

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8523076/publications.pdf Version: 2024-02-01

\\/ELL

#	Article	IF	CITATIONS
1	Bifunctional Nickel Phosphide Nanocatalysts Supported on Carbon Fiber Paper for Highly Efficient and Stable Overall Water Splitting. Advanced Functional Materials, 2016, 26, 4067-4077.	14.9	591
2	Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide pre-catalysts. Chemical Science, 2018, 9, 3470-3476.	7.4	443
3	Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nature Communications, 2018, 9, 4531.	12.8	410
4	Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy and Environmental Science, 2018, 11, 1819-1827.	30.8	350
5	Hydrothermal Synthesis of Monolithic Co ₃ Se ₄ Nanowire Electrodes for Oxygen Evolution and Overall Water Splitting with High Efficiency and Extraordinary Catalytic Stability. Advanced Energy Materials, 2017, 7, 1602579.	19.5	267
6	The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes. Chemical Communications, 2019, 55, 8744-8763.	4.1	246
7	Fast fabrication of self-supported porous nickel phosphide foam for efficient, durable oxygen evolution and overall water splitting. Journal of Materials Chemistry A, 2016, 4, 5639-5646.	10.3	224
8	From water reduction to oxidation: Janus Co-Ni-P nanowires as high-efficiency and ultrastable electrocatalysts for over 3000Âh water splitting. Journal of Power Sources, 2016, 330, 156-166.	7.8	190
9	Smart Hybrids of Zn ₂ GeO ₄ Nanoparticles and Ultrathin g ₃ N ₄ Layers: Synergistic Lithium Storage and Excellent Electrochemical Performance. Advanced Functional Materials, 2015, 25, 6858-6866.	14.9	182
10	Facile synthesis of iron phosphide nanorods for efficient and durable electrochemical oxygen evolution. Chemical Communications, 2016, 52, 8711-8714.	4.1	168
11	Vapor–solid synthesis of monolithic single-crystalline CoP nanowire electrodes for efficient and robust water electrolysis. Chemical Science, 2017, 8, 2952-2958.	7.4	162
12	Chrysanthemum-like α-FeOOH microspheres produced by a simple green method and their outstanding ability in heavy metal ion removal. Journal of Materials Chemistry, 2011, 21, 7878.	6.7	158
13	Glucose-assisted synthesis of the hierarchical TiO ₂ nanowire@MoS ₂ nanosheet nanocomposite and its synergistic lithium storage performance. Journal of Materials Chemistry A, 2015, 3, 2762-2769.	10.3	142
14	Superb fluoride and arsenic removal performance of highly ordered mesoporous aluminas. Journal of Hazardous Materials, 2011, 198, 143-150.	12.4	137
15	Degradation of solid oxide electrolysis cells: Phenomena, mechanisms, and emerging mitigation strategies—A review. Journal of Materials Science and Technology, 2020, 55, 35-55.	10.7	133
16	Electrolyzer Design for Flexible Decoupled Water Splitting and Organic Upgrading with Electron Reservoirs. CheM, 2018, 4, 637-649.	11.7	130
17	Interfacial Sites between Cobalt Nitride and Cobalt Act as Bifunctional Catalysts for Hydrogen Electrochemistry. ACS Energy Letters, 2019, 4, 1594-1601.	17.4	128
18	Metal silicate nanotubes with nanostructured walls as superb adsorbents for uranyl ions and lead ions in water. Journal of Materials Chemistry, 2012, 22, 17222.	6.7	125

