Thomas B Ryerson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8522110/publications.pdf Version: 2024-02-01

		9756	22102
216	17,495	73	113
papers	citations	h-index	g-index
070	070	070	10506
273	273	273	10526
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere. Bulletin of the American Meteorological Society, 2022, 103, E761-E790.	1.7	39
2	The <i>Fires, Asian, and Stratospheric Transport</i> –Las Vegas Ozone Study (<i>FAST</i> -LVOS). Atmospheric Chemistry and Physics, 2022, 22, 1707-1737.	1.9	7
3	Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants. Atmospheric Chemistry and Physics, 2022, 22, 4253-4275.	1.9	9
4	Large hemispheric difference in nucleation mode aerosol concentrations in the lowermost stratosphere at mid- and high latitudes. Atmospheric Chemistry and Physics, 2021, 21, 9065-9088.	1.9	8
5	Quantifying Methane and Ozone Precursor Emissions from Oil and Gas Production Regions across the Contiguous US. Environmental Science & amp; Technology, 2021, 55, 9129-9139.	4.6	23
6	Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom. Atmospheric Chemistry and Physics, 2021, 21, 11113-11132.	1.9	5
7	Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality. Atmospheric Chemistry and Physics, 2021, 21, 11201-11224.	1.9	60
8	Chemical Tomography in a Fresh Wildland Fire Plume: A Large Eddy Simulation (LES) Study. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035203.	1.2	16
9	Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements. Atmospheric Chemistry and Physics, 2021, 21, 13729-13746.	1.9	4
10	Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements. Atmospheric Chemistry and Physics, 2021, 21, 15023-15063.	1.9	15
11	UAS Chromatograph for Atmospheric Trace Species (UCATS) – a versatile instrument for trace gas measurements on airborne platforms. Atmospheric Measurement Techniques, 2021, 14, 6795-6819.	1.2	9
12	Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. Atmospheric Chemistry and Physics, 2021, 21, 16293-16317.	1.9	34
13	Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke. Environmental Science & Technology, 2021, 55, 15646-15657.	4.6	11
14	Ozone chemistry in western U.S. wildfire plumes. Science Advances, 2021, 7, eabl3648.	4.7	45
15	Large contribution of biomass burning emissions to ozone throughout the global remote troposphere. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	51
16	Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ). Atmospheric Chemistry and Physics, 2021, 21, 18319-18331.	1.9	24
17	Biomass burning nitrogen dioxide emissions derived from space with TROPOMI: methodology and validation. Atmospheric Measurement Techniques, 2021, 14, 7929-7957.	1.2	27
18	Exploring Oxidation in the Remote Free Troposphere: Insights From Atmospheric Tomography (ATom). Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031685.	1.2	23

#	Article	IF	CITATIONS
19	Global Atmospheric Budget of Acetone: Air‧ea Exchange and the Contribution to Hydroxyl Radicals. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032553.	1.2	17
20	Missing OH reactivity in the global marine boundary layer. Atmospheric Chemistry and Physics, 2020, 20, 4013-4029.	1.9	25
21	Evidence of Nighttime Production of Organic Nitrates During SEAC 4 RS, FRAPPÉ, and KORUSâ€AQ. Geophysical Research Letters, 2020, 47, e2020GL087860.	1.5	7
22	Single-photon laser-induced fluorescence detection of nitric oxide at sub-parts-per-trillion mixing ratios. Atmospheric Measurement Techniques, 2020, 13, 2425-2439.	1.2	18
23	Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4505-4510.	3.3	118
24	Characterizing sources of high surface ozone events in the southwestern US with intensive field measurements and two global models. Atmospheric Chemistry and Physics, 2020, 20, 10379-10400.	1.9	15
25	Global-scale distribution of ozone in the remote troposphere from the ATom and HIPPO airborne field missions. Atmospheric Chemistry and Physics, 2020, 20, 10611-10635.	1.9	31
26	Constraining remote oxidation capacity with ATom observations. Atmospheric Chemistry and Physics, 2020, 20, 7753-7781.	1.9	36
27	A cavity-enhanced ultraviolet absorption instrument for high-precision, fast-time-response ozone measurements. Atmospheric Measurement Techniques, 2020, 13, 6877-6887.	1.2	6
28	On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America. Atmospheric Chemistry and Physics, 2019, 19, 9097-9123.	1.9	32
