List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8523361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Site-specific immobilization of papain on DDI-modified polystyrene beads for the oligo(γ-ethyl-L-glutamate) synthesis. Applied Catalysis A: General, 2022, 630, 118472.	4.3	1
2	Designer DNA nanostructures for viral inhibition. Nature Protocols, 2022, 17, 282-326.	12.0	14
3	Metabolic Engineering of <i>Saccharomyces cerevisiae</i> for High-Level Production of Chlorogenic Acid from Glucose. ACS Synthetic Biology, 2022, 11, 800-811.	3.8	12
4	Circadian control of heparan sulfate levels times phagocytosis of amyloid beta aggregates. PLoS Genetics, 2022, 18, e1009994.	3.5	22
5	Potential Anti-SARS-CoV-2 Activity of Pentosan Polysulfate and Mucopolysaccharide Polysulfate. Pharmaceuticals, 2022, 15, 258.	3.8	20
6	Chemobiocatalytic Synthesis of a Low-Molecular-Weight Heparin. ACS Chemical Biology, 2022, 17, 637-646.	3.4	8
7	Characterization of Peptide Activators of Protein Tyrosine Phosphatase 1B. Free Radical Biology and Medicine, 2022, 180, s63.	2.9	0
8	GRASP depletion-mediated Golgi fragmentation impairs glycosaminoglycan synthesis, sulfation, and secretion. Cellular and Molecular Life Sciences, 2022, 79, 199.	5.4	11
9	Fractionation of sulfated galactan from the red alga Botryocladia occidentalis separates its anticoagulant and anti-SARS-CoV-2 properties. Journal of Biological Chemistry, 2022, 298, 101856.	3.4	13
10	Optimization of germination and ultrasonicâ€assisted extraction for the enhancement of γâ€aminobutyric acid in pumpkin seed. Food Science and Nutrition, 2022, 10, 2101-2110.	3.4	7
11	Intrinsically Disordered N-terminal Domain (NTD) of p53 Interacts with Mitochondrial PTP Regulator Cyclophilin D. Journal of Molecular Biology, 2022, 434, 167552.	4.2	11
12	Homogalacturonan from squash: Characterization and tau-binding pattern of a sulfated derivative. Carbohydrate Polymers, 2022, 285, 119250.	10.2	11
13	Effect of high glucose on glycosaminoglycans in cultured retinal endothelial cells and rat retina. Glycobiology, 2022, 32, 720-734.	2.5	8
14	Soluble α-klotho and heparin modulate the pathologic cardiac actions of fibroblast growth factor 23 in chronic kidney disease. Kidney International, 2022, 102, 261-279.	5.2	16
15	Binding of heparan sulfate to human cystatin C modulates inhibition of cathepsin L: Putative consequences in mucopolysaccharidosis. Carbohydrate Polymers, 2022, 293, 119734.	10.2	3
16	Heparin: An old drug for new clinical applications. Carbohydrate Polymers, 2022, 295, 119818.	10.2	30
17	Enzymatic synthesis of low molecular weight heparins from N-sulfo heparosan depolymerized by heparanase or heparin lyase. Carbohydrate Polymers, 2022, 295, 119825.	10.2	5
18	Analysis of the Glycosaminoglycan Chains of Proteoglycans. Journal of Histochemistry and Cytochemistry, 2021, 69, 121-135.	2.5	38

#	Article	IF	CITATIONS
19	Extraction temperature is a decisive factor for the properties of pectin. Food Hydrocolloids, 2021, 112, 106160.	10.7	54
20	Construction of heparan sulfate microarray for investigating the binding of specific saccharide sequences to proteins. Glycobiology, 2021, 31, 188-199.	2.5	16
21	Expression and functional identification of two homologous nicotine dehydrogenases, NicA2 and Nox, from Pseudomonas sp. JY-Q. Protein Expression and Purification, 2021, 178, 105767.	1.3	6
22	Effective Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin Derivatives. Journal of Virology, 2021, 95, .	3.4	176
23	A rolling circle amplification based platform for ultrasensitive detection of heparin. Analyst, The, 2021, 146, 714-720.	3.5	12
24	Heparin-mediated dimerization of follistatin. Experimental Biology and Medicine, 2021, 246, 467-482.	2.4	3
25	Structural and immunological studies on the polysaccharide from spores of a medicinal entomogenous fungus Paecilomyces cicadae. Carbohydrate Polymers, 2021, 254, 117462.	10.2	47
26	The abnormal accumulation of heparan sulfate in patients with mucopolysaccharidosis prevents the elastolytic activity of cathepsin V. Carbohydrate Polymers, 2021, 253, 117261.	10.2	13
27	Oral Administration of Fucosylated Chondroitin Sulfate Oligomers in Gastro-Resistant Microcapsules Exhibits a Safe Antithrombotic Activity. Thrombosis and Haemostasis, 2021, 121, 015-026.	3.4	9
28	<scp>MAPK</scp> / <scp>HOG</scp> signaling pathway induced stressâ€responsive damage repair is a mechanism for <scp><i>Pichia pastoris</i></scp> to survive from hyperosmotic stress. Journal of Chemical Technology and Biotechnology, 2021, 96, 412-422.	3.2	10
29	Bioengineered production of glycosaminoglycans and their analogues. Systems Microbiology and Biomanufacturing, 2021, 1, 123-130.	2.9	5
30	Differential Effects of Homologous Transcriptional Regulators NicR2A, NicR2B1, and NicR2B2 and Endogenous Ectopic Strong Promoters on Nicotine Metabolism in <i>Pseudomonas</i> sp. Strain JY-Q. Applied and Environmental Microbiology, 2021, 87, .	3.1	7
31	Comparative study on the mechanisms of anti-lung cancer activities of three sulfated galactofucans. Food and Function, 2021, 12, 10644-10657.	4.6	4
32	Characterization of Glycosaminoglycan Disaccharide Composition in Astrocyte Primary Cultures and the Cortex of Neonatal Rats. Neurochemical Research, 2021, 46, 595-610.	3.3	6
33	Probing Amyloid β Interactions with Synthetic Heparan Sulfate Oligosaccharides. ACS Chemical Biology, 2021, 16, 1894-1899.	3.4	4