Wei Li

#	Article	IF	CITATIONS
19	Extremely high arsenic removal capacity for mesoporous aluminium magnesium oxide composites. Environmental Science: Nano, 2016, 3, 94-106.	4.3	123
20	Vertically Aligned Porous Nickel(II) Hydroxide Nanosheets Supported on Carbon Paper with Longâ€Term Oxygen Evolution Performance. Chemistry - an Asian Journal, 2017, 12, 543-551.	3.3	118
21	Low-cost synthesis of graphitic carbon nanofibers as excellent room temperature sensors for explosive gases. Journal of Materials Chemistry, 2012, 22, 15342.	6.7	114
22	Low-cost and large-scale synthesis of alkaline earth metal germanate nanowires as a new class of lithium ion battery anode material. Energy and Environmental Science, 2012, 5, 8007.	30.8	111
23	Orderly integration of porous TiO2(B) nanosheets into bunchy hierarchical structure for high-rate and ultralong-lifespan lithium-ion batteries. Nano Energy, 2017, 31, 1-8.	16.0	109
24	Self-supported Co-Ni-P ternary nanowire electrodes for highly efficient and stable electrocatalytic hydrogen evolution in acidic solution. Catalysis Today, 2017, 287, 122-129.	4.4	105
25	Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes. Nano Energy, 2022, 98, 107269.	16.0	102
26	Nitrogen-Doped Perovskite as a Bifunctional Cathode Catalyst for Rechargeable Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2018, 10, 5543-5550.	8.0	100
27	High-Performance Coral Reef-like Carbon Nitrides: Synthesis and Application in Photocatalysis and Heavy Metal Ion Adsorption. ACS Applied Materials & Interfaces, 2017, 9, 4540-4547.	8.0	94
28	Atomic-layer-deposited ultrafine MoS ₂ nanocrystals on cobalt foam for efficient and stable electrochemical oxygen evolution. Nanoscale, 2017, 9, 2711-2717.	5.6	88
29	Flowerlike WSe ₂ and WS ₂ microspheres: one-pot synthesis, formation mechanism and application in heavy metal ion sequestration. Chemical Communications, 2016, 52, 4481-4484.	4.1	81
30	Efficient and durable electrochemical hydrogen evolution using cocoon-like MoS2 with preferentially exposed edges. International Journal of Hydrogen Energy, 2016, 41, 9344-9354.	7.1	74
31	Engineering stable Zn-MnO2 batteries by synergistic stabilization between the carbon nanofiber core and birnessite-MnO2 nanosheets shell. Chemical Engineering Journal, 2021, 405, 126969.	12.7	74
32	Nanoporous Nickel Spheres as Highly Active Catalyst for Hydrogen Generation from Ammonia Borane. ChemSusChem, 2010, 3, 1241-1244.	6.8	73
33	Copper germanate nanowire/reduced graphene oxide anode materials for high energy lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 11404.	10.3	73
34	Hierarchically Porous Titania Networks with Tunable Anatase:Rutile Ratios and Their Enhanced Photocatalytic Activities. ACS Applied Materials & Interfaces, 2014, 6, 13129-13137.	8.0	73
35	Metal–Organic Frameworks and Their Derivatives for Photocatalytic Water Splitting. Inorganics, 2017, 5, 40.	2.7	68
36	Synthesis of Porous and Graphitic Carbon for Electrochemical Detection. Journal of Physical Chemistry C, 2009, 113, 20594-20598.	3.1	67

Wei Li

#	Article	IF	CITATIONS
37	Charging activation and desulfurization of MnS unlock the active sites and electrochemical reactivity for Zn-ion batteries. Nano Energy, 2020, 75, 104869.	16.0	66
38	One‣tep Fabrication of Monolithic Electrodes Comprising Co ₉ S ₈ Particles Supported on Cobalt Foam for Efficient and Durable Oxygen Evolution Reaction. Chemistry - A European Journal, 2017, 23, 8749-8755.	3.3	64
39	Ultrafine CoSe nano-crystallites confined in leaf-like N-doped carbon for long-cyclic and fast sodium ion storage. Electrochimica Acta, 2019, 294, 173-182.	5.2	63
40	Versatile inorganic-organic hybrid WO x -ethylenediamine nanowires: Synthesis, mechanism and application in heavy metal ion adsorption and catalysis. Nano Research, 2014, 7, 903-916.	10.4	59
41	Solvothermal Growth of Bismuth Chalcogenide Nanoplatelets by the Oriented Attachment Mechanism: An in Situ PXRD Study. Chemistry of Materials, 2015, 27, 3471-3482.	6.7	51
42	Fabrication of nanostructured metal nitrides with tailored composition and morphology. Chemical Communications, 2011, 47, 3619.	4.1	50
43	Electropolymerization of Aniline on Nickel-Based Electrocatalysts Substantially Enhances Their Performance for Hydrogen Evolution. ACS Applied Energy Materials, 2018, 1, 3-8.	5.1	50
44	Low-temperature water electrolysis: fundamentals, progress, and new strategies. Materials Advances, 2022, 3, 5598-5644.	5.4	50
45	Mesoporous Ce1â^xZrxO2 solid solution nanofibers as high efficiency catalysts for the catalytic combustion of VOCs. Journal of Materials Chemistry, 2011, 21, 12836.	6.7	46
46	Low-cost synthesis of robust anatase polyhedral structures with a preponderance of exposed {001} facets for enhanced photoactivities. Nano Research, 2012, 5, 434-442.	10.4	46
47	Programmed Design of a Lithium–Sulfur Battery Cathode by Integrating Functional Units. Advanced Science, 2019, 6, 1900711.	11.2	44
48	Enhanced catalytic activity of perovskite oxide nanofibers for combustion of methane in coal mine ventilation air. Journal of Materials Chemistry, 2010, 20, 6968.	6.7	41
49	Programmed Fabrication of Metal Oxides Nanostructures Using Dual Templates to Spatially Disperse Metal Oxide Nanocrystals. Chemistry of Materials, 2010, 22, 414-419.	6.7	41
50	Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation. Hydrometallurgy, 2020, 191, 105192.	4.3	39
51	Charge Transfer of Interfacial Catalysts for Hydrogen Energy. , 2022, 4, 967-977.		35
52	Iron Phthalocyanine/Two-Dimensional Metal–Organic Framework Composite Nanosheets for Enhanced Alkaline Hydrogen Evolution. Inorganic Chemistry, 2021, 60, 9987-9995.	4.0	32
53	Highly-ordered silicon nanowire arrays for photoelectrochemical hydrogen evolution: an investigation on the effect of wire diameter, length and inter-wire spacing. Sustainable Energy and Fuels, 2018, 2, 978-982.	4.9	31
54	Hydrophilic TiO2 porous spheres anchored on hydrophobic polypropylene membrane for wettability induced high photodegrading activities. Nanoscale, 2010, 2, 1480.	5.6	30