29	Nighttime Chemical Transformation in Biomass Burning Plumes: A Box Model Analysis Initialized with Aircraft Observations. Environmental Science & Technology, 2019, 53, 2529-2538.	4.6	68
30	Hydrocarbon Removal in Power Plant Plumes Shows Nitrogen Oxide Dependence of Hydroxyl Radicals. Geophysical Research Letters, 2019, 46, 7752-7760.	1.5	9
31	Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance. Atmospheric Chemistry and Physics, 2019, 19, 2765-2785.	1.9	15
32	Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11171-11180.	3.3	58
33	Atmospheric Acetaldehyde: Importance of Air‣ea Exchange and a Missing Source in the Remote Troposphere. Geophysical Research Letters, 2019, 46, 5601-5613.	1.5	41
34	Anthropogenic enhancements to production of highly oxygenated molecules from autoxidation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6641-6646.	3.3	78
35	Role of Criegee Intermediates in Secondary Sulfate Aerosol Formation in Nocturnal Power Plant Plumes in the Southeast US. ACS Earth and Space Chemistry, 2019, 3, 748-759.	1.2	16
36	Simulating the Weekly Cycle of NO x â€VOCâ€HO x â€O 3 Photochemical System in the South Coast of California During CalNexâ€2010 Campaign. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3532-3555.	1.2	8

#	Article	IF	CITATIONS
37	Inversion Estimates of Lognormally Distributed Methane Emission Rates From the Haynesvilleâ€Bossier Oil and Gas Production Region Using Airborne Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3520-3531.	1.2	18
38	An aerosol particle containing enriched uranium encountered in the remote upper troposphere. Journal of Environmental Radioactivity, 2018, 184-185, 95-100.	0.9	6
39	Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science, 2018, 359, 760-764.	6.0	716
40	Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States. Atmospheric Chemistry and Physics, 2018, 18, 2341-2361.	1.9	30
41	Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study. Atmospheric Chemistry and Physics, 2018, 18, 14493-14510.	1.9	18
42	Constraints on Aerosol Nitrate Photolysis as a Potential Source of HONO and NO _{<i>x</i>} . Environmental Science & Technology, 2018, 52, 13738-13746.	4.6	79
43	Methyl, Ethyl, and Propyl Nitrates: Global Distribution and Impacts on Reactive Nitrogen in Remote Marine Environments. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,429.	1.2	33
44	Development of a Fuel-Based Oil and Gas Inventory of Nitrogen Oxides Emissions. Environmental Science & Technology, 2018, 52, 10175-10185.	4.6	19
45	Flow rate and source reservoir identification from airborne chemical sampling of the uncontrolled Elgin platform gas release. Atmospheric Measurement Techniques, 2018, 11, 1725-1739.	1.2	11
46	Secondary organic aerosol (SOA) yields from NO ₃ radical + isoprene based on nighttime aircraft power plant plume transects. Atmospheric Chemistry and Physics, 2018, 18, 11663-11682.	1.9	47
47	Quantifying Methane and Ethane Emissions to the Atmosphere From Central and Western U.S. Oil and Natural Gas Production Regions. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7725-7740.	1.2	74
48	Modeling Ozone in the Eastern U.S. using a Fuel-Based Mobile Source Emissions Inventory. Environmental Science & Technology, 2018, 52, 7360-7370.	4.6	64
49	Limited impact of sulfate-driven chemistry on black carbon aerosol aging in power plant plumes. AIMS Environmental Science, 2018, 5, 195-215.	0.7	1
50	Summertime tropospheric ozone enhancement associated with a cold front passage due to stratosphereâ€toâ€troposphere transport and biomass burning: Simultaneous groundâ€based lidar and airborne measurements. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1293-1311.	1.2	17
51	Methane, Black Carbon, and Ethane Emissions from Natural Gas Flares in the Bakken Shale, North Dakota. Environmental Science & Technology, 2017, 51, 5317-5325.	4.6	74
52	Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6108-6129.	1.2	184
53	Emissions of Glyoxal and Other Carbonyl Compounds from Agricultural Biomass Burning Plumes Sampled by Aircraft. Environmental Science & Technology, 2017, 51, 11761-11770.	4.6	38
54	Ozone Design Values in Southern California's Air Basins: Temporal Evolution and U.S. Background Contribution. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,166.	1.2	31