34	Additional Role of Nicotinic Acid Hydroxylase for the Transformation of 3-Succinoyl-Pyridine by Pseudomonas sp. Strain JY-Q. Applied and Environmental Microbiology, 2021, 87, .	3.1	3
35	Preparation of Low Molecular Weight Heparin from a Remodeled Bovine Intestinal Heparin. Journal of Medicinal Chemistry, 2021, 64, 2242-2253.	6.4	7
36	The Application of Seaweed Polysaccharides and Their Derived Products with Potential for the Treatment of Alzheimer's Disease. Marine Drugs, 2021, 19, 89.	4.6	40

#	Article	IF	CITATIONS
37	Influence of bacterial culture medium on peptidoglycan binding of cell wall lytic enzymes. Journal of Biotechnology, 2021, 330, 27-34.	3.8	6
38	Synthetic heparan sulfate standards and machine learning facilitate the development of solid-state nanopore analysis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
39	Porphyrin-based compounds and their applications in materials and medicine. Dyes and Pigments, 2021, 188, 109136.	3.7	68
40	Cultivation of fractionated cells from a bioactive-alkaloid-bearing marine sponge Axinella sp In Vitro Cellular and Developmental Biology - Animal, 2021, 57, 539-549.	1.5	2
41	The Sulfation Code of Tauopathies: Heparan Sulfate Proteoglycans in the Prion Like Spread of Tau Pathology. Frontiers in Molecular Biosciences, 2021, 8, 671458.	3.5	16
42	Heparan sulfates from bat and human lung and their binding to the spike protein of SARS-CoV-2 virus. Carbohydrate Polymers, 2021, 260, 117797.	10.2	21
43	Heparan Sulfate Facilitates Spike Protein-Mediated SARS-CoV-2 Host Cell Invasion and Contributes to Increased Infection of SARS-CoV-2 G614 Mutant and in Lung Cancer. Frontiers in Molecular Biosciences, 2021, 8, 649575.	3.5	35
44	Editorial: Interactions Between Proteins and Biomacromolecules: Tools and Applications. Frontiers in Molecular Biosciences, 2021, 8, 708084.	3.5	0
45	Red Algal Sulfated Galactan Binds and Protects Neural Cells from HIV-1 gp120 and Tat. Pharmaceuticals, 2021, 14, 714.	3.8	5
46	The degree of polymerization and sulfation patterns in heparan sulfate are critical determinants of cytomegalovirus entry into host cells. PLoS Pathogens, 2021, 17, e1009803.	4.7	17
47	Sustained release of Ganoderma lucidum antitumor drugs using a sandwich structured material prepared by electrospinning. Journal of Drug Delivery Science and Technology, 2021, 64, 102627.	3.0	8
48	Platelet factor 4 polyanion immune complexes: heparin induced thrombocytopenia and vaccine-induced immune thrombotic thrombocytopenia. Thrombosis Journal, 2021, 19, 66.	2.1	15
49	Structural and kinetic analyses of holothurian sulfated glycans suggest potential treatment for SARS-CoV-2 infection. Journal of Biological Chemistry, 2021, 297, 101207.	3.4	31
50	Implications of Glycosaminoglycans on Viral Zoonotic Diseases. Diseases (Basel, Switzerland), 2021, 9, 85.	2.5	10
51	Anti-SARS-CoV-2 Activity of Rhamnan Sulfate from Monostroma nitidum. Marine Drugs, 2021, 19, 685.	4.6	30
52	Glycosaminoglycans in Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2021, 1325, 189-204.	1.6	7
53	Glycosaminoglycans. Advances in Experimental Medicine and Biology, 2021, 1325, 103-116.	1.6	9
54	Abstract 11489: Oral Rhamnan Sulfate Reduces Vascular Inflammation and Atherosclerotic Plaque Formation. Circulation, 2021, 144, .	1.6	0

#	Article	IF	CITATIONS
55	Structural analysis of urinary glycosaminoglycans from healthy human subjects. Glycobiology, 2020, 30, 143-151.	2.5	24
56	3―O ‣ulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake. Angewandte Chemie, 2020, 132, 1834-1843.	2.0	2
57	3â€ <i>O</i> â€Sulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake. Angewandte Chemie - International Edition, 2020, 59, 1818-1827.	13.8	71
58	Evaluating Heparin Products for Heparin-Induced Thrombocytopenia Using Surface Plasmon Resonance. Journal of Pharmaceutical Sciences, 2020, 109, 975-980.	3.3	13
59	Regulation of PTP1B activation through disruption of redox-complex formation. Nature Chemical Biology, 2020, 16, 122-125.	8.0	21
60	Urinary metabolomics analysis reveals the anti-diabetic effect of stachyose in high-fat diet/streptozotocin-induced type 2 diabetic rats. Carbohydrate Polymers, 2020, 229, 115534.	10.2	24
61	Interactions between Sclerostin and Glycosaminoglycans. Glycoconjugate Journal, 2020, 37, 119-128.	2.7	5
62	Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nature Chemistry, 2020, 12, 26-35.	13.6	193
63	Extraction, structure and bioactivities of the polysaccharides from Pleurotus eryngii: A review. International Journal of Biological Macromolecules, 2020, 150, 1342-1347.	7.5	67
64	Functional role of glycosaminoglycans in decellularized lung extracellular matrix. Acta Biomaterialia, 2020, 102, 231-246.	8.3	60
65	A Novel Laminin-Binding Protein Mediates Microbial-Endothelial Cell Interactions and Facilitates Dissemination of Lyme Disease Pathogens. Journal of Infectious Diseases, 2020, 221, 1438-1447.	4.0	7
66	Identification, repair and characterization of a benzyl alcohol-inducible promoter for recombinant proteins overexpression in Corynebacterium glutamicum. Enzyme and Microbial Technology, 2020, 141, 109651.	3.2	5
67	Xylosyltransferase 2 deficiency and organ homeostasis. Glycoconjugate Journal, 2020, 37, 755-765.	2.7	7
68	FAM20B-catalyzed glycosaminoglycans control murine tooth number by restricting FGFR2b signaling. BMC Biology, 2020, 18, 87.	3.8	13
