>
5	Effective activation of halloysite nanotubes by piranha solution for amine modification via silane coupling chemistry. RSC Advances, 2015, 5, 52916-52925.	3.6	102
6	Structure variation of tensile-deformed amorphous poly(I-lactic acid): Effects of deformation rate and strain. Polymer, 2011, 52, 4141-4149.	3.8	87
7	Enhancement of Mechanical and Selfâ∈Healing Performance in Multiwall Carbon Nanotube/Rubber Composites via Diels–Alder Bonding. Macromolecular Materials and Engineering, 2016, 301, 535-541.	3.6	85
8	Reversible Lamellar Thickening Induced by Crystal Transition in Poly(butylene succinate). Macromolecules, 2012, 45, 5487-5493.	4.8	83
9	Triple-shape memory epoxy based on Diels–Alder adduct molecular switch. Polymer, 2016, 84, 1-9.	3.8	83
10	Crystallization Features of Normal Alkanes in Confined Geometry. Accounts of Chemical Research, 2014, 47, 192-201.	15.6	80
11	Correlation between stress relaxation dynamics and thermochemistry for covalent adaptive networks polymers. Materials Chemistry Frontiers, 2017, 1, 111-118.	5.9	77
12	Crystallization Behaviors of <i>n</i> -Octadecane in Confined Space: Crossover of Rotator Phase from Transient to Metastable Induced by Surface Freezing. Journal of Physical Chemistry B, 2008, 112, 13310-13315.	2.6	75
13	Temperature dependence of crystalline transition of highly-oriented poly(l-lactide)/poly(d-lactide) blend: In-situ synchrotron X-ray scattering study. Polymer, 2013, 54, 964-971.	3.8	75
14	Large-area crack-free single-crystal photonic crystals via combined effects of polymerization-assisted assembly and flexible substrate. NPG Asia Materials, 2012, 4, e21-e21.	7.9	74
15	Low-molecular weight aliphatic amides as nucleating agents for poly (L-lactic acid): Conformation variation induced crystallization enhancement. Polymer, 2012, 53, 2306-2314.	3.8	72
16	Unexpected Synthesis of Segmented Poly(hydroxyureaâ€"urethane)s from Dicyclic Carbonates and Diamines by Organocatalysis. Macromolecules, 2018, 51, 5556-5566.	4.8	69
17	Deformation-mediated superstructures and cavitation of poly (l-lactide): In-situ small-angle X-ray scattering study. Polymer, 2012, 53, 648-656.	3.8	68
18	Effect of mesophase separation and crystallization on the elastomeric behavior of olefin multi-block copolymers. Polymer, 2011, 52, 5221-5230.	3.8	62

#	Article	IF	CITATIONS
19	Manipulating Crystal Orientation of Poly(ethylene oxide) by Nanopores. ACS Macro Letters, 2013, 2, 181-184.	4.8	62
20	Enhancement of stereocomplex formation in poly(l-lactide)/poly(d-lactide) mixture by shear. Polymer, 2015, 72, 185-192.	3.8	57
21	Two-way shape memory property and its structural origin of cross-linked poly(Îμ-caprolactone). RSC Advances, 2014, 4, 55483-55494.	3.6	56
22	Enhanced Crystallization from the Glassy State of Poly(<scp>l</scp> -lactic acid) Confined in Anodic Alumina Oxide Nanopores. Macromolecules, 2015, 48, 2526-2533.	4.8	54
23	Fractionated crystallization in semicrystalline polymers. Progress in Polymer Science, 2021, 115, 101376.	24.7	48
24	Critical Stress for Crystal Transition in Poly(butylene succinate)-Based Crystalline–Amorphous Multiblock Copolymers. Macromolecules, 2014, 47, 7533-7539.	4.8	44
25	Interfacial nucleation in iPP/PB-1 blends promotes the formation of polybutene-1 trigonal crystals. Polymer, 2018, 138, 396-406.	3.8	43
26	Epitaxy-Induced Crystallization of Olefin Block Copolymers. Macromolecules, 2012, 45, 5979-5985.	4.8	42
27	Preparation of Surface Porous Microcapsules Templated by Self-assembly of Nonionic Surfactant Micelles. Chemistry of Materials, 2008, 20, 3099-3104.	6.7	40
28	Reexamining the Crystallization of Poly($\hat{l}\mu$ -caprolactone) and Isotactic Polypropylene under Hard Confinement: Nucleation and Orientation. Macromolecules, 2017, 50, 9015-9023.	4.8	40
29	Correlation of miscibility and mechanical properties of polypropylene/olefin block copolymers: Effect of chain composition. Journal of Applied Polymer Science, 2012, 125, 666-675.	2.6	39
30	Confined Crystallization of Polymers within Nanopores. Accounts of Chemical Research, 2021, 54, 3028-3038.	15.6	38
