
Brian P Dilkes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8521759/publications.pdf Version: 2024-02-01

RDIAN D DILVES

#	Article	IF	CITATIONS
1	The DWF4 Gene of Arabidopsis Encodes a Cytochrome P450 That Mediates Multiple 22α-Hydroxylation Steps in Brassinosteroid Biosynthesis. Plant Cell, 1998, 10, 231-243.	6.6	431
2	Polyploids Exhibit Higher Potassium Uptake and Salinity Tolerance in <i>Arabidopsis</i> . Science, 2013, 341, 658-659.	12.6	298
3	Investigating the hows and whys of DNA endoreduplication. Journal of Experimental Botany, 2001, 52, 183-192.	4.8	284
4	Parent-Dependent Loss of Gene Silencing during Interspecies Hybridization. Current Biology, 2006, 16, 1322-1328.	3.9	276
5	The DWF4 Gene of Arabidopsis Encodes a Cytochrome P450 That Mediates Multiple 22a-Hydroxylation Steps in Brassinosteroid Biosynthesis. Plant Cell, 1998, 10, 231.	6.6	257
6	The Arabidopsis dwarf1 Mutant Is Defective in the Conversion of 24-Methylenecholesterol to Campesterol in Brassinosteroid Biosynthesis1. Plant Physiology, 1999, 119, 897-908.	4.8	227
7	Maize Opaque Endosperm Mutations Create Extensive Changes in Patterns of Gene Expression[W]. Plant Cell, 2002, 14, 2591-2612.	6.6	159
8	Genetic Adaptation Associated with Genome-Doubling in Autotetraploid Arabidopsis arenosa. PLoS Genetics, 2012, 8, e1003093.	3.5	152
9	Aneuploidy and Genetic Variation in the Arabidopsis thaliana Triploid Response. Genetics, 2005, 170, 1979-1988.	2.9	142
10	Characterization of maize (Zea mays L.) Wee1 and its activity in developing endosperm. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4180-4185.	7.1	139
11	Integrating Coexpression Networks with GWAS to Prioritize Causal Genes in Maize. Plant Cell, 2018, 30, 2922-2942.	6.6	137
12	A Differential Dosage Hypothesis for Parental Effects in Seed Development. Plant Cell, 2004, 16, 3174-3180.	6.6	128
13	Dosage-Dependent Deregulation of an AGAMOUS-LIKE Gene Cluster Contributes to Interspecific Incompatibility. Current Biology, 2009, 19, 1128-1132.	3.9	123
14	Elemental Profiles Reflect Plant Adaptations to the Environment. Science, 2012, 336, 1661-1663.	12.6	118
15	The Maternally Expressed WRKY Transcription Factor TTG2 Controls Lethality in Interploidy Crosses of Arabidopsis. PLoS Biology, 2008, 6, e308.	5.6	115
16	Phenotypic Consequences of Aneuploidy in <i>Arabidopsis thaliana</i> . Genetics, 2010, 186, 1231-1245.	2.9	103
17	Cyclin-Dependent Kinase Inhibitors in Maize Endosperm and Their Potential Role in Endoreduplication. Plant Physiology, 2005, 138, 2323-2336.	4.8	102
18	Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11975-11980.	7.1	87

