Gaoquan Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/852512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-Assembled Graphene Hydrogel <i>via</i> a One-Step Hydrothermal Process. ACS Nano, 2010, 4, 4324-4330.	14.6	2,999
2	Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films. ACS Nano, 2010, 4, 1963-1970.	14.6	2,100
3	Graphene based new energy materials. Energy and Environmental Science, 2011, 4, 1113.	30.8	1,789
4	An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 2013, 64, 225-229.	10.3	1,785
5	Allâ€Graphene Coreâ€Sheath Microfibers for Allâ€Solidâ€State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles. Advanced Materials, 2013, 25, 2326-2331.	21.0	1,007
6	Functional Composite Materials Based on Chemically Converted Graphene. Advanced Materials, 2011, 23, 1089-1115.	21.0	973
7	Graphene-based gas sensors. Journal of Materials Chemistry A, 2013, 1, 10078.	10.3	938
8	Three-Dimensional Self-Assembly of Graphene Oxide and DNA into Multifunctional Hydrogels. ACS Nano, 2010, 4, 7358-7362.	14.6	788
9	N,Pâ€Codoped Carbon Networks as Efficient Metalâ€free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Angewandte Chemie - International Edition, 2016, 55, 2230-2234.	13.8	748
10	A Versatile, Ultralight, Nitrogenâ€Doped Graphene Framework. Angewandte Chemie - International Edition, 2012, 51, 11371-11375.	13.8	731
11	Graphene based catalysts. Energy and Environmental Science, 2012, 5, 8848.	30.8	726
12	Preparation of Highly Conductive Graphene Hydrogels for Fabricating Supercapacitors with High Rate Capability. Journal of Physical Chemistry C, 2011, 115, 17206-17212.	3.1	683
13	On the Gelation of Graphene Oxide. Journal of Physical Chemistry C, 2011, 115, 5545-5551.	3.1	603
14	Graphene-based smart materials. Nature Reviews Materials, 2017, 2, .	48.7	569
15	Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Scientific Reports, 2012, 2, 247.	3.3	559
16	Graphene-Based Standalone Solar Energy Converter for Water Desalination and Purification. ACS Nano, 2018, 12, 829-835.	14.6	519
17	High-Performance Strain Sensors with Fish-Scale-Like Graphene-Sensing Layers for Full-Range Detection of Human Motions. ACS Nano, 2016, 10, 7901-7906.	14.6	500
18	Chemically Converted Graphene Induced Molecular Flattening of 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin and Its Application for Optical Detection of Cadmium(II) Ions. Journal of the American Chemical Society, 2009, 131, 13490-13497.	13.7	497

#	Article	IF	CITATIONS
19	Graphitic Carbon Nitride Nanoribbons: Grapheneâ€Assisted Formation and Synergic Function for Highly Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2014, 53, 13934-13939.	13.8	470
20	High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon, 2015, 81, 826-834.	10.3	443
21	Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors. Accounts of Chemical Research, 2015, 48, 1666-1675.	15.6	441
22	Graphene Hydrogels Deposited in Nickel Foams for Highâ€Rate Electrochemical Capacitors. Advanced Materials, 2012, 24, 4569-4573.	21.0	409
23	Highâ€Performance NO ₂ Sensors Based on Chemically Modified Graphene. Advanced Materials, 2013, 25, 766-771.	21.0	404
24	Preparation of Gold Nanoparticle/Graphene Composites with Controlled Weight Contents and Their Application in Biosensors. Journal of Physical Chemistry C, 2010, 114, 1822-1826.	3.1	389
25	Reduced Graphene Oxide Membranes for Ultrafast Organic Solvent Nanofiltration. Advanced Materials, 2016, 28, 8669-8674.	21.0	349
26	A Flexible UV–Vis–NIR Photodetector based on a Perovskite/Conjugatedâ€Polymer Composite. Advanced Materials, 2016, 28, 5969-5974.	21.0	329
27	Flexible graphene devices related to energy conversion and storage. Energy and Environmental Science, 2015, 8, 790-823.	30.8	328
28	Graphene-Based Membranes for Molecular Separation. Journal of Physical Chemistry Letters, 2015, 6, 2806-2815.	4.6	316