31	Structural evolution of β – iPP during uniaxial stretching studied by in–situ WAXS and SAXS. Polymer, 2014, 55, 6915-6923.	3.8	37
32	Confined crystallization of binary n-alkane mixtures: stabilization of a new rotator phase by enhanced surface freezing and weakened intermolecular interactions. Physical Chemistry Chemical Physics, 2011, 13, 15031.	2.8	35
33	Phase change materials of n-alkane-containing microcapsules: observation of coexistence of ordered and rotator phases. Physical Chemistry Chemical Physics, 2011, 13, 2021.	2.8	35
34	Morphology and mechanical properties of binary blends of polypropylene with statistical and block ethyleneâ€octene copolymers. Journal of Applied Polymer Science, 2011, 119, 3591-3597.	2.6	34
35	Supernucleation and Orientation of Poly(butylene terephthalate) Crystals in Nanocomposites Containing Highly Reduced Graphene Oxide. Macromolecules, 2017, 50, 9380-9393.	4.8	34
36	The inexistence of epitaxial relationship between stereocomplex and \hat{l}_{\pm} crystal of poly(lactic acid): Direct experimental evidence. Polymer, 2013, 54, 1923-1929.	3.8	33

#	Article	IF	Citations
37	Effect of nucleating agents on the strain-induced crystallization of poly(l-lactide). Polymer, 2015, 65, 223-232.	3.8	33
38	Trilayered Morphology of an ABC Triple Crystalline Triblock Terpolymer. Macromolecules, 2017, 50, 7268-7281.	4.8	32
39	Solidâ^'Solid Phase Transition of <i>n</i> -Alkanes in Multiple Nanoscale Confinement. Journal of Physical Chemistry B, 2010, 114, 1388-1392.	2.6	31
40	A comparison of non-isocyanate and HDI-based poly(ether urethane): Structure and properties. Polymer, 2019, 175, 186-194.	3.8	31
41	Segmental Dynamics Govern the Cold Crystallization of Poly(lactic acid) in Nanoporous Alumina. Macromolecules, 2019, 52, 6904-6912.	4.8	30
42	Crystallization Behavior of Binary Evenâ'Even <i>n</i> -Alkane Mixtures in Microcapsules: Effect of Composition and Confined Geometry on Solidâ'Solid phase Separation. Journal of Physical Chemistry B, 2011, 115, 4632-4638.	2.6	29
43	Chain Conformation and Aggregation Structure Formation of a High Charge Mobility DPP-Based Donor–Acceptor Conjugated Polymer. Macromolecules, 2020, 53, 8255-8266.	4.8	29
44	Charge transport physics of a unique class of rigid-rod conjugated polymers with fused-ring conjugated units linked by double carbon-carbon bonds. Science Advances, 2021, 7, .	10.3	28
45	Stretching induced phase separation in poly(vinylidene fluoride)/poly(butylene succinate) blends studied by in-situ X-ray scattering. Polymer, 2014, 55, 2588-2596.	3.8	27
46	Reversible Lamellar Periodic Structures Induced by Sequential Crystallization/Melting in PBS- <i>co</i> -PCL Multiblock Copolymer. Macromolecules, 2018, 51, 1100-1109.	4.8	27
47	Even–Odd Effect in Aliphatic Polycarbonates with Different Chain Lengths: from Poly (Hexamethylene) Tj ETQq1	1.0.7843	14 rgBT /O
48	Application of SSA thermal fractionation and X-ray diffraction to elucidate comonomer inclusion or exclusion from the crystalline phases in poly(butylene succinate-ran-butylene azelate) random copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2346-2358.	2.1	25
49	Epitaxial crystallization of olefin block copolymers (OBCs) on uniaxially oriented isotactic polypropylene and high-density polyethylene films. Polymer, 2012, 53, 529-535.	3.8	24
50	Crystallization, Orientation, and Solid–Solid Crystal Transition of Polybutene-1 Confined within Nanoporous Alumina. Macromolecules, 2020, 53, 6510-6518.	4.8	24
51	Simultaneous improvement in strength, toughness, and thermal stability of epoxy/halloysite nanotubes composites by interfacial modification. Journal of Applied Polymer Science, 2016, 133, .	2.6	23
52	Binary <i>n</i> -Alkane Mixtures from Total Miscibility to Phase Separation in Microcapsules: Enrichment of Shorter Component in Surface Freezing and Enhanced Stability of Rotator Phases. Journal of Physical Chemistry B, 2012, 116, 3099-3105.	2.6	22