#	Article	IF	CITATIONS
55	Lightning NO _{<i>x</i>} Emissions: Reconciling Measured and Modeled Estimates With Updated NO _{<i>x</i>} Chemistry. Geophysical Research Letters, 2017, 44, 9479-9488.	1.5	56
56	Transition from high- to low-NOx control of night-time oxidation in the southeastern US. Nature Geoscience, 2017, 10, 490-495.	5.4	56
57	Impact of evolving isoprene mechanisms on simulated formaldehyde: An inter-comparison supported by in situ observations from SENEX. Atmospheric Environment, 2017, 164, 325-336.	1.9	33
58	On-road measurements of vehicle NO 2 /NO x emission ratios in Denver, Colorado, USA. Atmospheric Environment, 2017, 148, 182-189.	1.9	63
59	Topâ€down estimate of methane emissions in California using a mesoscale inverse modeling technique: The San Joaquin Valley. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3686-3699.	1.2	26
60	Emissions of volatile organic compounds (VOCs) from concentrated animal feeding operations (CAFOs): chemical compositions and separation of sources. Atmospheric Chemistry and Physics, 2017, 17, 4945-4956.	1.9	53
61	An improved, automated whole air sampler and gas chromatography mass spectrometry analysis system for volatile organic compounds in the atmosphere. Atmospheric Measurement Techniques, 2017, 10, 291-313.	1.2	54
62	Observations of VOC emissions and photochemical products over US oil- and gas-producing regions using high-resolution H ₃ O ⁺ CIMS (PTR-ToF-MS). Atmospheric Measurement Techniques, 2017, 10, 2941-2968.	1.2	44
63	Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013. Atmospheric Measurement Techniques, 2016, 9, 3063-3093.	1.2	58
64	Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9849-9861.	1.2	48
65	Modeling the weekly cycle of NO _x and CO emissions and their impacts on O ₃ in the Los Angelesâ€6outh Coast Air Basin during the CalNex 2010 field campaign. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1340-1360.	1.2	51
66	Emissions of nitrogenâ€containing organic compounds from the burning of herbaceous and arboraceous biomass: Fuel composition dependence and the variability of commonly used nitrile tracers. Geophysical Research Letters, 2016, 43, 9903-9912.	1.5	79
67	Analysis of longâ€ŧerm observations of NO _x and CO in megacities and application to constraining emissions inventories. Geophysical Research Letters, 2016, 43, 9920-9930.	1.5	69
68	Characterization of Ammonia, Methane, and Nitrous Oxide Emissions from Concentrated Animal Feeding Operations in Northeastern Colorado. Environmental Science & Technology, 2016, 50, 10885-10893.	4.6	48
69	Influence of oil and gas emissions on summertime ozone in the Colorado Northern Front Range. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8712-8729.	1.2	86
70	Airborne quantification of upper tropospheric NO <i>_x</i> production from lightning in deep convective storms over the United States Great Plains. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2002-2028.	1.2	25
71	HONO emission and production determined from airborne measurements over the Southeast U.S Journal of Geophysical Research D: Atmospheres, 2016, 121, 9237-9250.	1.2	46
72	Convective transport and scavenging of peroxides by thunderstorms observed over the central U.S. during DC3. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4272-4295.	1.2	24

#	Article	IF	CITATIONS
73	Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions. Atmospheric Chemistry and Physics, 2016, 16, 4369-4378.	1.9	60
74	Formaldehyde production from isoprene oxidation acrossÂNO _{<i>x</i>} Âregimes. Atmospheric Chemistry and Physics, 2016, 16, 2597-2610.	1.9	124
75	Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC ⁴ RS) and ground-based (SOAS) observations in the Southeast US. Atmospheric Chemistry and Physics. 2016. 16. 5969-5991.	1.9	173
76	Quantifying atmospheric methane emissions from oil and natural gas production in the Bakken shale region of North Dakota. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6101-6111.	1.2	99
77	Agricultural fires in the southeastern U.S. during SEAC ⁴ RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7383-7414.	1.2	93
78	Injection of lightningâ€produced NO <i>_x</i> , water vapor, wildfire emissions, and stratospheric air to the UT/LS as observed from DC3 measurements. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6638-6668.	1.2	28