69	A Revised Structure for the Glycolipid Terminus of Escherichia coli K5 Heparosan Capsular Polysaccharide. Biomolecules, 2020, 10, 1516.	4.0	11
70	Characterization of Peptide Activators of Protein Tyrosine Phosphatase 1B. Free Radical Biology and Medicine, 2020, 159, S26-S27.	2.9	0
71	Chemical O-sulfation of N-sulfoheparosan: a route to rare N-sulfo-3-O-sulfoglucosamine and 2-O-sulfoglucuronic acid. Glycoconjugate Journal, 2020, 37, 589-597.	2.7	0
72	Prominent members of the human gut microbiota express endo-acting O-glycanases to initiate mucin breakdown. Nature Communications, 2020, 11, 4017.	12.8	81

#	Article	IF	CITATIONS
73	Inhibition of glucuronomannan hexamer on the proliferation of lung cancer through binding with immunoglobulin G. Carbohydrate Polymers, 2020, 248, 116785.	10.2	9
74	Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discovery, 2020, 6, 50.	6.7	246
75	Filter-entrapment enrichment pull-down assay for glycosaminoglycan structural characterization and protein interaction. Carbohydrate Polymers, 2020, 245, 116623.	10.2	8
76	Fabrication of homotypic neural ribbons as a multiplex platform optimized for spinal cord delivery. Scientific Reports, 2020, 10, 12939.	3.3	12
77	Fucosylated Chondroitin Sulfate 9–18 Oligomers Exhibit Molecular Size-Independent Antithrombotic Activity while Circulating in the Blood. ACS Chemical Biology, 2020, 15, 2232-2246.	3.4	6
78	Combined genomic and transcriptomic analysis of the dibutyl phthalate metabolic pathway in <i>Arthrobacter</i> sp. ZJUTW. Biotechnology and Bioengineering, 2020, 117, 3712-3726.	3.3	21
79	The structure-activity relationship of the interactions of SARS-CoV-2 spike glycoproteins with glucuronomannan and sulfated galactofucan from Saccharina japonica. International Journal of Biological Macromolecules, 2020, 163, 1649-1658.	7.5	52
80	Mapping the Structural and Dynamic Determinants of pH-Sensitive Heparin Binding to Granulocyte Macrophage Colony Stimulating Factor. Biochemistry, 2020, 59, 3541-3553.	2.5	4
81	Structural Features of Heparin and Its Interactions With Cellular Prion Protein Measured by Surface Plasmon Resonance. Frontiers in Molecular Biosciences, 2020, 7, 594497.	3.5	6
82	Amphiphilic mPEG-Modified Oligo-Phenylalanine Nanoparticles Chemoenzymatically Synthesized via Papain. ACS Omega, 2020, 5, 30336-30347.	3.5	6
83	Structural characterization of a clinically described heparin-like substance in plasma causing bleeding. Carbohydrate Polymers, 2020, 244, 116443.	10.2	6
84	Interactions of fibroblast growth factors with sulfated galactofucan from Saccharina japonica. International Journal of Biological Macromolecules, 2020, 160, 26-34.	7.5	9
85	Characterization and application of a putative transcription factor (SUT2) in Pichia pastoris. Molecular Genetics and Genomics, 2020, 295, 1295-1304.	2.1	5
86	Lipids Analysis and Rapid Identification of Cod Products. European Journal of Lipid Science and Technology, 2020, 122, 1900444.	1.5	4
87	Biotechnology progress for removal of indoor gaseous formaldehyde. Applied Microbiology and Biotechnology, 2020, 104, 3715-3727.	3.6	38
88	Design of anti-inflammatory heparan sulfate to protect against acetaminophen-induced acute liver failure. Science Translational Medicine, 2020, 12, .	12.4	60
89	Enzymatic Synthesis of Chondroitin Sulfate E to Attenuate Bacteria Lipopolysaccharide-Induced Organ Damage. ACS Central Science, 2020, 6, 1199-1207.	11.3	23
90	Structural analysis of a glucoglucuronan derived from laminarin and the mechanisms of its anti-lung cancer activity. International Journal of Biological Macromolecules, 2020, 163, 776-787.	7.5	15

#	Article	IF	CITATIONS
91	Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions. Antiviral Research, 2020, 181, 104873.	4.1	233
92	Structural characteristics and anti-complement activities of polysaccharides from Sargassum hemiphyllum. Glycoconjugate Journal, 2020, 37, 553-563.	2.7	6
93	Frontispiz: 3â€∢i>Oâ€Sulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake. Angewandte Chemie, 2020, 132, .	2.0	0
94	Frontispiece: 3â€≺i>Oâ€Sulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0
95	Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review. International Journal of Biological Macromolecules, 2020, 150, 765-774.	7.5	152
96	Lipase-catalyzed ring-opening copolymerization of ω-pentadecalactone and δ-valerolactone by reactive extrusion. Green Chemistry, 2020, 22, 662-668.	9.0	12
97	Structural analysis of a novel sulfated galacto-fuco-xylo-glucurono-mannan from Sargassum fusiforme and its anti-lung cancer activity. International Journal of Biological Macromolecules, 2020, 149, 450-458.	7.5	15
98	Non-anticoagulant Heparin as a Pre-exposure Prophylaxis Prevents Lyme Disease Infection. ACS Infectious Diseases, 2020, 6, 503-514.	3.8	12
99	Mass spectrometric evidence for the mechanism of free-radical depolymerization of various types of glycosaminoglycans. Carbohydrate Polymers, 2020, 233, 115847.	10.2	9
100	Digestibility of squash polysaccharide under simulated salivary, gastric and intestinal conditions and its impact on short-chain fatty acid production in type-2 diabetic rats. Carbohydrate Polymers, 2020, 235, 115904.	10.2	18
101	Structural characterization and anti-lung cancer activity of a sulfated glucurono-xylo-rhamnan from Enteromorpha prolifera. Carbohydrate Polymers, 2020, 237, 116143.	10.2	13
