
Michael H Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8523893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus, 2004, 171, 153-170.	2.5	280
2	A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. Planetary and Space Science, 1999, 47, 1243-1262.	1.7	241
3	Background levels of methane in Mars' atmosphere show strong seasonal variations. Science, 2018, 360, 1093-1096.	12.6	224
4	FIRST RESULTS FROM THE HUBBLE OPAL PROGRAM: JUPITER IN 2015. Astrophysical Journal, 2015, 812, 55.	4.5	88
5	Initial SAM calibration gas experiments on Mars: Quadrupole mass spectrometer results and implications. Planetary and Space Science, 2017, 138, 44-54.	1.7	84
6	Depth of a strong jovian jet from a planetary-scale disturbance driven by storms. Nature, 2008, 451, 437-440.	27.8	82
7	Isotopes of nitrogen on Mars: Atmospheric measurements by Curiosity's mass spectrometer. Geophysical Research Letters, 2013, 40, 6033-6037.	4.0	72
8	Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2019, 124, 3000-3024.	3.6	71
9	Changes in Jupiter's Zonal Wind Profile preceding and during the Juno mission. Icarus, 2017, 296, 163-178.	2.5	70
10	Peering through Jupiter's clouds with radio spectral imaging. Science, 2016, 352, 1198-1201.	12.6	67
11	Jupiter's shrinking Great Red Spot and steady Oval BA: Velocity measurements with the â€~Advection Corrected Correlation Image Velocimetry' automated cloud-tracking method. Icarus, 2009, 203, 164-188.	2.5	63
12	Identification of the 10-μm ammonia ice feature on Jupiter. Planetary and Space Science, 2004, 52, 385-395.	1.7	59
13	Persistent rings in and around Jupiter's anticyclones – Observations and theory. Icarus, 2010, 210, 742-762.	2.5	52
14	Deep Atmosphere Composition, Structure, Origin, and Exploration, with Particular Focus on Critical in situ Science at the Icy Giants. Space Science Reviews, 2020, 216, 1.	8.1	47
15	Oxygen and Other Volatiles in the Giant Planets and their Satellites. Reviews in Mineralogy and Geochemistry, 2008, 68, 219-246.	4.8	40
16	Jupiter's ammonia distribution derived from VLA maps at 3–37ÂGHz. Icarus, 2019, 322, 168-191.	2.5	40
17	Vertical structure of Jupiter's Oval BA before and after it reddened: What changed?. Icarus, 2011, 215, 211-225.	2.5	39
18	NEPTUNE'S DYNAMIC ATMOSPHERE FROM KEPLER K2 OBSERVATIONS: IMPLICATIONS FOR BROWN DWARF LIGHT CURVE ANALYSES. Astrophysical Journal, 2016, 817, 162.	4.5	39