29	Size Fractionation of Graphene Oxide Sheets by pH-Assisted Selective Sedimentation. Journal of the American Chemical Society, 2011, 133, 6338-6342.	13.7	293
30	A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation. Journal of Materials Chemistry A, 2015, 3, 6921-6928.	10.3	291
31	Ultrahigh onductivity Polymer Hydrogels with Arbitrary Structures. Advanced Materials, 2017, 29, 1700974.	21.0	290
32	Graphene Materials for Electrochemical Capacitors. Journal of Physical Chemistry Letters, 2013, 4, 1244-1253.	4.6	288
33	Twoâ€Đimensional Materials for Halide Perovskiteâ€Based Optoelectronic Devices. Advanced Materials, 2017, 29, 1605448.	21.0	284
34	Graphene oxide/conducting polymer composite hydrogels. Journal of Materials Chemistry, 2011, 21, 18653.	6.7	283
35	Functional Gels Based on Chemically Modified Graphenes. Advanced Materials, 2014, 26, 3992-4012.	21.0	276
36	A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide. Chemical Communications, 2013, 49, 291-293.	4.1	272

#	Article	IF	CITATIONS
37	Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups. Chemical Science, 2016, 7, 1874-1881.	7.4	251
38	Assembly of chemically modified graphene: methods and applications. Journal of Materials Chemistry, 2011, 21, 3311-3323.	6.7	250
39	Electrochemical Growth of Polypyrrole Microcontainers. Macromolecules, 2003, 36, 1063-1067.	4.8	234
40	Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. Journal of Materials Chemistry, 2010, 20, 9032.	6.7	231
41	Hydrogen Evolution Reaction in Alkaline Media: Alpha- or Beta-Nickel Hydroxide on the Surface of Platinum?. ACS Energy Letters, 2018, 3, 237-244.	17.4	230
42	N,Pâ€Codoped Carbon Networks as Efficient Metalâ€free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Angewandte Chemie, 2016, 128, 2270-2274.	2.0	224
43	Graphene/polymer composites for energy applications. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 231-253.	2.1	222
44	Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nature Communications, 2018, 9, 4166.	12.8	208
45	Functional graphene nanomesh foam. Energy and Environmental Science, 2014, 7, 1913.	30.8	206
46	Baseâ€Induced Liquid Crystals of Graphene Oxide for Preparing Elastic Graphene Foams with Longâ€Range Ordered Microstructures. Advanced Materials, 2016, 28, 1623-1629.	21.0	193
47	Graphene Oxide Membranes with Tunable Semipermeability in Organic Solvents. Advanced Materials, 2015, 27, 3797-3802.	21.0	192
48	Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. Journal of Materials Chemistry, 2011, 21, 7376.	6.7	187
49	Ultratough, Ultrastrong, and Highly Conductive Graphene Films with Arbitrary Sizes. Advanced Materials, 2014, 26, 7588-7592.	21.0	182
50	Conducting Polymer-Based Catalysts. Journal of the American Chemical Society, 2016, 138, 2868-2876.	13.7	165
51	Multifunctional Pristine Chemically Modified Graphene Films as Strong as Stainless Steel. Advanced Materials, 2015, 27, 6708-6713.	21.0	157
52	Ultrasensitive and Selective Nitrogen Dioxide Sensor Based on Self-Assembled Graphene/Polymer Composite Nanofibers. ACS Applied Materials & Interfaces, 2014, 6, 17003-17008.	8.0	153
53	Nitrogen and Sulfur Codoped Graphite Foam as a Selfâ€Supported Metalâ€Free Electrocatalytic Electrode for Water Oxidation. Advanced Energy Materials, 2016, 6, 1501492	19.5	153
54	One Single Graphene Oxide Film for Responsive Actuation. ACS Nano, 2016, 10, 9529-9535.	14.6	151

#	Article	IF	CITATIONS
55	Size Fractionation of Graphene Oxide Sheets via Filtration through Trackâ€Etched Membranes. Advanced Materials, 2015, 27, 3654-3660.	21.0	149
56	High-Quality Graphene Ribbons Prepared from Graphene Oxide Hydrogels and Their Application for Strain Sensors. ACS Nano, 2015, 9, 12320-12326.	14.6	148
57	A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale, 2018, 10, 6837-6843.	5.6	146
