Sanjay Jain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8523724/publications.pdf Version: 2024-02-01

SANDAV JAIN

#	Article	IF	CITATIONS
1	Integrated single-cell sequencing and histopathological analyses reveal diverse injury and repair responses in a participant with acute kidney injury: a clinical-molecular-pathologic correlation. Kidney International, 2022, 101, 1116-1125.	5.2	11
2	A reference tissue atlas for the human kidney. Science Advances, 2022, 8, .	10.3	67
3	A multimodal and integrated approach to interrogate human kidney biopsies with rigor and reproducibility: guidelines from the Kidney Precision Medicine Project. Physiological Genomics, 2021, 53, 1-11.	2.3	59
4	Patient perspectives and involvement in precision medicine research. Kidney International, 2021, 99, 511-514.	5.2	5
5	Rationale and design of the Kidney Precision Medicine Project. Kidney International, 2021, 99, 498-510.	5.2	94
6	Automated Computational Detection of Interstitial Fibrosis, Tubular Atrophy, and Glomerulosclerosis. Journal of the American Society of Nephrology: JASN, 2021, 32, 837-850.	6.1	52
7	Plasticity of distal nephron epithelia from human kidney organoids enables the induction of ureteric tip and stalk. Cell Stem Cell, 2021, 28, 671-684.e6.	11.1	72
8	A Pilot Study of Urine Proteomics in COVID-19–Associated Acute Kidney Injury. Kidney International Reports, 2021, 6, 3064-3069.	0.8	5
9	Anatomical structures, cell types and biomarkers of the Human Reference Atlas. Nature Cell Biology, 2021, 23, 1117-1128.	10.3	68
10	Modelling kidney disease using ontology: insights from the Kidney Precision Medicine Project. Nature Reviews Nephrology, 2020, 16, 686-696.	9.6	45
11	Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker. JCI Insight, 2020, 5, .	5.0	108
12	Peroxidasin Is a Novel Target of Autoantibodies in Lupus Nephritis. Kidney International Reports, 2019, 4, 1004-1006.	0.8	3
13	A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys. Nature Communications, 2019, 10, 2832.	12.8	206
14	A Toolbox to Characterize Human Induced Pluripotent Stem Cell–Derived Kidney Cell Types and Organoids. Journal of the American Society of Nephrology: JASN, 2019, 30, 1811-1823.	6.1	45
15	WNT pathway signaling is associated with microvascular injury and predicts kidney transplant failure. American Journal of Transplantation, 2019, 19, 2833-2845.	4.7	7
16	FAT4 Fine-Tunes Kidney Development by Regulating RET Signaling. Developmental Cell, 2019, 48, 780-792.e4.	7.0	27
17	Developmental pathology of congenital kidney and urinary tract anomalies. CKJ: Clinical Kidney Journal, 2019, 12, 382-399.	2.9	63
18	An integrated iterative annotation technique for easing neural network training in medical image analysis. Nature Machine Intelligence, 2019, 1, 112-119.	16.0	96

SANJAY JAIN

#	Article	IF	CITATIONS
19	Computational Segmentation and Classification of Diabetic Glomerulosclerosis. Journal of the American Society of Nephrology: JASN, 2019, 30, 1953-1967.	6.1	142
20	Pathogenic Germline Variants in 10,389 Adult Cancers. Cell, 2018, 173, 355-370.e14.	28.9	620
21	Multi-radial LBP Features as a Tool for Rapid Glomerular Detection and Assessment in Whole Slide Histopathology Images. Scientific Reports, 2018, 8, 2032.	3.3	74
22	Reciprocal Spatiotemporally Controlled Apoptosis Regulates Wolffian Duct Cloaca Fusion. Journal of the American Society of Nephrology: JASN, 2018, 29, 775-783.	6.1	18
23	Quantification of vascular damage in acute kidney injury with fluorine magnetic resonance imaging and spectroscopy. Magnetic Resonance in Medicine, 2018, 79, 3144-3153.	3.0	14
24	Angiotensin II Triggers Peripheral Macrophage-to-Sensory Neuron Redox Crosstalk to Elicit Pain. Journal of Neuroscience, 2018, 38, 7032-7057.	3.6	92
25	Centrosome amplification disrupts renal development and causes cystogenesis. Journal of Cell Biology, 2018, 217, 2485-2501.	5.2	24
26	Characterization of Human iPSC RET Reporter Cell Line Differentiation to Kidney and Neural Crest Lineages. FASEB Journal, 2018, 32, 649.3.	0.5	0
27	(Re)Building a Kidney. Journal of the American Society of Nephrology: JASN, 2017, 28, 1370-1378.	6.1	58
28	Routine use of clinical exome-based next-generation sequencing for evaluation of patients with thrombotic microangiopathies. Modern Pathology, 2017, 30, 1739-1747.	5.5	6
29	B cell–derived IL-4 acts on podocytes to induce proteinuria and foot process effacement. JCI Insight, 2017, 2, .	5.0	48
30	Injury-induced actin cytoskeleton reorganization in podocytes revealed by super-resolution microscopy. JCI Insight, 2017, 2, .	5.0	65
31	A multiplexed analysis approach identifies new association of inflammatory proteins in patients with overactive bladder. American Journal of Physiology - Renal Physiology, 2016, 311, F28-F34.	2.7	21
32	7-dehydrocholesterol efficiently supports Ret signaling in a mouse model of Smith-Opitz-Lemli syndrome. Scientific Reports, 2016, 6, 28534.	3.3	9
33	Systemic Nonurological Symptoms in Patients with Overactive Bladder. Journal of Urology, 2016, 196, 467-472.	0.4	17
34	Adventitial MSC-like Cells Are Progenitors of Vascular Smooth Muscle Cells and Drive Vascular Calcification in Chronic Kidney Disease. Cell Stem Cell, 2016, 19, 628-642.	11.1	254
35	Genome-wide significance testing of variation from single case exomes. Nature Genetics, 2016, 48, 1455-1461.	21.4	43
36	Glial cell line-derived neurotrophic factor protects against high-fat diet-induced hepatic steatosis by suppressing hepatic PPAR-γ expression. American Journal of Physiology - Renal Physiology, 2016, 310, G103-G116.	3.4	11