BRIAN P DILKES

#	Article	IF	CITATIONS
19	Homoeolog-specific retention and use in allotetraploid Arabidopsis suecica depends on parent of origin and network partners. Genome Biology, 2010, 11, R125.	9.6	83
20	<i>nana plant2</i> Encodes a Maize Ortholog of the Arabidopsis Brassinosteroid Biosynthesis Gene <i>DWARF1</i> , Identifying Developmental Interactions between Brassinosteroids and Gibberellins. Plant Physiology, 2016, 171, 2633-2647.	4.8	83
21	The <i>BOY NAMED SUE</i> Quantitative Trait Locus Confers Increased Meiotic Stability to an Adapted Natural Allopolyploid of <i>Arabidopsis</i> . Plant Cell, 2014, 26, 181-194.	6.6	81
22	Nuclear Localised MORE SULPHUR ACCUMULATION1 Epigenetically Regulates Sulphur Homeostasis in Arabidopsis thaliana. PLoS Genetics, 2016, 12, e1006298.	3.5	81
23	A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation. Cell Research, 2017, 27, 226-240.	12.0	80
24	Discovery of a novel amino acid racemase through exploration of natural variation in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11726-11731.	7.1	75
25	Variation in Sulfur and Selenium Accumulation Is Controlled by Naturally Occurring Isoforms of the Key Sulfur Assimilation Enzyme ADENOSINE 5′-PHOSPHOSULFATE REDUCTASE2 across the Arabidopsis Species Range Â. Plant Physiology, 2014, 166, 1593-1608.	4.8	64
26	Cephalopod genomics: A plan of strategies and organization. Standards in Genomic Sciences, 2012, 7, 175-188.	1.5	53
27	Integration of Experiments across Diverse Environments Identifies the Genetic Determinants of Variation in <i>Sorghum bicolor</i> Seed Element Composition. Plant Physiology, 2016, 170, 1989-1998.	4.8	53
28	Genetic Analyses of Endoreduplication in <i>Zea mays</i> Endosperm: Evidence of Sporophytic and Zygotic Maternal Control. Genetics, 2002, 160, 1163-1177.	2.9	48
29	Brassinosteroids Modulate Meristem Fate and Differentiation of Unique Inflorescence Morphology in <i>Setaria viridis</i> . Plant Cell, 2018, 30, 48-66.	6.6	47
30	Mediator Complex Subunits MED2, MED5, MED16, and MED23 Genetically Interact in the Regulation of Phenylpropanoid Biosynthesis. Plant Cell, 2017, 29, 3269-3285.	6.6	46
31	Forward Genetics by Genome Sequencing Reveals That Rapid Cyanide Release Deters Insect Herbivory of <i>Sorghum bicolor</i> . Genetics, 2013, 195, 309-318.	2.9	45
32	Hybrid Incompatibility in Arabidopsis Is Determined by a Multiple-Locus Genetic Network Â. Plant Physiology, 2012, 158, 801-812.	4.8	42
33	Molecular karyotyping and aneuploidy detection inArabidopsis thalianausing quantitative fluorescent polymerase chain reaction. Plant Journal, 2006, 48, 307-319.	5.7	41
34	Genetic Basis for Dosage Sensitivity in Arabidopsis thaliana. PLoS Genetics, 2007, 3, e70.	3.5	41
35	Early Disruption of Maternal–Zygotic Interaction and Activation of Defense-Like Responses in <i>Arabidopsis</i> Interspecific Crosses Â. Plant Cell, 2013, 25, 2037-2055.	6.6	41
36	The Interaction of Genotype and Environment Determines Variation in the Maize Kernel Ionome. G3: Genes, Genomes, Genetics, 2016, 6, 4175-4183.	1.8	41

BRIAN P DILKES

#	Article	IF	CITATIONS
37	Differential sensitivity of the <i>Arabidopsis thaliana</i> transcriptome and enhancers to the effects of genome doubling. New Phytologist, 2010, 186, 194-206.	7.3	39
38	Dosage and parent-of-origin effects shaping aneuploid swarms in A. thaliana. Heredity, 2009, 103, 458-468.	2.6	36
39	Exploiting Natural Variation of Secondary Metabolism Identifies a Gene Controlling the Glycosylation Diversity of Dihydroxybenzoic Acids in <i>Arabidopsis thaliana</i> . Genetics, 2014, 198, 1267-1276.	2.9	36
40	Brassinosteroids Regulate Plant Growth through Distinct Signaling Pathways in Selaginella and Arabidopsis. PLoS ONE, 2013, 8, e81938.	2.5	36
41	Arabidopsis <i>gulliver1/superroot2â€7</i> identifies a metabolic basis for auxin and brassinosteroid synergy. Plant Journal, 2014, 80, 797-808.	5.7	35
42	Forward Genetics by Sequencing EMS Variation-Induced Inbred Lines. G3: Genes, Genomes, Genetics, 2017, 7, 413-425.	1.8	33
43	Whole-Genome Sequence Accuracy Is Improved by Replication in a Population of Mutagenized Sorghum. G3: Genes, Genomes, Genetics, 2018, 8, 1079-1094.	1.8	33
44	Maize brace roots provide stalk anchorage. Plant Direct, 2020, 4, e00284.	1.9	25
45	Endosidin20 Targets the Cellulose Synthase Catalytic Domain to Inhibit Cellulose Biosynthesis. Plant Cell, 2020, 32, 2141-2157.	6.6	25
46	New Alleles of <i>FAD3A</i> Lower the Linolenic Acid Content of Soybean Seeds. Crop Science, 2018, 58, 713-718.	1.8	18
47	Maternal Gametophyte Effects on Seed Development in Maize. Genetics, 2016, 204, 233-248.	2.9	17
48	Natural Variation at <i>sympathy for the ligule</i> Controls Penetrance of the Semidominant <i>Liguleless narrow-R</i> Mutation in <i>Zea mays</i> . G3: Genes, Genomes, Genetics, 2014, 4, 2297-2306.	1.8	16
49	Cross-Talk Between Sporophyte and Gametophyte Generations Is Promoted by CHD3 Chromatin Remodelers in <i>Arabidopsis thaliana</i> . Genetics, 2016, 203, 817-829.	2.9	16
50	Adult plant resistance in maize to northern leaf spot is a feature of partial loss-of-function alleles of Hm1. PLoS Pathogens, 2018, 14, e1007356.	4.7	16
51	Bracing for sustainable agriculture: the development and function of brace roots in members of Poaceae. Current Opinion in Plant Biology, 2021, 59, 101985.	7.1	16
52	The Effectiveness of Physical and Chemical Defense Responses of Wild Emmer Wheat Against Aphids Depends on Leaf Position and Genotype. Frontiers in Plant Science, 2021, 12, 667820.	3.6	16
53	Phytohormone inhibitor treatments phenocopy brassinosteroid–gibberellin dwarf mutant interactions in maize. Plant Direct, 2017, 1, .	1.9	15
54	Cloning Genes from T-DNA Tagged Mutants. , 1998, 82, 339-351.		14