102	Unique Cell Surface Mannan of Yeast Pathogen Candida auris with Selective Binding to IgG. ACS Infectious Diseases, 2020, 6, 1018-1031.	3.8	20
103	Increased CHST15 follows decline in arylsulfatase B (ARSB) and disinhibition of non-canonical WNT signaling: potential impact on epithelial and mesenchymal identity. Oncotarget, 2020, 11, 2327-2344.	1.8	12
104	Glycan Markers of Human Stem Cells Assigned with Beam Search Arrays*[S]. Molecular and Cellular Proteomics, 2019, 18, 1981-2002.	3.8	15
105	Intravenous fluid resuscitation is associated with septic endothelial glycocalyx degradation. Critical Care, 2019, 23, 259.	5.8	121
106	Bottom-up and top-down profiling of pentosan polysulfate. Analyst, The, 2019, 144, 4781-4786.	3.5	20
107	Highly purified fucosylated chondroitin sulfate oligomers with selective intrinsic factor Xase complex inhibition. Carbohydrate Polymers, 2019, 222, 115025.	10.2	14
108	Expedient Synthesis of Core Disaccharide Building Blocks from Natural Polysaccharides for Heparan Sulfate Oligosaccharide Assembly. Angewandte Chemie, 2019, 131, 18750-18756.	2.0	8

#	Article	IF	CITATIONS
109	Expedient Synthesis of Core Disaccharide Building Blocks from Natural Polysaccharides for Heparan Sulfate Oligosaccharide Assembly. Angewandte Chemie - International Edition, 2019, 58, 18577-18583.	13.8	38
110	Loss of endothelial sulfatase-1 after experimental sepsis attenuates subsequent pulmonary inflammatory responses. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L667-L677.	2.9	15
111	Circulating heparan sulfate fragments mediate septic cognitive dysfunction. Journal of Clinical Investigation, 2019, 129, 1779-1784.	8.2	79
112	Comparison of the Interactions of Different Growth Factors and Glycosaminoglycans. Molecules, 2019, 24, 3360.	3.8	56
113	Online capillary zone electrophoresis negative electron transfer dissociation tandem mass spectrometry of glycosaminoglycan mixtures. International Journal of Mass Spectrometry, 2019, 445, 116209.	1.5	17
114	High-throughput method for in process monitoring of 3-O-sulfotransferase catalyzed sulfonation in bioengineered heparin synthesis. Analytical Biochemistry, 2019, 586, 113419.	2.4	4
115	Preparation of salidroside with <i>n</i> -butyl <i>β</i> -D-glucoside as the glycone donor via a two-step enzymatic synthesis catalyzed by immobilized <i>β</i> -glucosidase from bitter almonds. Biocatalysis and Biotransformation, 2019, 37, 246-260.	2.0	5
116	Glycosaminoglycan Compositional Analysis of Relevant Tissues in Zika Virus Pathogenesis and <i>in Vitro</i> Evaluation of Heparin as an Antiviral against Zika Virus Infection. Biochemistry, 2019, 58, 1155-1166.	2.5	28
117	Specificity and action pattern of heparanase Bp, a β-glucuronidase from Burkholderia pseudomallei. Glycobiology, 2019, 29, 572-581.	2.5	10
118	Comparison of Low-Molecular-Weight Heparins Prepared From Ovine Heparins With Enoxaparin. Clinical and Applied Thrombosis/Hemostasis, 2019, 25, 107602961984070.	1.7	8
119	Major Differences between the Self-Assembly and Seeding Behavior of Heparin-Induced and in Vitro Phosphorylated Tau and Their Modulation by Potential Inhibitors. ACS Chemical Biology, 2019, 14, 1363-1379.	3.4	34
120	Heparin Contamination and Issues Related to Raw Materials and Controls. AAPS Advances in the Pharmaceutical Sciences Series, 2019, , 191-206.	0.6	3
121	Endothelial Glycocalyx Shedding Predicts Donor Organ Acceptability and Is Associated With Primary Graft Dysfunction in Lung Transplant Recipients. Transplantation, 2019, 103, 1277-1285.	1.0	21
122	Heavy Heparin: A Stable Isotopeâ€Enriched, Chemoenzymaticallyâ€Synthesized, Polyâ€Component Drug. Angewandte Chemie - International Edition, 2019, 58, 5962-5966.	13.8	35
123	Characterization and comparative analysis of toxin–antitoxin systems in <i>Acetobacter pasteurianus</i> . Journal of Industrial Microbiology and Biotechnology, 2019, 46, 869-882.	3.0	11
124	Glycosaminoglycans in human cerebrospinal fluid determined by LC-MS/MS MRM. Analytical Biochemistry, 2019, 567, 82-84.	2.4	16
125	Chemometric analysis of porcine, bovine and ovine heparins. Journal of Pharmaceutical and Biomedical Analysis, 2019, 164, 345-352.	2.8	16
126	Non-Anticoagulant Low Molecular Weight Heparins for Pharmaceutical Applications. Journal of Medicinal Chemistry, 2019, 62, 1067-1073.	6.4	10

#	Article	IF	CITATIONS
127	Metabolic engineering of cyanobacteria for photoautotrophic production of heparosan, a pharmaceutical precursor of heparin. Algal Research, 2019, 37, 57-63.	4.6	41
128	Amphiphilic bromelain-synthesized oligo-phenylalanine grafted with methoxypolyethylene glycol possessing stabilizing thermo-responsive emulsion properties. Journal of Colloid and Interface Science, 2019, 538, 1-14.	9.4	6
129	Mechanism of enhanced oral absorption of akebia saponin D by a self-nanoemulsifying drug delivery system loaded with phospholipid complex. Drug Development and Industrial Pharmacy, 2019, 45, 124-129.	2.0	14
130	â€stimulated crosslinking of catecholâ€conjugated hydroxyethyl chitosan as a tissue adhesive. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 582-593.	3.4	16
131	Effects of fermentation on the hemolytic activity and degradation of Camellia oleifera saponins by Lactobacillus crustorum and Bacillus subtilis. FEMS Microbiology Letters, 2018, 365, .	1.8	15
132	Heparin/heparan sulfate analysis by covalently modified reverse polarity capillary zone electrophoresis-mass spectrometry. Journal of Chromatography A, 2018, 1545, 75-83.	3.7	29