MICHAEL H WONG

#	Article	IF	CITATIONS
19	JUPITER AFTER THE 2009 IMPACT: <i>HUBBLE SPACE TELESCOPE</i> IMAGING OF THE IMPACT-GENERATED DEBRIS AND ITS TEMPORAL EVOLUTION. Astrophysical Journal Letters, 2010, 715, L150-L154.	8.3	36
20	Changes in Jupiter's zonal velocity between 1979 and 2008â~†. Icarus, 2011, 211, 1215-1232.	2.5	36
21	JUPITER'S DEEP CLOUD STRUCTURE REVEALED USING KECK OBSERVATIONS OF SPECTRALLY RESOLVED LINE SHAPES. Astrophysical Journal, 2015, 810, 122.	4.5	34
22	A multi-wavelength study of the 2009 impact on Jupiter: Comparison of high resolution images from Gemini, Keck and HST. Icarus, 2010, 210, 722-741.	2.5	32
23	Fresh clouds: A parameterized updraft method for calculating cloud densities in one-dimensional models. Icarus, 2015, 245, 273-281.	2.5	29
24	The Gas Composition and Deep Cloud Structure of Jupiter's Great Red Spot. Astronomical Journal, 2018, 156, 101.	4.7	29
25	Reevaluated martian atmospheric mixing ratios from the mass spectrometer on the Curiosity rover. Planetary and Space Science, 2015, 109-110, 154-158.	1.7	28
26	Historical and Contemporary Trends in the Size, Drift, and Color of Jupiter's Great Red Spot. Astronomical Journal, 2018, 155, 151.	4.7	28
27	Vertical wind shear in Neptune's upper atmosphere explained with a modified thermal wind equation. Icarus, 2018, 311, 317-339.	2.5	27
28	First ALMA Millimeter-wavelength Maps of Jupiter, with a Multiwavelength Study of Convection. Astronomical Journal, 2019, 158, 139.	4.7	27
29	Analysis of Neptune's 2017 bright equatorial storm. Icarus, 2019, 321, 324-345.	2.5	25
30	High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019. Astrophysical Journal, Supplement Series, 2020, 247, 58.	7.7	25
31	Microwave observations reveal the deep extent and structure of Jupiter's atmospheric vortices. Science, 2021, 374, 968-972.	12.6	23
32	A New Dark Vortex on Neptune. Astronomical Journal, 2018, 155, 117.	4.7	22
33	An enduring rapidly moving storm as a guide to Saturn's Equatorial jet's complex structure. Nature Communications, 2016, 7, 13262.	12.8	21
34	Jupiter's North Equatorial Belt expansion and thermal wave activity ahead of Juno's arrival. Geophysical Research Letters, 2017, 44, 7140-7148.	4.0	21
35	HST/WFC3 observations of Uranus' 2014 storm clouds and comparison with VLT/SINFONI and IRTF/Spex observations. Icarus, 2017, 288, 99-119.	2.5	21
36	Temporal variation of the tropospheric cloud and haze in the jovian equatorial zone. Icarus, 2010, 209, 591-601.	2.5	20

MICHAEL H WONG

#	Article	IF	CITATIONS
37	DRAMATIC CHANGE IN JUPITER'S GREAT RED SPOT FROM SPACECRAFT OBSERVATIONS. Astrophysical Journal Letters, 2014, 797, L31.	8.3	20
38	Analytical techniques for retrieval of atmospheric composition with the quadrupole mass spectrometer of the Sample Analysis at Mars instrument suite on Mars Science Laboratory. Planetary and Space Science, 2014, 96, 99-113.	1.7	20
39	Dispersion in Neptune's zonal wind velocities from NIR Keck AO observations in July 2009. Astrophysics and Space Science, 2014, 350, 65-88.	1.4	19
40	Formation of a New Great Dark Spot on Neptune in 2018. Geophysical Research Letters, 2019, 46, 3108-3113.	4.0	18
41	The depth of Jupiter's Great Red Spot constrained by Juno gravity overflights. Science, 2021, 374, 964-968.	12.6	18
42	Hazy Blue Worlds: A Holistic Aerosol Model for Uranus and Neptune, Including Dark Spots. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	18
43	Jupiter's Mesoscale Waves Observed at 5 μ m by Ground-based Observations and Juno JIRAM. Astronomical Journal, 2018, 156, 67.	4.7	17
44	Jupiter's Temperate Belt/Zone Contrasts Revealed at Depth by Juno Microwave Observations. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006858.	3.6	17
45	Constraints on Uranus's haze structure, formation and transport. Icarus, 2019, 333, 1-11.	2.5	16
46	Keck adaptive optics images of Jupiter's north polar cap and Northern Red Oval. Icarus, 2011, 213, 559-563.	2.5	14
47	A New, Long-lived, Jupiter Mesoscale Wave Observed at Visible Wavelengths. Astronomical Journal, 2018, 156, 79.	4.7	14
48	Longitudinal variability in Jupiter's zonal winds derived from multi-wavelength HST observations. Planetary and Space Science, 2018, 155, 2-11.	1.7	13
49	A complex storm system in Saturn's north polar atmosphere in 2018. Nature Astronomy, 2020, 4, 180-187.	10.1	13
50	Possible Transient Luminous Events Observed in Jupiter's Upper Atmosphere. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006659.	3.6	13
51	SPITZER SPACE TELESCOPE MID-IR LIGHT CURVES OF NEPTUNE. Astronomical Journal, 2016, 152, 142.	4.7	12
52	An equatorial thermal wind equation: Applications to Jupiter. Icarus, 2019, 324, 198-223.	2.5	12
53	Lifetimes and Occurrence Rates of Dark Vortices on Neptune from 25 Years of Hubble Space Telescope Images. Astronomical Journal, 2019, 157, 152.	4.7	12
54	Angular Dependence and Spatial Distribution of Jupiter's Centimeterâ€Wave Thermal Emission From Juno's Microwave Radiometer. Earth and Space Science, 2020, 7, e2020EA001254.	2.6	12