79	Evaluating N ₂ O ₅ heterogeneous hydrolysis parameterizations for CalNex 2010. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5051-5070.	1.2	33
80	Fugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift. Geophysical Research Letters, 2016, 43, 4617-4623.	1.5	81
81	Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA. Science, 2016, 351, 1317-1320.	6.0	183
82	Observational Constraints on the Oxidation of NOx in the Upper Troposphere. Journal of Physical Chemistry A, 2016, 120, 1468-1478.	1.1	23
83	Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6271-6289.	1.2	56
84	Topâ€down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6698-6711.	1.2	38
85	Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation. Atmospheric Chemistry and Physics, 2015, 15, 7571-7583.	1.9	55
86	A large and ubiquitous source of atmospheric formic acid. Atmospheric Chemistry and Physics, 2015, 15, 6283-6304.	1.9	197
87	Corrigendum to "In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC ⁴ RS: observations of a modest aerosol enhancement aloft" published in Atmos. Chem. Phys., 15, 7085–7102. 2015. Atmospheric Chemistry and Physics. 2015. 15. 8455-8455.	1.9	1
88	In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC ⁴ RS: observations of a modest aerosol enhancement aloft. Atmospheric Chemistry and Physics, 2015, 15, 7085-7102.	1.9	50
89	The Deep Convective Clouds and Chemistry (DC3) Field Campaign. Bulletin of the American Meteorological Society, 2015, 96, 1281-1309.	1.7	165
90	Airborne measurements of organosulfates over the continental U.S Journal of Geophysical Research D: Atmospheres, 2015, 120, 2990-3005.	1.2	96

#	Article	IF	CITATIONS
91	Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2119-2139.	1.2	164
92	Black Carbon Emissions from the Bakken Oil and Gas Development Region. Environmental Science and Technology Letters, 2015, 2, 281-285.	3.9	49
93	Airborne measurements of the atmospheric emissions from a fuel ethanol refinery. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4385-4397.	1.2	16
94	Evaluation of the airborne quantum cascade laser spectrometer (QCLS) measurements of the carbon and greenhouse gas suite – CO ₂ , CH ₄ , N ₂ O, and CO – during the CalNex and HIPPO campaigns. Atmospheric Measurement Techniques, 2014, 7, 1509-1526.	1.2	75
95	Thunderstorms enhance tropospheric ozone by wrapping and shedding stratospheric air. Geophysical Research Letters, 2014, 41, 7785-7790.	1.5	62
96	Changes in nitrogen oxides emissions in California during 2005–2010 indicated from topâ€down and bottomâ€up emission estimates. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,928.	1.2	16
97	Convective transport of water vapor into the lower stratosphere observed during double-tropopause events. Journal of Geophysical Research D: Atmospheres, 2014, 119, 10,941-10,958.	1.2	63
98	Chlorine as a primary radical: evaluation of methods to understand its role in initiation of oxidative cycles. Atmospheric Chemistry and Physics, 2014, 14, 3427-3440.	1.9	90
99	Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley. Atmospheric Chemistry and Physics, 2014, 14, 4955-4978.	1.9	59
100	Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition. Atmospheric Chemistry and Physics, 2014, 14, 10977-10988.	1.9	98
101	An investigation of ammonia and inorganic particulate matter in California during the CalNex campaign. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1883-1902.	1.2	69
102	The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5830-5866.	1.2	199
103	WRF-Chem simulation of NOx and O3 in the L.A. basin during CalNex-2010. Atmospheric Environment, 2013, 81, 421-432.	1.9	34
104	Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NO _x and CO ₂ and their impacts. Atmospheric Chemistry and Physics, 2013, 13, 3661-3677.	1.9	142
105	Ozone photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah. Atmospheric Chemistry and Physics, 2013, 13, 8955-8971.	1.9	100
106	Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX. Atmospheric Chemistry and Physics, 2013, 13, 11317-11337.	1.9	51
107	Trends in ozone, its precursors, and related secondary oxidation products in Los Angeles, California: A synthesis of measurements from 1960 to 2010. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5893-5911.	1.2	115