133	Structure and conformation of $\hat{l}\pm$ -glucan extracted from Agaricus blazei Murill by high-speed shearing homogenization. International Journal of Biological Macromolecules, 2018, 113, 558-564.	7.5	32
134	Purification and structural elucidation of a water-soluble polysaccharide from the fruiting bodies of the Grifola frondosa. International Journal of Biological Macromolecules, 2018, 115, 221-226.	7.5	41
135	Antithrombin III-Binding Site Analysis of Low-Molecular-Weight Heparin Fractions. Journal of Pharmaceutical Sciences, 2018, 107, 1290-1295.	3.3	16
136	Glycosaminoglycans from bovine eye vitreous humour and interaction with collagen type II. Glycoconjugate Journal, 2018, 35, 119-128.	2.7	19
137	Structural and Functional Components of the Skate Sensory Organ Ampullae of Lorenzini. ACS Chemical Biology, 2018, 13, 1677-1685.	3.4	18
138	Epithelial Heparan Sulfate Contributes to Alveolar Barrier Function and Is Shed during Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 363-374.	2.9	40
139	A novel structural fucosylated chondroitin sulfate from Holothuria Mexicana and its effects on growth factors binding and anticoagulation. Carbohydrate Polymers, 2018, 181, 1160-1168.	10.2	58
140	Glycosaminoglycans from fish swim bladder: isolation, structural characterization and bioactive potential. Glycoconjugate Journal, 2018, 35, 87-94.	2.7	20
141	Dimerization interface of osteoprotegerin revealed by hydrogen–deuterium exchange mass spectrometry. Journal of Biological Chemistry, 2018, 293, 17523-17535.	3.4	6
142	PBN11-8, a Cytotoxic Polypeptide Purified from Marine Bacillus, Suppresses Invasion and Migration of Human Hepatocellular Carcinoma Cells by Targeting Focal Adhesion Kinase Pathways. Polymers, 2018, 10, 1043.	4.5	11
143	Impact of Temperature on Heparin and Protein Interactions. Biochemistry & Physiology, 2018, 07, .	0.2	14
144	A mutant-cell library for systematic analysis of heparan sulfate structure–function relationships. Nature Methods, 2018, 15, 889-899.	19.0	71

#	Article	IF	CITATIONS
145	Copper regulates the interactions of antimicrobial piscidin peptides from fish mast cells with formyl peptide receptors and heparin. Journal of Biological Chemistry, 2018, 293, 15381-15396.	3.4	38
146	Decline in arylsulfatase B expression increases EGFR expression by inhibiting the protein-tyrosine phosphatase SHP2 and activating JNK in prostate cells. Journal of Biological Chemistry, 2018, 293, 11076-11087.	3.4	21
147	Akebia saponin D reverses corticosterone hypersecretion in an Alzheimer's disease rat model. Biomedicine and Pharmacotherapy, 2018, 107, 219-225.	5.6	23
148	Structural Characterization and Interaction with RCA120 of a Highly Sulfated Keratan Sulfate from Blue Shark (Prionace glauca) Cartilage. Marine Drugs, 2018, 16, 128.	4.6	3
149	Polymorphic factor H-binding activity of CspA protects Lyme borreliae from the host complement in feeding ticks to facilitate tick-to-host transmission. PLoS Pathogens, 2018, 14, e1007106.	4.7	63
150	A flexible carbon/sulfur-cellulose core-shell structure for advanced lithium–sulfur batteries. Energy Storage Materials, 2018, 15, 388-395.	18.0	38
151	Increased soluble heterologous expression of a rat brain 3- O -sulfotransferase 1 – A key enzyme for heparin biosynthesis. Protein Expression and Purification, 2018, 151, 23-29.	1.3	7
152	Cocaine Exposure Modulates Perineuronal Nets and Synaptic Excitability of Fast-Spiking Interneurons in the Medial Prefrontal Cortex. ENeuro, 2018, 5, ENEURO.0221-18.2018.	1.9	57
153	Recent Progress of Marine Polypeptides as Anticancer Agents. Recent Patents on Anti-Cancer Drug Discovery, 2018, 13, 445-454.	1.6	14
154	Analysis of heparin oligosaccharides by capillary electrophoresis–negative-ion electrospray ionization mass spectrometry. Analytical and Bioanalytical Chemistry, 2017, 409, 411-420.	3.7	41
155	Isolation of a lectin binding rhamnogalacturonan-I containing pectic polysaccharide from pumpkin. Carbohydrate Polymers, 2017, 163, 330-336.	10.2	99
156	Parent heparin and daughter LMW heparin correlation analysis using LC-MS and NMR. Analytica Chimica Acta, 2017, 961, 91-99.	5.4	16
157	Interaction of Zika Virus Envelope Protein with Glycosaminoglycans. Biochemistry, 2017, 56, 1151-1162.	2.5	102
158	Construction and characterisation of a heparan sulphate heptasaccharide microarray. Chemical Communications, 2017, 53, 1743-1746.	4.1	40
159	A simple strategy for the separation and purification of water-soluble polysaccharides from the fresh Spirulina platensis. Separation Science and Technology, 2017, 52, 456-466.	2.5	13
160	A comparative secretome analysis of industrial Aspergillus oryzae and its spontaneous mutant ZJGS-LZ-21. International Journal of Food Microbiology, 2017, 248, 1-9.	4.7	19
161	Fibroblast Growth Factor Signaling Mediates Pulmonary Endothelial Glycocalyx Reconstitution. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 727-737.	2.9	67
162	The 2.8ÂÃ Electron Microscopy Structure of Adeno-Associated Virus-DJ Bound by a Heparinoid Pentasaccharide. Molecular Therapy - Methods and Clinical Development, 2017, 5, 1-12.	4.1	30

#	Article	IF	CITATIONS
163	Glycan Determinants of Heparin-Tau Interaction. Biophysical Journal, 2017, 112, 921-932.	0.5	68
164	Novel method for measurement of heparin anticoagulant activity using SPR. Analytical Biochemistry, 2017, 526, 39-42.	2.4	20