MICHAEL H WONG

#	Article	IF	CITATIONS
55	The Case for a New Frontiers–Class Uranus Orbiter: System Science at an Underexplored and Unique World with a Mid-scale Mission. Planetary Science Journal, 2022, 3, 58.	3.6	12
56	Ground-based near infrared spectroscopy of Jupiter's ring and moons. Icarus, 2006, 185, 403-415.	2.5	10
57	Jupiter's Red Oval BA: Dynamics, Color, and Relationship to Jovian Climate Change. Journal of Heat Transfer, 2013, 135, .	2.1	10
58	Uranus's Northern Polar Cap in 2014. Geophysical Research Letters, 2018, 45, 5329-5335.	4.0	10
59	Evolution of the Horizontal Winds in Jupiter's Great Red Spot From One Jovian Year of HST/WFC3 Maps. Geophysical Research Letters, 2021, 48, e2021GL093982.	4.0	10
60	A Survey of Small‧cale Waves and Wave‣ike Phenomena in Jupiter's Atmosphere Detected by JunoCam. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006369.	3.6	7
61	Small Next-Generation Atmospheric Probe (SNAP) Concept to Enable Future Multi-Probe Missions: A Case Study for Uranus. Space Science Reviews, 2020, 216, 1.	8.1	7
62	Constraints on Neptune's haze structure and formation from VLT observations in the H-band. Icarus, 2020, 350, 113808.	2.5	5
63	Lightning Generation in Moist Convective Clouds and Constraints on the Water Abundance in Jupiter. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006504.	3.6	5
64	Giant Planet Atmospheres: Dynamics and Variability from UV to Near-IR Hubble and Adaptive Optics Imaging. Remote Sensing, 2022, 14, 1518.	4.0	5
65	Convective storms in closed cyclones in Jupiter's South Temperate Belt: (I) observations. Icarus, 2022, 380, 114994.	2.5	5
66	Midsummer Atmospheric Changes in Saturn's Northern Hemisphere from the Hubble OPAL Program. Planetary Science Journal, 2021, 2, 47.	3.6	4
67	SOFIA Observations of Variability in Jupiter's Para-H ₂ Distribution and Subsurface Emission Characteristics of the Galilean Satellites. Planetary Science Journal, 2021, 2, 226.	3.6	4
68	10. Oxygen and Other Volatiles in the Giant Planets and their Satellites. , 2008, , 219-246.		3
69	Residual Study: Testing Jupiter Atmosphere Models Against Juno MWR Observations. Earth and Space Science, 2020, 7, e2020EA001229.	2.6	3
70	Highâ€Spatiotemporal Resolution Observations of Jupiter Lightningâ€Induced Radio Pulses Associated With Sferics and Thunderstorms. Geophysical Research Letters, 2020, 47, e2020GL088397.	4.0	3
71	Evolution of a dark vortex on Neptune with transient secondary features. Icarus, 2022, 387, 115123.	2.5	3
72	Wave Activity in Jupiter's North Equatorial Belt From Nearâ€Infrared Reflectivity Observations. Geophysical Research Letters, 2019, 46, 1232-1241.	4.0	2

#	Article	IF	CITATIONS
73	The science enabled by a dedicated solar system space telescope. , 2021, 53, .		1
74	Interaction of Saturn's Hexagon With Convective Storms. Geophysical Research Letters, 2021, 48, e2021GL092461.	4.0	1