Sanjay Jain

#	Article	IF	CITATIONS
37	A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis. Journal of Clinical Investigation, 2016, 126, 1067-1078.	8.2	41
38	Clinical phenotype of APOL1 nephropathy in young relatives of patients with end-stage renal disease. Pediatric Nephrology, 2015, 30, 983-989.	1.7	15
39	Yap and Taz are required for Ret-dependent urinary tract morphogenesis. Development (Cambridge), 2015, 142, 2696-2703.	2.5	44
40	Imaging centrosomes and cilia in the mouse kidney. Methods in Cell Biology, 2015, 127, 1-17.	1.1	4
41	Development of an Immunoassay for the Kidney-Specific Protein myo-Inositol Oxygenase, a Potential Biomarker of Acute Kidney Injury. Clinical Chemistry, 2014, 60, 747-757.	3.2	23
42	Claudin 1 and nephrin label cellular crescents in diabetic glomerulosclerosis. Human Pathology, 2014, 45, 628-635.	2.0	23
43	To bud or not to bud: the RET perspective in CAKUT. Pediatric Nephrology, 2014, 29, 597-608.	1.7	68
44	Validating single-cell genomics for the study of renal development. Kidney International, 2014, 86, 1049-1055.	5.2	3
45	The Overlap and Distinction of Self-Reported Symptoms between Interstitial Cystitis/Bladder Pain Syndrome and Overactive Bladder: A Questionnaire Based Analysis. Journal of Urology, 2014, 192, 1679-1686.	0.4	35
46	The Interface of Genetics with Pathology in Alport Nephritis. Journal of the American Society of Nephrology: JASN, 2013, 24, 1925-1927.	6.1	6
47	Interaction between DMRT1 function and genetic background modulates signaling and pluripotency to control tumor susceptibility in the fetal germ line. Developmental Biology, 2013, 377, 67-78.	2.0	44
48	Stage specific requirement of Gfrα1 in the ureteric epithelium during kidney development. Mechanisms of Development, 2013, 130, 506-518.	1.7	26
49	The Med1 Subunit of the Mediator Complex Induces Liver Cell Proliferation and Is Phosphorylated by AMP Kinase. Journal of Biological Chemistry, 2013, 288, 27898-27911.	3.4	19
50	Dopamine-Dependent Compensation Maintains Motor Behavior in Mice with Developmental Ablation of Dopaminergic Neurons. Journal of Neuroscience, 2013, 33, 17095-17107.	3.6	41
51	Targeted Exome Sequencing Integrated with Clinicopathological Information Reveals Novel and Rare Mutations in Atypical, Suspected and Unknown Cases of Alport Syndrome or Proteinuria. PLoS ONE, 2013, 8, e76360.	2.5	59
52	Novel mechanisms of early upper and lower urinary tract patterning regulated by RetY1015 docking tyrosine in mice. Development (Cambridge), 2012, 139, 2405-2415.	2.5	64
53	Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Human Genetics, 2012, 131, 1725-1738.	3.8	84
54	Expression profiles of podocytes exposed to high glucose reveal new insights into early diabetic glomerulopathy. Laboratory Investigation, 2011, 91, 488-498.	3.7	18