165	Structural Analysis of Heparin-Derived 3- O -Sulfated Tetrasaccharides: Antithrombin Binding Site Variants. Journal of Pharmaceutical Sciences, 2017, 106, 973-981.	3.3	48
166	Top-down and bottom-up analysis of commercial enoxaparins. Journal of Chromatography A, 2017, 1480, 32-40.	3.7	17
167	Expression and secretion of glycosylated heparin biosynthetic enzymes using Komagataella pastoris. Applied Microbiology and Biotechnology, 2017, 101, 2843-2851.	3.6	11
168	Enzymatic Generation of Highly Anticoagulant Bovine Intestinal Heparin. Journal of Medicinal Chemistry, 2017, 60, 8673-8679.	6.4	19
169	Biodegradable and Bioactive PCL–PGS Core–Shell Fibers for Tissue Engineering. ACS Omega, 2017, 2, 6321-6328.	3.5	30
170	Glycosaminoglycans and glycolipids as potential biomarkers in lung cancer. Glycoconjugate Journal, 2017, 34, 661-669.	2.7	26
171	Construction and functional characterization of truncated versions of recombinant keratanase II from Bacillus circulans. Glycoconjugate Journal, 2017, 34, 643-649.	2.7	10
172	Comparative proteomics of matrix fractions between pimpled and normal chicken eggshells. Journal of Proteomics, 2017, 167, 1-11.	2.4	5
173	Improved octyl glucoside synthesis using immobilized \hat{l}^2 -glucosidase on PA-M with reduced glucose surplus inhibition. Biocatalysis and Biotransformation, 2017, 35, 349-362.	2.0	11
174	Sequencing the Dermatan Sulfate Chain of Decorin. Journal of the American Chemical Society, 2017, 139, 16986-16995.	13.7	40
175	Glycan Activation of a Sheddase: Electrostatic Recognition between Heparin and proMMP-7. Structure, 2017, 25, 1100-1110.e5.	3.3	11
176	Surprising absence of heparin in the intestinal mucosa of baby pigs. Glycobiology, 2017, 27, 57-63.	2.5	14
177	Glycosaminoglycans from chicken muscular stomach or gizzard. Glycoconjugate Journal, 2017, 34, 119-126.	2.7	1
178	Nanostructured glycan architecture is important in the inhibition of influenza A virus infection. Nature Nanotechnology, 2017, 12, 48-54.	31.5	131
179	Gas-Phase Analysis of the Complex of Fibroblast GrowthFactor 1 with Heparan Sulfate: A Traveling Wave Ion Mobility Spectrometry (TWIMS) and Molecular Modeling Study. Journal of the American Society for Mass Spectrometry, 2017, 28, 96-109.	2.8	18
180	Comparative Genomics Reveals Specific Genetic Architectures in Nicotine Metabolism of Pseudomonas sp. JY-Q. Frontiers in Microbiology, 2017, 8, 2085.	3.5	25

#	Article	IF	CITATIONS
181	Structural and activity variability of fractions with different charge density and chain length from pharmaceutical heparins. Glycoconjugate Journal, 2017, 34, 545-552.	2.7	2
182	Borrelia burgdorferi glycosaminoglycan-binding proteins: a potential target for new therapeutics against Lyme disease. Microbiology (United Kingdom), 2017, 163, 1759-1766.	1.8	25
183	GlycCompSoft: Software for Automated Comparison of Low Molecular Weight Heparins Using Top-Down LC/MS Data. PLoS ONE, 2016, 11, e0167727.	2.5	11
184	Comprehensive Identification and Quantitation of Basic Building Blocks for Low-Molecular Weight Heparin. Analytical Chemistry, 2016, 88, 7738-7744.	6.5	26
185	Urinary Glycosaminoglycans Predict Outcomes in Septic Shock and Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 439-449.	5.6	114
186	Analysis of Heparins Derived From Bovine Tissues and Comparison to Porcine Intestinal Heparins. Clinical and Applied Thrombosis/Hemostasis, 2016, 22, 520-527.	1.7	41
187	Structural elucidation of polysaccharide containing 3-O-methyl galactose from fruiting bodies of Pleurotus citrinopileatus. Carbohydrate Research, 2016, 434, 72-76.	2.3	17
188	Selective, switchable fluorescent probe for heparin based onÂaggregation-induced emission. Analytical Biochemistry, 2016, 514, 48-54.	2.4	13
189	Heparin's solution structure determined by smallâ€angle neutron scattering. Biopolymers, 2016, 105, 905-913.	2.4	12
190	Structure and bioactivity of a polysaccharide containing uronic acid from Polyporus umbellatus sclerotia. Carbohydrate Polymers, 2016, 152, 222-230.	10.2	90
191	Kinetic and Structural Studies of Interactions between Glycosaminoglycans and Langerin. Biochemistry, 2016, 55, 4552-4559.	2.5	25
192	Recombinant Escherichia coli K5 strain with the deletion of waaR gene decreases the molecular weight of the heparosan capsular polysaccharide. Applied Microbiology and Biotechnology, 2016, 100, 7877-7885.	3.6	7
193	Abnormally High Content of Free Glucosamine Residues Identified in a Preparation of Commercially Available Porcine Intestinal Heparan Sulfate. Analytical Chemistry, 2016, 88, 6648-6652.	6.5	8
194	Examination of Glycosaminoglycan Binding Sites on the XCL1 Dimer. Biochemistry, 2016, 55, 1214-1225.	2.5	15
195	Surface modification of a polyethylene film for anticoagulant and antimicrobial catheter. Reactive and Functional Polymers, 2016, 100, 142-150.	4.1	27
196	Keratan sulfate glycosaminoglycan from chicken egg white. Glycobiology, 2016, 26, 693-700.	2.5	18
197	Changes in composition and sulfation patterns of glycoaminoglycans in renal cell carcinoma. Glycoconjugate Journal, 2016, 33, 103-112.	2.7	24
198	Capillary Electrophoresis–Mass Spectrometry for the Analysis of Heparin Oligosaccharides and Low Molecular Weight Heparin. Analytical Chemistry, 2016, 88, 1937-1943.	6.5	51