58	Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy and Environmental Science, 2018, 11, 2839-2845.	30.8	144
59	An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for AC line-filtering. Energy and Environmental Science, 2016, 9, 2005-2010.	30.8	142
60	Nanoporous nitrogen doped carbon modified graphene as electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry, 2012, 22, 12810.	6.7	138
61	Three-dimensional porous graphene/polyaniline composites for high-rate electrochemical capacitors. Journal of Materials Chemistry A, 2014, 2, 17489-17494.	10.3	138
62	Performance enhancement of a graphene–sulfur composite as a lithium–sulfur battery electrode by coating with an ultrathin Al2O3 film via atomic layer deposition. Journal of Materials Chemistry A, 2014, 2, 7360.	10.3	135
63	Shape-Tailorable Graphene-Based Ultra-High-Rate Supercapacitor for Wearable Electronics. ACS Nano, 2015, 9, 5636-5645.	14.6	127
64	An introduction to the chemistry of graphene. Physical Chemistry Chemical Physics, 2015, 17, 28484-28504.	2.8	127
65	Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance. Energy and Environmental Science, 2018, 11, 559-565.	30.8	119
66	Raman Spectroscopic and Electrochemical Studies on the Doping Level Changes of Polythiophene Films during Their Electrochemical Growth Processes. Journal of Physical Chemistry B, 2002, 106, 288-292.	2.6	111
67	A graphene wrapped hair-derived carbon/sulfur composite for lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 9609-9615.	10.3	109
68	NiFe Alloy Protected Silicon Photoanode for Efficient Water Splitting. Advanced Energy Materials, 2017, 7, 1601805.	19.5	109
69	Topological Design of Ultrastrong and Highly Conductive Graphene Films. Advanced Materials, 2017, 29, 1702831.	21.0	108
70	Highly Efficient Moisture-Triggered Nanogenerator Based on Graphene Quantum Dots. ACS Applied Materials & Interfaces, 2017, 9, 38170-38175.	8.0	96
71	Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. Nano Energy, 2018, 45, 37-43.	16.0	96
72	Selfâ€Healing Graphene Oxide Based Functional Architectures Triggered by Moisture. Advanced Functional Materials, 2017, 27, 1703096.	14.9	94

#	Article	IF	CITATIONS
73	Graphene-Based Functional Architectures: Sheets Regulation and Macrostructure Construction toward Actuators and Power Generators. Accounts of Chemical Research, 2017, 50, 1663-1671.	15.6	92
74	Hollow microstructures of polypyrrole doped by poly(styrene sulfonic acid). Journal of Polymer Science Part A, 2004, 42, 3170-3177.	2.3	90
75	A high-performance current collector-free flexible in-plane micro-supercapacitor based on a highly conductive reduced graphene oxide film. Journal of Materials Chemistry A, 2016, 4, 16213-16218.	10.3	86
76	Highly conductive and flexible mesoporous graphitic films prepared by graphitizing the composites of graphene oxide and nanodiamond. Journal of Materials Chemistry, 2011, 21, 7154.	6.7	85
77	Transparent Polymeric Strain Sensors for Monitoring Vital Signs and Beyond. ACS Applied Materials & Interfaces, 2018, 10, 3895-3901.	8.0	85
78	Solution-Processed Ultraelastic and Strong Air-Bubbled Graphene Foams. Small, 2016, 12, 3229-3234.	10.0	83
79	A Solutionâ€Processed Highâ€Performance Phototransistor based on a Perovskite Composite with Chemically Modified Graphenes. Advanced Materials, 2017, 29, 1606175.	21.0	80
80	High-performance and flexible electrochemical capacitors based on graphene/polymer composite films. Journal of Materials Chemistry A, 2014, 2, 968-974.	10.3	79
81	Nitrogen-Doped Holey Graphene Film-Based Ultrafast Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2016, 8, 20741-20747.	8.0	79
82	High-performance gas sensors based on a thiocyanate ion-doped organometal halide perovskite. Physical Chemistry Chemical Physics, 2017, 19, 12876-12881.	2.8	78
