Soichi Sano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8524414/publications.pdf Version: 2024-02-01

SOICHI SANO

#	Article	IF	CITATIONS
1	Murine models of clonal haematopoiesis to assess mechanisms of cardiovascular disease. Cardiovascular Research, 2022, 118, 1413-1432.	3.8	12
2	Somatic Mosaicism in Biology and Disease. Annual Review of Physiology, 2022, 84, 113-133.	13.1	5
3	Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality. Science, 2022, 377, 292-297.	12.6	79
4	Clonal haematopoiesis and cardiovascular disease: how low can you go?. European Heart Journal, 2021, 42, 266-268.	2.2	7
5	Bone Marrow Transplantation Procedures in Mice to Study Clonal Hematopoiesis. Journal of Visualized Experiments, 2021, , .	0.3	10
6	TP53-mediated therapy-related clonal hematopoiesis contributes to doxorubicin-induced cardiomyopathy by augmenting a neutrophil-mediated cytotoxic response. JCI Insight, 2021, 6, .	5.0	37
7	The Cancer Therapy-Related Clonal Hematopoiesis Driver Gene <i>Ppm1d</i> Promotes Inflammation and Non-Ischemic Heart Failure in Mice. Circulation Research, 2021, 129, 684-698.	4.5	42
8	Hematopoietic JAK2V617F-mediated clonal hematopoiesis: AIM2 understand mechanisms of atherogenesis. , 2021, 1, .		4
9	Employing the CRISPR-Cas System for Clonal Hematopoiesis Research. International Journal of Physical Medicine & Rehabilitation, 2021, 9, .	0.5	1
10	Cardiovascular Disease, Aging, and Clonal Hematopoiesis. Annual Review of Pathology: Mechanisms of Disease, 2020, 15, 419-438.	22.4	94
11	Somatic mosaicism: implications for the cardiovascular system. European Heart Journal, 2020, 41, 2904-2907.	2.2	13
12	TET2-Loss-of-Function-Driven Clonal Hematopoiesis Exacerbates Experimental Insulin Resistance in Aging and Obesity. Cell Reports, 2020, 33, 108326.	6.4	117
13	Clonal Hematopoiesis: AÂNewÂStepÂLinking Inflammation toÂHeartÂFailure. JACC Basic To Translational Science, 2020, 5, 196-207.	4.1	33
14	Tet2-mediated clonal hematopoiesis in nonconditioned mice accelerates age-associated cardiac dysfunction. JCI Insight, 2020, 5, .	5.0	103
15	JAK2-Mediated Clonal Hematopoiesis Accelerates Pathological Remodeling in Murine HeartÂFailure. JACC Basic To Translational Science, 2019, 4, 684-697.	4.1	114
16	Lentiviral CRISPR/Cas9-Mediated Genome Editing for the Study of Hematopoietic Cells in Disease Models. Journal of Visualized Experiments, 2019, , .	0.3	12
17	Self-reactive CD4+ IL-3+ T cells amplify autoimmune inflammation in myocarditis by inciting monocyte chemotaxis. Journal of Experimental Medicine, 2019, 216, 369-383.	8.5	34
18	Wnt5a-Mediated Neutrophil Recruitment Has an Obligatory Role in Pressure Overload–Induced Cardiac Dysfunction. Circulation, 2019, 140, 487-499.	1.6	60

Soichi Sano

#	Article	IF	CITATIONS
19	Tet2-Mediated Clonal Hematopoiesis Accelerates Heart Failure Through aÂMechanism Involving the IL-1β/NLRP3ÂInflammasome. Journal of the American College of Cardiology, 2018, 71, 875-886.	2.8	452
20	CRISPR-Mediated Gene Editing to Assess the Roles of Tet2 and Dnmt3a in Clonal Hematopoiesis and Cardiovascular Disease. Circulation Research, 2018, 123, 335-341.	4.5	282
21	Clonal Hematopoiesis and Its Impact on Cardiovascular Disease. Circulation Journal, 2018, 83, 2-11.	1.6	42
22	Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science, 2017, 355, 842-847.	12.6	999
23	Follistatinâ€ l ike 1 promotes cardiac fibroblast activation and protects the heart from rupture. EMBO Molecular Medicine, 2016, 8, 949-966.	6.9	85
24	Glutathione adducts induced by ischemia and deletion of glutaredoxin-1 stabilize HIF-1α and improve limb revascularization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6011-6016.	7.1	76
25	miR-410 and miR-495 Are Dynamically Regulated in Diverse Cardiomyopathies and Their Inhibition Attenuates Pathological Hypertrophy. PLoS ONE, 2016, 11, e0151515.	2.5	33