SANJAY JAIN

#	Article	IF	CITATIONS
55	Neural Crest Cell Origin and Signals for Intrinsic Neurogenesis in the Mammalian Respiratory Tract. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 293-301.	2.9	28
56	Expression regulation and function of heparan sulfate 6-O-endosulfatases in the spermatogonial stem cell niche. Glycobiology, 2011, 21, 152-161.	2.5	34
57	RET Signaling Is Required for Survival and Normal Function of Nonpeptidergic Nociceptors. Journal of Neuroscience, 2010, 30, 3983-3994.	3.6	80
58	Midline signaling regulates kidney positioning but not nephrogenesis through Shh. Developmental Biology, 2010, 340, 518-527.	2.0	30
59	Organotypic specificity of key RET adaptor-docking sites in the pathogenesis of neurocristopathies and renal malformations in mice. Journal of Clinical Investigation, 2010, 120, 778-790.	8.2	50
60	The many faces of RET dysfunction in kidney. Organogenesis, 2009, 5, 177-190.	1.2	66
61	Loss of Sprouty1 Rescues Renal Agenesis Caused by Ret Mutation. Journal of the American Society of Nephrology: JASN, 2009, 20, 255-259.	6.1	45
62	Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nature Genetics, 2009, 41, 1295-1302.	21.4	199
63	Dosage Effects of Cohesin Regulatory Factor PDS5 on Mammalian Development: Implications for Cohesinopathies. PLoS ONE, 2009, 4, e5232.	2.5	74
64	Neurturin-Mediated Ret Activation Is Required for Retinal Function. Journal of Neuroscience, 2008, 28, 4123-4135.	3.6	28
65	Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. Journal of Clinical Investigation, 2008, 118, 671-82.	8.2	301
66	Conditional ablation of GFRα1 in postmigratory enteric neurons triggers unconventional neuronal death in the colon and causes a Hirschsprung's disease phenotype. Development (Cambridge), 2007, 134, 2171-2181.	2.5	112
67	Mice lacking sister chromatid cohesion protein PDS5B exhibit developmental abnormalities reminiscent of Cornelia de Lange syndrome. Development (Cambridge), 2007, 134, 3191-3201.	2.5	94
68	Reduced endothelin converting enzyme-1 and endothelin-3 mRNA in the developing bowel of male mice may increase expressivity and penetrance of Hirschsprung disease–like distal intestinal aganglionosis. Developmental Dynamics, 2007, 236, 106-117.	1.8	20
69	Expression profiles of congenital renal dysplasia reveal new insights into renal development and disease. Pediatric Nephrology, 2007, 22, 962-974.	1.7	32
70	Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes and Development, 2006, 20, 321-333.	5.9	137
71	RET Is Dispensable for Maintenance of Midbrain Dopaminergic Neurons in Adult Mice. Journal of Neuroscience, 2006, 26, 11230-11238.	3.6	88
72	Glial Cell-Line Derived Neurotrophic Factor-Mediated RET Signaling Regulates Spermatogonial Stem Cell Fate1. Biology of Reproduction, 2006, 74, 314-321.	2.7	347

SANJAY JAIN

#	Article	IF	CITATIONS
73	An integrated functional genomics and metabolomics approach for defining poor prognosis in human neuroendocrine cancers. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9901-9906.	7.1	102
74	Mice expressing a dominant-negative Ret mutation phenocopy human Hirschsprung disease and delineate a direct role of Ret in spermatogenesis. Development (Cambridge), 2004, 131, 5503-5513.	2.5	112
75	Expression Profiles Provide Insights into Early Malignant Potential and Skeletal Abnormalities in Multiple Endocrine Neoplasia Type 2B Syndrome Tumors. Cancer Research, 2004, 64, 3907-3913.	0.9	66
76	Peroxisome Proliferator-Activated Receptor α-Responsive Genes Induced in the Newborn but Not Prenatal Liver of Peroxisomal Fatty Acyl-CoA Oxidase Null Mice. Experimental Cell Research, 2001, 268, 70-76.	2.6	28
77	Expression of ARNT, ARNT2, HIF1α, HIF2α and Ah receptor mRNAs in the developing mouse. Mechanisms of Development, 1998, 73, 117-123.	1.7	311
78	Differential Expression of the Peroxisome Proliferator-Activated Receptor γ (PPARγ) and Its Coactivators Steroid Receptor Coactivator-1 and PPAR-Binding Protein PBP in the Brown Fat, Urinary Bladder, Colon, and Breast of the Mouse. American Journal of Pathology, 1998, 153, 349-354.	3.8	100
79	Characterization of the Ah Receptor-associated Protein, ARA9. Journal of Biological Chemistry, 1998, 273, 33580-33587.	3.4	180
80	Isolation and Characterization of PBP, a Protein That Interacts with Peroxisome Proliferator-activated Receptor. Journal of Biological Chemistry, 1997, 272, 25500-25506.	3.4	313