108	Quantifying sources of methane using light alkanes in the Los Angeles basin, California. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4974-4990.	1.2	167

#	Article	IF	CITATIONS
109	Emission estimates of HCFCs and HFCs in California from the 2010 CalNex study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2019-2030.	1.2	10
110	Impact of Southern California anthropogenic emissions on ozone pollution in the mountain states: Model analysis and observational evidence from space. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,784.	1.2	21
111	Chemical data quantify <i>Deepwater Horizon</i> hydrocarbon flow rate and environmental distribution. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20246-20253.	3.3	258
112	Review of flow rate estimates of the <i>Deepwater Horizon</i> oil spill. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20260-20267.	3.3	458
113	Analysis of ozone and nitric acid in spring and summer Arctic pollution using aircraft, ground-based, satellite observations and MOZART-4 model: source attribution and partitioning. Atmospheric Chemistry and Physics, 2012, 12, 237-259.	1.9	96
114	Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations. Atmospheric Chemistry and Physics, 2012, 12, 9909-9922.	1.9	42
115	Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC. Atmospheric Chemistry and Physics, 2012, 12, 1255-1285.	1.9	63
116	Analysis of IASI tropospheric O ₃ data over the Arctic during POLARCAT campaigns in 2008. Atmospheric Chemistry and Physics, 2012, 12, 7371-7389.	1.9	29
117	Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: sensitivity to background aerosol and meteorology. Atmospheric Chemistry and Physics, 2012, 12, 189-206.	1.9	72
118	Primary and secondary sources of formaldehyde in urban atmospheres: Houston Texas region. Atmospheric Chemistry and Physics, 2012, 12, 3273-3288.	1.9	153
119	Observation and modeling of the evolution of Texas power plant plumes. Atmospheric Chemistry and Physics, 2012, 12, 455-468.	1.9	34
120	Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study. Journal of Geophysical Research, 2012, 117, .	3.3	359
121	Air quality implications of the <i>Deepwater Horizon</i> oil spill. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20280-20285.	3.3	79
122	Mass Spectral Analysis of Organic Aerosol Formed Downwind of the Deepwater Horizon Oil Spill: Field Studies and Laboratory Confirmations. Environmental Science & Technology, 2012, 46, 8025-8034.	4.6	45
123	Airborne and groundâ€based observations of a weekend effect in ozone, precursors, and oxidation products in the California South Coast Air Basin. Journal of Geophysical Research, 2012, 117, .	3.3	97
124	A new inversion method to calculate emission inventories without a prior at mesoscale: Application to the anthropogenic CO ₂ emission from Houston, Texas. Journal of Geophysical Research, 2012, 117, .	3.3	44
125	Observations of ozone transport from the free troposphere to the Los Angeles basin. Journal of Geophysical Research, 2012, 117, .	3.3	38
126	Effects of NO _x control and plume mixing on nighttime chemical processing of plumes from coalâ€fired power plants. Journal of Geophysical Research, 2012, 117, .	3.3	20

8

#	Article	IF	CITATIONS
127	Evolution of aerosol properties impacting visibility and direct climate forcing in an ammoniaâ€rich urban environment. Journal of Geophysical Research, 2012, 117, .	3.3	54
128	Ozone and alkyl nitrate formation from the Deepwater Horizon oil spill atmospheric emissions. Journal of Geophysical Research, 2012, 117, .	3.3	16
129	Ammonia sources in the California South Coast Air Basin and their impact on ammonium nitrate formation. Geophysical Research Letters, 2012, 39, .	1.5	110
130	Multiyear trends in volatile organic compounds in Los Angeles, California: Five decades of decreasing emissions. Journal of Geophysical Research, 2012, 117, .	3.3	183
131	Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California. Journal of Geophysical Research, 2012, 117, .	3.3	50
132	Increasing atmospheric burden of ethanol in the United States. Geophysical Research Letters, 2012, 39, .	1.5	41
133	City lights and urban air. Nature Geoscience, 2011, 4, 730-731.	5.4	29
134	Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study. Journal of Geophysical Research, 2011, 116, .	3.3	91