53	Functional polyester with widely tunable mechanical properties: The role of reversible cross-linking and crystallization. Polymer, 2015, 65, 202-209.	3.8	21
54	Flow-induced crystallization of long chain aliphatic polyamides under a complex flow field: Inverted anisotropic structure and formation mechanism. Polymer, 2015, 73, 91-101.	3.8	20

#	Article	IF	Citations
55	Effect of the Crystallization Conditions on the Exclusion/Inclusion Balance in Biodegradable Poly(butylene succinate-ran-butylene adipate) Copolymers. Biomacromolecules, 2020, 21, 3420-3435.	5.4	20
56	Effect of elastomer on crystalline transition and deformation behavior of isotactic polypropylene. Polymer, 2013, 54, 1440-1447.	3.8	19
57	Sequential crystallization and morphology of triple crystalline biodegradable PEO-b-PCL-b-PLLA triblock terpolymers. RSC Advances, 2016, 6, 4739-4750.	3.6	19
58	A WAXS/SAXS study on the deformation behavior of β-nucleated propylene–ethylene random copolymer subjected to uniaxial stretching. RSC Advances, 2015, 5, 44610-44617.	3.6	18
59	Tensile modulus enhancement and mechanism of polyimide fibers by post-thermal treatment induced microvoid evolution. European Polymer Journal, 2017, 91, 232-241.	5 . 4	18
60	Uniaxial and Mixed Orientations of Poly(ethylene oxide) in Nanoporous Alumina Studied by X-ray Pole Figure Analysis. Macromolecules, 2018, 51, 9484-9493.	4.8	18
61	Effect of Nanoconfinement on the Isodimorphic Crystallization of Poly(butylene) Tj ETQq1 1 0.784314 rgBT /Ove	rlock 10 T 4.8	f 50 502 Td
62	Preparation of nearly monodisperse microcapsules with controlled morphology by in situ polymerization of a shell layer. Journal of Materials Chemistry, 2009, 19, 6605.	6.7	16
63	Crystallization of equimolar poly(l-lactide)/poly(d-lactide) blend below the melting point of α crystals under shear. European Polymer Journal, 2016, 75, 93-103.	5 . 4	16
64	Probing into the epitaxial crystallization of \hat{l}^2 form isotactic polypropylene: From experimental observations to molecular mechanics computation. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 418-424.	2.1	16
65	Direct Relationship between Dispersion and Crystallization Behavior in Poly(ethylene) Tj ETQq1 1 0.784314 rgBT	/Overlock	10Tf 50 34
66	Chain packing and phase transition of N-hexacosylated polyethyleneimine comb-like polymer: A combined investigation by synchrotron X-ray scattering and FTIR spectroscopy. Polymer, 2013, 54, 6261-6266.	3.8	15
67	How Confinement Affects the Nucleation, Crystallization, and Dielectric Relaxation of Poly(butylene) Tj ETQq1 1 (2019, 35, 15168-15179.	0.784314 3 . 5	rgBT /Over
68	Formation of stereocomplex in enantiomeric poly(lactide)s via recrystallization of homocrystals: An in-situ X-ray scattering study. European Polymer Journal, 2016, 82, 46-56.	5 . 4	14
69	Stress induced lamellar thickening in poly(ethylene succinate). Polymer, 2013, 54, 6860-6866.	3.8	13
70	Crystallization Kinetics of Poly(ethylene oxide) under Confinement in Nanoporous Alumina Studied by in Situ X-ray Scattering and Simulation. Langmuir, 2019, 35, 11799-11808.	3.5	12
71	Generating Triple Crystalline Superstructures in Melt Miscible PEOâ€∢i>b⟨ i>â€PCLâ€∢i>b⟨ i>â€PLLA Triblock Terpolymers by Controlling Thermal History and Sequential Crystallization. Macromolecular Chemistry and Physics, 2019, 220, 1900292.	2.2	12
72	Composition dependent miscibility in the crystalline state of polyamide 6 /polyamide 4,10 blends: From single to double crystalline blends. Polymer, 2021, 219, 123570.	3.8	12

#	Article	IF	CITATIONS
73	Suppression of the Self-Nucleation Effect of Semicrystalline Polymers by Confinement. Macromolecules, 2021, 54, 3810-3821.	4.8	12
74	Pore decoration on microcapsule surface using nonionic surfactant micelles as template: Temperature effect and encapsulation mechanism investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 219-227.	4.7	11
75	The influence of short-chain branching on the morphology and structure of polyethylene single crystals. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1751-1762.	2.1	11