#	Article	lF	CITATIONS
199	A purification process for heparin and precursor polysaccharides using the pH responsive behavior of chitosan. Biotechnology Progress, 2015, 31, 1348-1359.	2.6	6
200	Optimization of bioprocess conditions improves production of a CHO cellâ€derived, bioengineered heparin. Biotechnology Journal, 2015, 10, 1067-1081.	3.5	26
201	Detection of cerebrospinal fluid leakage by specific measurement of transferrin glycoforms. Electrophoresis, 2015, 36, 2425-2432.	2.4	8
202	SPR Biosensor Probing the Interactions between TIMP-3 and Heparin/GAGs. Biosensors, 2015, 5, 500-512.	4.7	21
203	Interactions between nattokinase and heparin/GAGs. Glycoconjugate Journal, 2015, 32, 695-702.	2.7	7
204	Stable Isotopic Analysis of Porcine, Bovine, and Ovine Heparins. Journal of Pharmaceutical Sciences, 2015, 104, 457-463.	3.3	16
205	Production of a low molecular weight heparin production using recombinant glycuronidase. Carbohydrate Polymers, 2015, 134, 151-157.	10.2	4
206	Analysis of Total Human Urinary Glycosaminoglycan Disaccharides by Liquid Chromatography–Tandem Mass Spectrometry. Analytical Chemistry, 2015, 87, 6220-6227.	6.5	73
207	High Cell Density Cultivation of Recombinant Escherichia coli Strains Expressing 2-O-Sulfotransferase and C5-Epimerase for the Production of Bioengineered Heparin. Applied Biochemistry and Biotechnology, 2015, 175, 2986-2995.	2.9	17
208	The Responses of Hyperglycemic Dividing Mesangial Cells to Heparin Are Mediated by the Non-reducing Terminal Trisaccharide. Journal of Biological Chemistry, 2015, 290, 29045-29050.	3.4	7
209	High Structural Resolution Hydroxyl Radical Protein Footprinting Reveals an Extended Robo1-Heparin Binding Interface. Journal of Biological Chemistry, 2015, 290, 10729-10740.	3.4	54
210	Rapid and accurate determination of the lignin content of lignocellulosic biomass by solid-state NMR. Fuel, 2015, 141, 39-45.	6.4	74
211	Circulating Endothelial Glycocalyx Fragments Impact Endothelial and Epithelial Repair after Septic Lung Injury. FASEB Journal, 2015, 29, 863.9.	0.5	0
212	Compositional analysis and structural elucidation of glycosaminoglycans in chicken eggs. Glycoconjugate Journal, 2014, 31, 593-602.	2.7	27
213	Analysis of 3-O-sulfo group-containing heparin tetrasaccharides in heparin by liquid chromatography–mass spectrometry. Analytical Biochemistry, 2014, 455, 3-9.	2.4	36
214	Characterization of human placental glycosaminoglycans and regional binding to VAR2CSA in malaria infected erythrocytes. Glycoconjugate Journal, 2014, 31, 109-116.	2.7	17
215	Structure and Activity of a New Low-Molecular-Weight Heparin Produced by Enzymatic Ultrafiltration. Journal of Pharmaceutical Sciences, 2014, 103, 1375-1383.	3.3	31
216	Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11299-11304.	7.1	423

#	Article	IF	CITATIONS
217	Heparinoids Activate a Protease, Secreted by Mucosa and Tumors, via Tethering Supplemented by Allostery. ACS Chemical Biology, 2014, 9, 957-966.	3.4	12
218	Method to Detect Contaminants in Heparin Using Radical Depolymerization and Liquid Chromatography–Mass Spectrometry. Analytical Chemistry, 2014, 86, 326-330.	6.5	32
219	Probing the impact of GFP tagging on Robo1-heparin interaction. Glycoconjugate Journal, 2014, 31, 299-307.	2.7	10
220	Quantitation of heparosan with heparin lyase III and spectrophotometry. Analytical Biochemistry, 2014, 447, 46-48.	2.4	10
221	Heparin stability by determining unsubstituted amino groups using hydrophilic interaction chromatography mass spectrometry. Analytical Biochemistry, 2014, 461, 46-48.	2.4	22
222	Divergent effect of glycosaminoglycans on the inÂvitro aggregation of serum amyloid A. Biochimie, 2014, 104, 70-80.	2.6	27
223	Isolation and structural characterization of glycosaminoglycans from heads of red salmon (). Jacobs Journal of Biotechnology and Bioengineering, 2014, 1, 002.	0.0	0
224	Characterization of Interactions between Heparin/Glycosaminoglycan and Adeno-Associated Virus. Biochemistry, 2013, 52, 6275-6285.	2.5	32
225	Immobilized enzymes to convert N-sulfo, N-acetyl heparosan to a critical intermediate in the production of bioengineered heparin. Journal of Biotechnology, 2013, 167, 241-247.	3.8	25
226	Structural Characterization of Pharmaceutical Heparins Prepared from Different Animal Tissues. Journal of Pharmaceutical Sciences, 2013, 102, 1447-1457.	3.3	99
227	Structural Studies of the Interaction of <i>Crataeva tapia</i> Bark Protein with Heparin and Other Glycosaminoglycans. Biochemistry, 2013, 52, 2148-2156.	2.5	22
228	Heparin Oligosaccharides Inhibit Chemokine (CXC Motif) Ligand 12 (CXCL12) Cardioprotection by Binding Orthogonal to the Dimerization Interface, Promoting Oligomerization, and Competing with the Chemokine (CXC Motif) Receptor 4 (CXCR4) N Terminus. Journal of Biological Chemistry, 2013, 288, 737-746	3.4	72
229	Characterization of the interaction between Robo1 and heparin and other glycosaminoglycans. Biochimie, 2013, 95, 2345-2353.	2.6	25
230	Microscale separation of heparosan, heparan sulfate, and heparin. Analytical Biochemistry, 2013, 434, 215-217.	2.4	9
231	Microanalysis of stomach cancer glycosaminoglycans. Glycoconjugate Journal, 2013, 30, 701-707.	2.7	17
232	Isolation of bovine corneal keratan sulfate and its growth factor and morphogen binding. FEBS Journal, 2013, 280, 2285-2293.	4.7	51
233	Binding affinities of vascular endothelial growth factor (VEGF) for heparin-derived oligosaccharides. Bioscience Reports, 2012, 32, 71-81.	2.4	111