135	Atmospheric emissions from the Deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	107
136	Characteristics of black carbon aerosol from a surface oil burn during the Deepwater Horizon oil spill. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	34
137	Budgets for nocturnal VOC oxidation by nitrate radicals aloft during the 2006 Texas Air Quality Study. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	63
138	Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill. Science, 2011, 331, 1295-1299.	6.0	162
139	Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project. Atmospheric Chemistry and Physics, 2011, 11, 2423-2453.	1.9	259
140	Top-down estimate of anthropogenic emission inventories and their interannual variability in Houston using a mesoscale inverse modeling technique. Journal of Geophysical Research, 2011, 116, .	3.3	73
141	The glyoxal budget and its contribution to organic aerosol for Los Angeles, California, during CalNex 2010. Journal of Geophysical Research, 2011, 116, .	3.3	99
142	Diode laser-based cavity ring-down instrument for NO ₃ , N ₂ O ₅ , NO, NO ₂ and O ₃ from aircraft. Atmospheric Measurement Techniques, 2011, 4, 1227-1240.	1.2	113
143	Comparison between the TOPAZ Airborne Ozone Lidar and In Situ Measurements during TexAQS 2006. Journal of Atmospheric and Oceanic Technology, 2011, 28, 1243-1257.	0.5	17
144	Bromine measurements in ozone depleted air over the Arctic Ocean. Atmospheric Chemistry and Physics, 2010, 10, 6503-6514.	1.9	101

#	Article	IF	CITATIONS
145	Ozone variability and halogen oxidation within the Arctic and sub-Arctic springtime boundary layer. Atmospheric Chemistry and Physics, 2010, 10, 10223-10236.	1.9	104
146	Aircraft observations of enhancement and depletion of black carbon mass in the springtime Arctic. Atmospheric Chemistry and Physics, 2010, 10, 9667-9680.	1.9	68
147	Evaluation of ultraviolet light-emitting diodes for detection of atmospheric NO2 by photolysis - chemiluminescence. Journal of Atmospheric Chemistry, 2010, 65, 111-125.	1.4	121
148	Biogenic emission measurement and inventories determination of biogenic emissions in the eastern United States and Texas and comparison with biogenic emission inventories. Journal of Geophysical Research, 2010, 115, .	3.3	89
149	A topâ€down analysis of emissions from selected Texas power plants during TexAQS 2000 and 2006. Journal of Geophysical Research, 2010, 115, .	3.3	60
150	Characterization of NO _{<i>x</i>} , SO ₂ , ethene, and propene from industrial emission sources in Houston, Texas. Journal of Geophysical Research, 2010, 115, .	3.3	44
151	A new interpretation of total column BrO during Arctic spring. Geophysical Research Letters, 2010, 37,	1.5	116
152	Airborne observations of ammonia and ammonium nitrate formation over Houston, Texas. Journal of Geophysical Research, 2010, 115, .	3.3	91
153	Halocarbon Emissions from the United States and Mexico and Their Global Warming Potential. Environmental Science & Technology, 2009, 43, 1055-1060.	4.6	46
154	Heating rates and surface dimming due to black carbon aerosol absorption associated with a major U.S. city. Geophysical Research Letters, 2009, 36, .	1.5	17
155	Overview of the Second Texas Air Quality Study (TexAQS II) and the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). Journal of Geophysical Research, 2009, 114, .	3.3	162
156	Contributions of regional transport and local sources to ozone exceedances in Houston and Dallas: Comparison of results from a photochemical grid model to aircraft and surface measurements. Journal of Geophysical Research, 2009, 114, .	3.3	34
157	Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas. Journal of Geophysical Research, 2009, 114, .	3.3	230
158	Reactive uptake coefficients for N ₂ O ₅ determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations. Journal of Geophysical Research, 2009, 114, .	3.3	124
159	Relationship between photochemical ozone production and NO _x oxidation in Houston, Texas. Journal of Geophysical Research, 2009, 114, .	3.3	36
160	Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Geophysical Research Letters, 2009, 36, .	1.5	289
161	Airborne Measurements of Ethene from Industrial Sources Using Laser Photo-Acoustic Spectroscopy. Environmental Science & Technology, 2009, 43, 2437-2442.	4.6	57