83	Raman spectroscopic study on the structural changes of polyaniline during heating and cooling processes. Journal of Applied Polymer Science, 2005, 96, 732-739.	2.6	75
84	Electrochemical fabrication of aligned microtubular heterojunctions of poly(p-phenylene) and polythiophene. Journal of Materials Chemistry, 2002, 12, 2331-2333.	6.7	74
85	Graphene oxide induced hydrothermal carbonization of egg proteins for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 17040-17047.	10.3	74
86	Versatile Graphene Oxide Putty‣ike Material. Advanced Materials, 2016, 28, 10287-10292.	21.0	68
87	Nitrogen-enriched polydopamine analogue-derived defect-rich porous carbon as a bifunctional metal-free electrocatalyst for highly efficient overall water splitting. Journal of Materials Chemistry A, 2017, 5, 17064-17072.	10.3	66
88	A small graphene oxide sheet/polyvinylidene fluoride bilayer actuator with large and rapid responses to multiple stimuli. Nanoscale, 2017, 9, 17465-17470.	5.6	65
89	Grapheneâ€Based Organic Electrochemical Capacitors for AC Line Filtering. Advanced Energy Materials, 2017, 7, 1700591	19.5	64
90	Composite organogels of graphene and activated carbon for electrochemical capacitors. Journal of Materials Chemistry A, 2013, 1, 9196.	10.3	60

#	Article	IF	CITATIONS
91	Electrosynthesis of graphene oxide/polypyrene composite films and their applications for sensing organic vapors. Journal of Materials Chemistry, 2012, 22, 8438.	6.7	59
92	Highly Exfoliated Reduced Graphite Oxide Powders as Efficient Lubricant Oil Additives. Advanced Materials Interfaces, 2016, 3, 1600700.	3.7	59
93	Load-tolerant, highly strain-responsive graphene sheets. Journal of Materials Chemistry, 2011, 21, 2057.	6.7	55
94	Tailoring the oxygenated groups of graphene hydrogels for high-performance supercapacitors with large areal mass loadings. Journal of Materials Chemistry A, 2018, 6, 6587-6594.	10.3	54
95	Trace Level Co–N Doped Graphite Foams as High-Performance Self-Standing Electrocatalytic Electrodes for Hydrogen and Oxygen Evolution. ACS Catalysis, 2018, 8, 4637-4644.	11.2	53
96	Size Fractionation of Graphene Oxide Nanosheets via Controlled Directional Freezing. Journal of the American Chemical Society, 2017, 139, 12517-12523.	13.7	52
97	Electrochemical deposition of polyaniline nanosheets mediated by sulfonated polyaniline functionalized graphenes. Journal of Materials Chemistry, 2011, 21, 13978.	6.7	51
98	A General Route to Robust Nacre-Like Graphene Oxide Films. ACS Applied Materials & Interfaces, 2015, 7, 15010-15016.	8.0	48
99	Fibrous strain sensor with ultra-sensitivity, wide sensing range, and large linearity for full-range detection of human motion. Nanoscale, 2018, 10, 17512-17519.	5.6	46
100	Cobalt disulfide/graphite foam composite films as self-standing electrocatalytic electrodes for overall water splitting. Physical Chemistry Chemical Physics, 2017, 19, 4821-4826.	2.8	42
101	Suppressing the Selfâ€Discharge of Supercapacitors by Modifying Separators with an Ionic Polyelectrolyte. Advanced Materials Interfaces, 2018, 5, 1701547.	3.7	42
102	Doping level change of polythiophene film during its electrochemical growth process. Physical Chemistry Chemical Physics, 2002, 4, 2685-2690.	2.8	40
103	Template-free electrosynthesis of aligned poly(p-phenylene) microtubules. Science Bulletin, 2003, 48, 434-436.	1.7	40
104	Synthesis of CaCO3/graphene composite crystals for ultra-strong structural materials. RSC Advances, 2012, 2, 2154.	3.6	40
105	Highly Conductive Stretchable Electrodes Prepared by In Situ Reduction of Wavy Graphene Oxide Films Coated on Elastic Tapes. Advanced Electronic Materials, 2016, 2, 1600022.	5.1	40
106	Graphene-based electrochemical capacitors with integrated high-performance. Materials Today Energy, 2017, 6, 181-188.	4.7	40