Wei Li

#	Article	IF	CITATIONS
55	Bifunctional 3D Hierarchical Hairy Foam toward Ultrastable Lithium/Sulfur Electrochemistry. Advanced Functional Materials, 2020, 30, 2004650.	14.9	29
56	Passivation of hematite nanorod photoanodes with a phosphorus overlayer for enhanced photoelectrochemical water oxidation. Nanotechnology, 2016, 27, 375401.	2.6	28
57	Low-crystallinity molybdenum sulfide nanosheets assembled on carbon nanotubes for long-life lithium storage: Unusual electrochemical behaviors and ascending capacities. Applied Surface Science, 2017, 392, 297-304.	6.1	27
58	High-Entropy Perovskite as a High-Performing Chromium-Tolerant Cathode for Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2022, 14, 24363-24373.	8.0	27
59	Nanosized FeS ₂ Particles Caged in the Hollow Carbon Shell as a Robust Polysulfide Adsorbent and Redox Mediator. ACS Sustainable Chemistry and Engineering, 2020, 8, 3261-3272.	6.7	26
60	Cubic nickel frames: one-pot synthesis, magnetic properties and application in water treatment. CrystEngComm, 2012, 14, 7616.	2.6	21
61	A high-temperature mixed potential CO gas sensor for <i>in situ</i> combustion control. Journal of Materials Chemistry A, 2020, 8, 20101-20110.	10.3	21
62	Mesoporous Nitrogenâ€Modified Titania with Enhanced Dye Adsorption Capacity and Visible Light Photocatalytic Activity. ChemistrySelect, 2016, 1, 4868-4878.	1.5	20
63	Positive Effects of H ₂ O on the Hydrogen Oxidation Reaction on Sr ₂ Fe _{1.5} Mo _{0.5} O _{6â^î} -Based Perovskite Anodes for Solid Oxide Fuel Cells. ACS Catalysis, 2020, 10, 5567-5578.	11.2	20
64	Reduced Thermal Expansion and Enhanced Redox Reversibility of La _{0.5} Sr _{1.5} Fe _{1.5} Mo _{0.5} O _{6â^´î´} Anode Material for Solid Oxide Fuel Cells. ACS Applied Energy Materials, 2019, 2, 4244-4254.	5.1	18
65	A study on the electrophoretic deposition of gadolinium doped ceria on polypyrrole coated yttrium stabilized zirconia. Journal of Colloid and Interface Science, 2019, 555, 115-123.	9.4	13
66	In Situ Exsolved Nanoparticles on La _{0.5} Sr _{1.5} Fe _{1.5} Mo _{0.5} O _{6-<i>δ</i>} Anode Enhance the Hydrogen Oxidation Reaction in SOFCs. Journal of the Electrochemical Society, 2020, 167, 024510.	2.9	13
67	Preparation and Room Temperature Gas Sensing Study of Tungsten Oxide Nanowires/PEDOT/PSS Hybrid Materials. Ferroelectrics, 2015, 477, 93-102.	0.6	12
68	Alternating Current Electrophoretic Deposition of Gadolinium Doped Ceria onto Yttrium Stabilized Zirconia: A Study of the Mechanism. ACS Applied Materials & Interfaces, 2020, 12, 11126-11134.	8.0	9
69	Aqueous electrophoretic deposition of gadolinium doped ceria. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579, 123717.	4.7	7