76	New insights into the beta-form crystal toughening mechanism in pre-oriented PHBV films. European Polymer Journal, 2017, 91, 81-91.	5.4	11
77	Deformation Mechanism of Poly(3-alkylthiophene) Studied by <i>in Situ</i> X-ray Scattering and Texture Analysis. Macromolecules, 2018, 51, 8306-8315.	4.8	11
78	Effect of stereocomplex crystal and flexible segments on the crystallization and tensile behavior of poly(<scp>I</scp> -lactide). RSC Advances, 2018, 8, 28453-28460.	3.6	10
79	Crystallization of poly(hexamethylene carbonate)-co-poly(hexamethylene urethane) segmental block copolymers: From single to double crystalline phases. Polymer, 2021, 222, 123675.	3.8	10
80	Verification of thermodynamic theories of strain-induced polymer crystallization. Chemical Communications, 2021, 58, 286-289.	4.1	10
81	How cyclic chain topology can reduce the crystallization rate of poly(3-hexylthiophene) and promote the formation of liquid crystalline phases in comparison with linear analogue chains. Journal of Materials Chemistry C, 2019, 7, 6548-6558.	5.5	9
82	Epitaxy in Polybutene-1 Form II-on-Form I Cross-Nucleation Revealed by Nanofocused X-ray Diffraction on Ad Hoc Morphology. Macromolecules, 2021, 54, 9663-9669.	4.8	9
83	Stress-induced Solid-Solid Crystal Transition in Trans-1,4-polyisoprene. Chinese Journal of Polymer Science (English Edition), 2022, 40, 256-265.	3.8	9
84	Effect of the melting temperature on the crystallization behavior of a poly(<scp>l</scp> â€lactide)/poly(<scp>d</scp> â€lactide) equimolar mixture. Journal of Applied Polymer Science, 2016, 133, .	2.6	8
85	Nature of the double melting peaks of regioregular poly(3-dodecylthiophene). European Polymer Journal, 2018, 99, 284-288.	5.4	8
86	Solid–Solid Crystal Transitions (δto α) in Poly(hexamethylene carbonate) and Poly(octamethylene) Tj ETQq0	0 O ₄ .gBT /0	Overlock 10 T
87	Effect of nanoparticle and glass fiber on the hydrothermal aging of polyamide 6. Journal of Applied Polymer Science, 2020, 137, 49585.	2.6	7
88	Unexpected Structural Properties in the Saturation Region of the Odd–Even Effects in Aliphatic Polyethers: Influence of Crystallization Conditions. Macromolecules, 2022, 55, 584-594.	4.8	7
89	Chain Conformation and Liquid-Crystalline Structures of a Poly(thieno)thiophene. Macromolecules, 2022, 55, 2892-2903.	4.8	7
90	Stress induced reversible crystal transition in polymers. Polymer International, 2015, 64, 951-956.	3.1	6

#	Article	IF	CITATIONS
91	Using Successive Self-Nucleation and Annealing to Detect the Solid–Solid Transitions in Poly(hexamethylene carbonate) and Poly(octamethylene carbonate). Macromolecules, 2021, 54, 9670-9680.	4.8	6
92	Mastering Superior Performance Origins of Ionic Polyurethane/Silica Hybrids. ACS Applied Polymer Materials, 2021, 3, 6684-6693.	4.4	6
93	Crosslinking of Trans-1,4-polyisoprene by \hat{l}^3 -ray radiation. Polymer Degradation and Stability, 2022, 197, 109869.	5.8	6
94	Structural Transitions in Solution-Cast Films of a New AABB Type Thiophene Copolymer. Macromolecules, 2016, 49, 8653-8660.	4.8	5
95	Polycaprolactone Adsorption and Nucleation onto Graphite Nanoplates for Highly Flexible, Thermally Conductive, and Thermomechanically Stiff Nanopapers. ACS Applied Materials & Samp; Interfaces, 2021, , .	8.0	5
96	Study on the microstructure evolution of TiO ₂ â€reinforced HDPE nanocomposites by synchrotron small angle Xâ€ray scattering. Polymer Composites, 2018, 39, 580-587.	4.6	3
97	Influence of photooxidation on ionic reversible interactions of ionic poly(ether urethane)/silica hybrids. Polymer Degradation and Stability, 2022, 197, 109872.	5.8	2
98	Correlation between the fracture toughness and βâ€crystal fraction in a βâ€nucleated propyleneâ€based propylene–ethylene random copolymer. Journal of Applied Polymer Science, 2016, 133, .	2.6	1
99	有机é«~å^†å结晶的è;¨ç•Œé¢æ•^应ï⅓s从æ£çf·çffå^°é«~å^†å• Scientia Sinica Chimica, 2022, , .	0.4	1
100	Exploring the polymorphic behavior of a βâ€nucleated propyleneâ€ethylene random copolymer under shear flow. Polymer Crystallization, 2020, 3, e10105.	0.8	0