107	Doping level change of polyaniline film during its electrochemical growth process. Journal of Applied Polymer Science, 2004, 92, 171-177.	2.6	38
108	Fabrication of highly hydrophobic surfaces of conductive polythiophene. Journal of Materials Chemistry, 2003, 13, 2858.	6.7	37

#	Article	IF	CITATIONS
109	Polypyrrole actuators with inverse opal structures. Journal of Materials Chemistry, 2009, 19, 1653.	6.7	36
110	An ultrasensitive moisture driven actuator based on small flakes of graphene oxide. Sensors and Actuators B: Chemical, 2017, 242, 418-422.	7.8	36
111	Fabrication of gold nanocrystal-coated polypyrrole nanotubules. Journal of Materials Chemistry, 2005, 15, 859.	6.7	33
112	A high-performance platinum electrocatalyst loaded on a graphene hydrogel for high-rate methanol oxidation. Physical Chemistry Chemical Physics, 2014, 16, 10142.	2.8	32
113	Mildly reduced less defective graphene oxide/sulfur/carbon nanotube composite films for high-performance lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2016, 18, 11104-11110.	2.8	30
114	Glucose oxidase electrodes based on microstructured polypyrrole films. Journal of Applied Polymer Science, 2005, 98, 2550-2554.	2.6	29
115	A Large‣cale Graphene–Bimetal Film Electrode with an Ultrahigh Mass Catalytic Activity for Durable Water Splitting. Advanced Energy Materials, 2018, 8, 1800403.	19.5	29
116	Electrochemical Polymerization of Thianaphthene in Mixed Electrolytes of Boron Trifluoride Diethyl Etherate and Trifluoroacetic Acid. Macromolecular Chemistry and Physics, 2002, 203, 2385-2390.	2.2	28
117	Synthesis of a carboxyl-containing conducting oligomer and non-covalent sidewall functionalization of single-walled carbon nanotubes. Journal of Materials Chemistry, 2005, 15, 1833.	6.7	28
118	A graphene oxide/oxygen deficient molybdenum oxide nanosheet bilayer as a hole transport layer for efficient polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 18380-18383.	10.3	28
119	Electrochemical fabrication of polythiophene film coated metallic nanowire arrays. Journal of Materials Science, 2003, 38, 2423-2427.	3.7	27
120	Disassembly-driven colorimetric and fluorescent sensor for anionic surfactants in water based on a conjugated polyelectrolyte/dye complex. Soft Matter, 2011, 7, 6873.	2.7	25
121	Inhibiting the growth of lithium dendrites at high current densities with oriented graphene foam. Journal of Materials Chemistry A, 2018, 6, 15603-15609.	10.3	25
122	Raman spectroscopic studies on the structural changes of electrosynthesized polypyrrole films during heating and cooling processes. Journal of Applied Polymer Science, 2003, 89, 3390-3395.	2.6	24
123	Novel route to pure and composite fibers of polypyrrole. Journal of Applied Polymer Science, 2007, 103, 1490-1494.	2.6	24
124	Pyridinic nitrogen-rich carbon nanocapsules from a bioinspired polydopamine derivative for highly efficient electrocatalytic oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 519-523.	10.3	24
125	Electrosynthesis of free-standing poly(para-phenylene) films in mixed electrolytes of boron trifluoride diethyl etherate and trifluoroacetic acid on stainless steel electrode. Journal of Applied Polymer Science, 2002, 83, 2462-2466.	2.6	23
126	Electrosynthesis of oligo(methoxyl pyrene) for turn-on fluorescence detection of volatile aromatic compounds. Journal of Materials Chemistry, 2010, 20, 2993.	6.7	23

#	Article	IF	CITATIONS
127	Poly(3-chlorothiophene) films prepared by the direct electrochemical oxidation of 3-chlorothiophene in mixed electrolytes of boron trifluoride diethyl etherate and sulfuric acid. Journal of Applied Polymer Science, 2003, 87, 502-509.	2.6	21
128	High-quality poly[2-methoxy-5-(2?-ethylhexyloxy)-p-phenylenevinylene] synthesized by a solid-liquid two-phase reaction: Characterizations and electroluminescence properties. Journal of Polymer Science Part A, 2004, 42, 3049-3054.	2.3	21