162	Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on reactive nitrogen partitioning and secondary organic aerosol. Atmospheric Chemistry and Physics, 2009, 9, 3027-3042.	1.9	128

#	Article	IF	CITATIONS
163	Sources of particulate matter in the northeastern United States in summer: 2. Evolution of chemical and microphysical properties. Journal of Geophysical Research, 2008, 113, .	3.3	48
164	Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions. Geophysical Research Letters, 2008, 35, .	1.5	388
165	Empirical correlations between black carbon aerosol and carbon monoxide in the lower and middle troposphere. Geophysical Research Letters, 2008, 35, .	1.5	60
166	Mixing between a stratospheric intrusion and a biomass burning plume. Atmospheric Chemistry and Physics, 2007, 7, 4229-4235.	1.9	42
167	Influence of lateral and top boundary conditions on regional air quality prediction: A multiscale study coupling regional and global chemical transport models. Journal of Geophysical Research, 2007, 112, .	3.3	82
168	Atmospheric in situ measurement of nitrate radical (NO3) and other photolysis rates using spectroradiometry and filter radiometry. Journal of Geophysical Research, 2007, 112, .	3.3	39
169	A chemical ionization mass spectrometry technique for airborne measurements of ammonia. Journal of Geophysical Research, 2007, 112, .	3.3	106
170	Vertical profiles in NO ₃ and N ₂ O ₅ measured from an aircraft: Results from the NOAA Pâ€3 and surface platforms during the New England Air Quality Study 2004. Journal of Geophysical Research, 2007, 112, .	3.3	75
171	Effects of changing power plant NOxemissions on ozone in the eastern United States: Proof of concept. Journal of Geophysical Research, 2006, 111, .	3.3	226
172	Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America. Journal of Geophysical Research, 2006, 111, .	3.3	181
173	Measurement of atmospheric NO2by pulsed cavity ring-down spectroscopy. Journal of Geophysical Research, 2006, 111, .	3.3	68
174	Reactive nitrogen transport and photochemistry in urban plumes over the North Atlantic Ocean. Journal of Geophysical Research, 2006, 111, .	3.3	83
175	Quantifying wet scavenging processes in aircraft observations of nitric acid and cloud condensation nuclei. Journal of Geophysical Research, 2006, 111, .	3.3	35
176	Ozone production from the 2004 North American boreal fires. Journal of Geophysical Research, 2006, 111, .	3.3	114
177	Nocturnal odd-oxygen budget and its implications for ozone loss in the lower troposphere. Geophysical Research Letters, 2006, 33, .	1.5	75
178	Variability in Nocturnal Nitrogen Oxide Processing and Its Role in Regional Air Quality. Science, 2006, 311, 67-70.	6.0	345
179	Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 176, 270-278.	2.0	70
180	A Bad Air Day in Houston. Bulletin of the American Meteorological Society, 2005, 86, 657-670.	1.7	191

#	Article	IF	CITATIONS
181	Particle characteristics following cloud-modified transport from Asia to North America. Journal of Geophysical Research, 2004, 109, .	3.3	86
182	Chemical composition of air masses transported from Asia to the U.S. West Coast during ITCT 2K2: Fossil fuel combustion versus biomass-burning signatures. Journal of Geophysical Research, 2004, 109,	3.3	89
183	Fraction and composition of NOytransported in air masses lofted from the North American continental boundary layer. Journal of Geophysical Research, 2004, 109, .	3.3	37
184	Gas-phase chemical characteristics of Asian emission plumes observed during ITCT 2K2 over the eastern North Pacific Ocean. Journal of Geophysical Research, 2004, 109, .	3.3	80
185	Evaluation of GOME satellite measurements of tropospheric NO2and HCHO using regional data from aircraft campaigns in the southeastern United States. Journal of Geophysical Research, 2004, 109, .	3.3	113
186	Measurement of peroxycarboxylic nitric anhydrides (PANs) during the ITCT 2K2 aircraft intensive experiment. Journal of Geophysical Research, 2004, 109, .	3.3	63
187	Nitric acid loss rates measured in power plant plumes. Journal of Geophysical Research, 2004, 109, .	3.3	22
188	Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	126
189	Particle growth in urban and industrial plumes in Texas. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	109
190	Nitrogen oxides in the nocturnal boundary layer: Simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	105