234	A Structural Analysis of Glycosaminoglycans from Lethal and Nonlethal Breast Cancer Tissues: Toward a Novel Class of Theragnostics for Personalized Medicine in Oncology?. OMICS A Journal of Integrative Biology, 2012, 16, 79-89.	2.0	50

#	Article	IF	CITATIONS
235	Cell-Based Microscale Isolation of Glycoaminoglycans for Glycomics Study. Journal of Carbohydrate Chemistry, 2012, 31, 420-435.	1.1	11
236	Top-Down Approach for the Direct Characterization of Low Molecular Weight Heparins Using LC-FT-MS. Analytical Chemistry, 2012, 84, 8822-8829.	6.5	103
237	Biophysical characterization of glycosaminoglycan-IL-7 interactions using SPR. Biochimie, 2012, 94, 242-249.	2.6	21
238	Analysis of the Interaction between Heparin and Follistatin and Heparin and Follistatin–Ligand Complexes Using Surface Plasmon Resonance. Biochemistry, 2012, 51, 6797-6803.	2.5	12
239	Metabolic engineering of Chinese hamster ovary cells: Towards a bioengineered heparin. Metabolic Engineering, 2012, 14, 81-90.	7.0	67
240	Engineering of routes to heparin and related polysaccharides. Applied Microbiology and Biotechnology, 2012, 93, 1-16.	3.6	106
241	Response surface optimization of the heparosan N-deacetylation in producing bioengineered heparin. Journal of Biotechnology, 2011, 156, 188-196.	3.8	30
242	Structural characterization of heparins from different commercial sources. Analytical and Bioanalytical Chemistry, 2011, 401, 2793-2803.	3.7	62
243	Impact of Autoclave Sterilization on the Activity and Structure of Formulated Heparin. Journal of Pharmaceutical Sciences, 2011, 100, 3396-3404.	3.3	25
244	Mass balance analysis of contaminated heparin product. Analytical Biochemistry, 2011, 408, 147-156.	2.4	9
245	Ultra-performance ion-pairing liquid chromatography with on-line electrospray ion trap mass spectrometry for heparin disaccharide analysis. Analytical Biochemistry, 2011, 415, 59-66.	2.4	66
246	<i>E. coli</i> K5 fermentation and the preparation of heparosan, a bioengineered heparin precursor. Biotechnology and Bioengineering, 2010, 107, 964-973.	3.3	106
247	Glycosaminoglycans of the Porcine Central Nervous System. Biochemistry, 2010, 49, 9839-9847.	2.5	21
248	Control of Promatrilysin (MMP7) Activation and Substrate-specific Activity by Sulfated Glycosaminoglycans. Journal of Biological Chemistry, 2009, 284, 27924-27932.	3.4	61
249	Oversulfated chondroitin sulfate interaction with heparin-binding proteins: New insights into adverse reactions from contaminated heparins. Biochemical Pharmacology, 2009, 78, 292-300.	4.4	69
250	Analysis of pharmaceutical heparins and potential contaminants using 1H-NMR and PAGE. Journal of Pharmaceutical Sciences, 2009, 98, 4017-4026.	3.3	70
251	Structural characterization of glycosaminoglycans from zebrafish in different ages. Glycoconjugate Journal, 2009, 26, 211-218.	2.7	29
252	Compositional Analysis of Heparin/Heparan Sulfate Interacting with Fibroblast Growth Factor·Fibroblast Growth Factor Receptor Complexes. Biochemistry, 2009, 48, 8379-8386.	2.5	67

#	ARTICLE	IF	CITATIONS
253	Pharmacokinetics and Pharmacodynamics of Oral Heparin Solid Dosage Form in Healthy Human Subjects. Journal of Clinical Pharmacology, 2007, 47, 1508-1520.	2.0	47
254	Kinetic and Structural Studies on Interactions between Heparin or Heparan Sulfate and Proteins of the Hedgehog Signaling Pathway. Biochemistry, 2007, 46, 3933-3941.	2.5	71
255	Pharmacokinetics and Pharmacodynamics of Oral Heparin Solid Dosage Form in Healthy Human Subjects Blood, 2007, 110, 4009-4009.	1.4	1
256	Crystallographic Analysis of Calcium-dependent Heparin Binding to Annexin A2. Journal of Biological Chemistry, 2006, 281, 31689-31695.	3.4	78
257	Microscale isolation and analysis of heparin from plasma using an anion-exchange spin column. Analytical Biochemistry, 2006, 353, 284-286.	2.4	36
258	Isolation and characterization of heparan sulfate from various murine tissues. Glycoconjugate Journal, 2006, 23, 555-563.	2.7	72
259	Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain. Genes and Development, 2006, 20, 185-198.	5.9	171
260	Identification and Characterization of a Glycosaminoglycan Recognition Element of the C Chemokine Lymphotactin. Journal of Biological Chemistry, 2004, 279, 12598-12604.	3.4	68
261	Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligand-binding promiscuity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 935-940.	7.1	168
262	Structural determinants of heparan sulfate interactions with Slit proteins. Biochemical and Biophysical Research Communications, 2004, 317, 352-357.	2.1	34
263	Kinetic Model for FGF, FGFR, and Proteoglycan Signal Transduction Complex Assemblyâ€. Biochemistry, 2004, 43, 4724-4730.	2.5	163
264	Studies on the Effect of Calcium in Interactions Between Heparin and Heparin Cofactor II Using Surface Plasmon Resonance. Clinical and Applied Thrombosis/Hemostasis, 2004, 10, 249-257.	1.7	6
265	Cellular Binding of Hepatitis C Virus Envelope Glycoprotein E2 Requires Cell Surface Heparan Sulfate. Journal of Biological Chemistry, 2003, 278, 41003-41012.	3.4	403
266	A Highly Stable Covalent Conjugated Heparin Biochip for Heparin–Protein Interaction Studies. Analytical Biochemistry, 2002, 304, 271-273.	2.4	52
267	Separation of α-acid glycoprotein glycoforms using affinity-based reversed micellar extraction and separation. Biotechnology and Bioengineering, 2000, 70, 484-490.	3.3	9