BRIAN P DILKES

#	Article	IF	CITATIONS
55	Identification of the Tyrosine- and Phenylalanine-Derived Soluble Metabolomes of Sorghum. Frontiers in Plant Science, 2021, 12, 714164.	3.6	14
56	Current status of the multinational Arabidopsis community. Plant Direct, 2020, 4, e00248.	1.9	13
57	Metabolic source isotopic pair labeling and genome-wide association are complementary tools for the identification of metabolite–gene associations in plants. Plant Cell, 2021, 33, 492-510.	6.6	12
58	Multivariate analysis reveals environmental and genetic determinants of element covariation in the maize grain ionome. Plant Direct, 2019, 3, e00139.	1.9	10
59	Mapping the Increased Protein Digestibility Trait in the Highâ€Lysine Sorghum Mutant P721Q. Crop Science, 2016, 56, 2647-2651.	1.8	9
60	A <i>Very Oil Yellow1</i> Modifier of the <i>Oil Yellow1-N1989</i> Allele Uncovers a Cryptic Phenotypic Impact of <i>Cis</i> -regulatory Variation in Maize. G3: Genes, Genomes, Genetics, 2019, 9, 375-390.	1.8	9
61	Mutation of the nuclear pore complex component, <i>aladin1</i> , disrupts asymmetric cell division in <i>Zea mays</i> (maize). G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	8
62	An assessment of transgenomics as a tool for identifying genes involved in the evolutionary differentiation of closely related plant species. New Phytologist, 2012, 193, 494-503.	7.3	7
63	Propagation of cell death in dropdead1, a sorghum ortholog of the maize lls1 mutant. PLoS ONE, 2018, 13, e0201359.	2.5	7
64	Re-Evaluation of Reportedly Metal Tolerant Arabidopsis thaliana Accessions. PLoS ONE, 2016, 11, e0130679.	2.5	7
65	Variation in Maize Chlorophyll Biosynthesis Alters Plant Architecture. Plant Physiology, 2020, 184, 300-315.	4.8	6
66	<i>slim shady</i> is a novel allele of <i>PHYTOCHROME B</i> present in the Tâ€DNA line SALK_015201. Plant Direct, 2021, 5, e00326.	1.9	6
67	Sunflower â€~Sunspot' is Hyposensitive to GA3 and has a Missense Mutation in the DELLA Motif of HaDella1. Journal of the American Society for Horticultural Science, 2016, 141, 389-394.	1.0	5
68	Transgene-Induced Gene Silencing Is Not Affected by a Change in Ploidy Level. PLoS ONE, 2008, 3, e3061.	2.5	4
69	Dark period transcriptomic and metabolic profiling of two diverse <i>Eutrema salsugineum</i> accessions. Plant Direct, 2018, 2, e00032.	1.9	4
70	Interaction Between Induced and Natural Variation at <i>oil yellow1</i> Delays Reproductive Maturity in Maize. G3: Genes, Genomes, Genetics, 2020, 10, 797-810.	1.8	3
71	Maize Plants Chimeric for an Autoactive Resistance Gene Display a Cell-Autonomous Hypersensitive Response but Non–Cell Autonomous Defense Signaling. Molecular Plant-Microbe Interactions, 2021, 34, 606-616.	2.6	2
72	Genetic Basis for Dosage Sensitivity in A. thaliana. PLoS Genetics, 2005, preprint, e70.	3.5	0