191	Effect of petrochemical industrial emissions of reactive alkenes and NOxon tropospheric ozone formation in Houston, Texas. Journal of Geophysical Research, 2003, 108, .	3.3	263
192	Variability in ammonium nitrate formation and nitric acid depletion with altitude and location over California. Journal of Geophysical Research, 2003, 108, .	3.3	84
193	Calibration and Evaluation of Nitric Acid and Ammonia Permeation Tubes by UV Optical Absorption. Environmental Science & Technology, 2003, 37, 2975-2981.	4.6	46
194	Measuring reactive nitrogen emissions from point sources using visible spectroscopy from aircraft. Journal of Environmental Monitoring, 2003, 5, 29-34.	2.1	28
195	Fossil-fueled power plants as a source of atmospheric carbon monoxide. Journal of Environmental Monitoring, 2003, 5, 35-39.	2.1	28
196	Comparisons of box model calculations and measurements of formaldehyde from the 1997 North Atlantic Regional Experiment. Journal of Geophysical Research, 2002, 107, ACH 3-1.	3.3	42
197	Trace gas composition of midlatitude cyclones over the western North Atlantic Ocean: A conceptual model. Journal of Geophysical Research, 2002, 107, ACH 1-1.	3.3	72
198	Particle growth in the plumes of coal-fired power plants. Journal of Geophysical Research, 2002, 107, AAC 9-1.	3.3	85

#	Article	IF	CITATIONS
199	Results from an informal intercomparison of ammonia measurement techniques. Journal of Geophysical Research, 2002, 107, ACH 28-1.	3.3	43
200	Fast-response airborne in situ measurements of HNO3during the Texas 2000 Air Quality Study. Journal of Geophysical Research, 2002, 107, ACH 8-1.	3.3	94
201	Alkyl nitrate measurements during STERAO 1996 and NARE 1997: Intercomparison and survey of results. Journal of Geophysical Research, 2001, 106, 23043-23053.	3.3	15
202	Trace gas signatures of the airstreams within North Atlantic cyclones: Case studies from the North Atlantic Regional Experiment (NARE '97) aircraft intensive. Journal of Geophysical Research, 2001, 106, 5437-5456.	3.3	121
203	Observations of Ozone Formation in Power Plant Plumes and Implications for Ozone Control Strategies. Science, 2001, 292, 719-723.	6.0	258
204	Mixing of anthropogenic pollution with stratospheric ozone: A case study from the North Atlantic wintertime troposphere. Journal of Geophysical Research, 2000, 105, 24363-24374.	3.3	56
205	An efficient photolysis system for fast-response NO2measurements. Journal of Geophysical Research, 2000, 105, 26447-26461.	3.3	239
206	Do emissions from ships have a significant impact on concentrations of nitrogen oxides in the marine boundary layer?. Geophysical Research Letters, 2000, 27, 2229-2232.	1.5	75
207	Design and initial characterization of an inlet for gas-phase NOymeasurements from aircraft. Journal of Geophysical Research, 1999, 104, 5483-5492.	3.3	110
208	Study of Inlet Materials for Sampling Atmospheric Nitric Acid. Environmental Science & Technology, 1999, 33, 1133-1136.	4.6	165
209	Atmospheric chemistry and distribution of formaldehyde and several multioxygenated carbonyl compounds during the 1995 Nashville/Middle Tennessee Ozone Study. Journal of Geophysical Research, 1998, 103, 22449-22462.	3.3	146
210	Hydrogen peroxide dry deposition lifetime determined from observed loss rates in a power plant plume. Journal of Geophysical Research, 1998, 103, 22617-22628.	3.3	17
211	Emissions lifetimes and ozone formation in power plant plumes. Journal of Geophysical Research, 1998, 103, 22569-22583.	3.3	192
212	Measurements of PAN, PPN, and MPAN made during the 1994 and 1995 Nashville Intensives of the Southern Oxidant Study: Implications for regional ozone production from biogenic hydrocarbons. Journal of Geophysical Research, 1998, 103, 22473-22490.	3.3	106
213	Regional ozone from biogenic hydrocarbons deduced from airborne measurements of PAN, PPN, and MPAN. Geophysical Research Letters, 1997, 24, 1099-1102.	1.5	114
214	Selective chemiluminescence detection of sulfur-containing compounds coupled with nitrogen—phosphorus detection for gas chromatography. Journal of Chromatography A, 1994, 670, 117-126.	1.8	11
215	Sulfur-Selective Detector for Liquid Chromatography Based on Sulfur Monoxide-Ozone Chemiluminescence. Analytical Chemistry, 1994, 66, 2841-2851.	3.2	21
216	The Global Atmosphere Watch reactive gases measurement network. Elementa, 0, 3, .	1.1	63