129	Organic dispersions of graphene oxide with arbitrary concentrations and improved chemical stability. Chemical Communications, 2017, 53, 11005-11007.	4.1	20
130	Chemical Approach to Ultrastiff, Strong, and Environmentally Stable Graphene Films. ACS Applied Materials & Interfaces, 2018, 10, 5812-5818.	8.0	20
131	High-quality graphene films and nitrogen-doped organogels prepared from the organic dispersions of graphene oxide. Carbon, 2018, 129, 15-20.	10.3	18
132	Synthesis and physical properties of laterally fluorinated liquid crystals containing 1,3,2-dioxaborinane and cyclohexyl units. Liquid Crystals, 2004, 31, 1151-1158.	2.2	16
133	Electrochemical Fabrication of Superhydrophobic Surfaces on Metal and Semiconductor Substrates. Journal of Adhesion Science and Technology, 2008, 22, 1819-1839.	2.6	15
134	"Pottery―of Porous Graphene Materials. Advanced Electronic Materials, 2015, 1, 1500004.	5.1	15
135	Electrochemical polymerization of toluene in the mixed electrolytes of boron trifluoride diethyl etherate and trifluoroacetic acid. Journal of Applied Polymer Science, 2004, 93, 189-195.	2.6	13
136	Flexible Sandwich Photodetectors Based on Thick Polythiophene Films. Journal of Physical Chemistry C, 2009, 113, 7411-7415.	3.1	13
137	Functional Composite Materials Based on Chemically Converted Graphene (Adv. Mater. 9/2011). Advanced Materials, 2011, 23, 1088-1088.	21.0	13
138	A two-dimensional Raman spectroscopic study on the structural changes of a polythiophene film during the cooling process. Journal of Chemical Physics, 2003, 119, 11415-11419.	3.0	12
139	Theoretical and experimental studies on the Raman spectra of electrosynthesized polynaphthalene. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 241-251.	2.1	12
140	Facile fabrication of silver/polypyrrole composites by the modified silver mirror reaction. Journal of Materials Science, 2009, 44, 3002-3005.	3.7	11
141	Novel route to poly(p-phenylene vinylene) polymers. Journal of Polymer Science Part A, 2003, 41, 449-455.	2.3	9
142	Solutionâ€Processed Graphene Composite Films as Freestanding Platinumâ€Free Counter Electrodes for Bendable Dye Sensitized Solar Cells. Chinese Journal of Chemistry, 2016, 34, 59-66.	4.9	8
143	Oriented Graphene Foam with Tunable Wettability by Electrocapillary for Switchable and Ultraâ€Fast Imbibition. Advanced Materials Interfaces, 2016, 3, 1600774.	3.7	6
144	Memory devices based on organic electric bistable materials. Science Bulletin, 2007, 52, 2017-2023.	1.7	5

#	Article	IF	CITATIONS
145	Dry adhesion of polythiophene nanotube arrays with dragâ€induced direction dependence. Journal of Applied Polymer Science, 2012, 124, 4047-4053.	2.6	5
146	Proton-conducting gel polyelectrolytes based on Lewis acid. Journal of Applied Polymer Science, 2003, 90, 1267-1272.	2.6	4
147	Polymerization of chlorofluorocarbon-22 and acetonitrile. Journal of Applied Polymer Science, 2001, 81, 116-120.	2.6	3
148	Self-assembly of insulated molecular wires of a watersoluble cationic PPV and anionic dendrons. Science Bulletin, 2009, 54, 2451-2456.	1.7	3
149	Electrochemical polymerization of ?-naphthalene sulfonic acid. Journal of Applied Polymer Science, 2004, 92, 1939-1944.	2.6	2
150	Raman spectroscopic studies on the structural changes of poly(3-methylthiophene) during heating and cooling processes. Science Bulletin, 2002, 47, 1791-1793.	9.0	1
151	Carbonaceous materials prepared from carbon tetrachloride and dimethyl sulfoxide. Journal of Applied Polymer Science, 2002, 85, 785-791.	2.6	1
152	Polymer precursor to diamondlike carbon prepared by the polymerization of ?,?,?-trichlorotoluene and acetonitrile. Journal of Applied Polymer Science, 2003, 89, 16-23.	2.6	1
153	Special Issue of "Graphene". Chinese Journal of Chemistry, 2016, 34, 5-5.	4.9	0