Marek Cypryk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8521386/publications.pdf

Version: 2024-02-01

92 papers 2,449 citations

257450 24 h-index 223800 46 g-index

98 all docs 98 docs citations 98 times ranked 2352 citing authors

#	Article	IF	CITATIONS
1	Living ring-opening polymerizations of heterocyclic monomers. Progress in Polymer Science, 2007, 32, 247-282.	24.7	343
2	Kinetics and Mechanism of Cyclic Esters Polymerization Initiated with Tin(II) Octoate. Polymerization of \hat{l}_{μ} -Caprolactone and I,I-Lactide Co-initiated with Primary Amines. Macromolecules, 2005, 38, 8170-8176.	4.8	172
3	Mechanism of the Acid-Catalyzed Siâ°'O Bond Cleavage in Siloxanes and Siloxanols. A Theoretical Study. Organometallics, 2002, 21, 2165-2175.	2.3	171
4	Mechanism of the B(C6F5)3-Catalyzed Reaction of Silyl Hydrides with Alkoxysilanes. Kinetic and Spectroscopic Studies. Organometallics, 2005, 24, 6077-6084.	2.3	142
5	Anionic ring-opening polymerization of 1,2,3,4-tetramethyl-1,2,3,4-tetraphenylcyclotetrasilane. Journal of the American Chemical Society, 1991, 113, 1046-1047.	13.7	121
6	Synthesis ofp-(Di-tert-butyl[18F]fluorosilyl)benzaldehyde ([18F]SiFA-A) with High Specific Activity by Isotopic Exchange: A Convenient Labeling Synthon for the 18F-Labeling of N-amino-oxy Derivatized Peptides. Bioconjugate Chemistry, 2007, 18, 2085-2089.	3.6	94
7	Synthesis of Branched Polysiloxanes with Controlled Branching and Functionalization by Anionic Ring-Opening Polymerization. Macromolecules, 2003, 36, 3890-3897.	4.8	82
8	Controlled synthesis of vinylmethylsiloxane–dimethylsiloxane gradient, block and alternate copolymers by anionic ROP of cyclotrisiloxanes. Polymer, 2002, 43, 1993-2001.	3.8	51
9	Cross-linking of linear vinylpolysiloxanes by hydrosilylation – FTIR spectroscopic studies. Vibrational Spectroscopy, 2012, 59, 1-8.	2.2	50
10	The nature of the interaction between hexamethyl-phosphortriamide and trimethylhalosilanes; cations containing tetracovalent silicon as possible intermediates in nucleophile-induced substitution of silicon halides. Journal of Organometallic Chemistry, 1978, 161, C31-C35.	1.8	48
11	Synthesis of Linear Polysiloxanes. , 2000, , 3-41.		44
12	Synthetic and mechanistic aspects of the reaction of trialkylsilyl halides with thio and seleno esters of phosphorus. Journal of Organometallic Chemistry, 1979, 171, 17-34.	1.8	43
13	Condensation of model linear siloxane oligomers possessing silanol and silyl chloride end groups. The mechanism of silanol silylation by a chlorosilane in the presence of neutral nucleophiles. Journal of Organometallic Chemistry, 1989, 367, 27-37.	1.8	42
14	Controlled synthesis of trifluoropropylmethylsiloxane–dimethylsiloxane gradient copolymers by anionic ROP of cyclotrisiloxanes. Journal of Polymer Science Part A, 2009, 47, 1204-1216.	2.3	42
15	Ab Initio Study of Silyloxonium Ions. Organometallics, 1997, 16, 5938-5949.	2.3	40
16	The reactivity of monomeric silanol intermediates in the hydrolytic polycondensation of tetraethoxysilane in acidic media. Journal of Non-Crystalline Solids, 1990, 125, 40-49.	3.1	36
17	Reusable functionalized polysiloxane-supported palladium catalyst for Suzuki–Miyaura cross-coupling. Journal of Catalysis, 2011, 282, 270-277.	6.2	35
18	Microstructure of the Copolymer Chain Generated by Anionic Ring-Opening Polymerization of a Model Cyclotrisiloxane with Mixed Siloxane Units1. Macromolecules, 2000, 33, 1536-1545.	4.8	34

#	Article	IF	CITATIONS
19	Cationic Polymerization of a Model Cyclotrisiloxane with Mixed Siloxane Units Initiated by a Protic Acid. Mechanism of Polymer Chain Formation. Macromolecules, 2002, 35, 9904-9912.	4.8	34
20	Soluble polysiloxane-supported palladium catalysts for the Mizoroki–Heck reaction. Journal of Molecular Catalysis A, 2010, 319, 30-38.	4.8	32
21	2-Thiouracil deprived of thiocarbonyl function preferentially base pairs with guanine rather than adenine in RNA and DNA duplexes. Nucleic Acids Research, 2015, 43, 2499-2512.	14.5	32
22	Organic polysilanes interrupted by heteroatoms. Progress in Polymer Science, 2003, 28, 691-728.	24.7	31
23	Palladium supported on triazolyl-functionalized polysiloxane as recyclable catalyst for Suzuki–Miyaura cross-coupling. Applied Catalysis A: General, 2014, 470, 24-30.	4.3	30
24	Lipase-mediated stereoselective transformations of chiral organophosphorus P-boranes revisited: revision of the absolute configuration of alkoxy(hydroxymethyl)phenylphosphine P-boranes. Tetrahedron: Asymmetry, 2011, 22, 1581-1590.	1.8	29
25	New precursors to SiCO ceramics derived from linear poly(vinylsiloxanes) of regular chain composition. Journal of the European Ceramic Society, 2014, 34, 889-902.	5.7	28
26	Asymmetric Cyclopropanation of Optically Active (1-Diethoxyphosphoryl)vinylp-Tolyl Sulfoxide with Sulfur Ylides: A Rationale for Diastereoselectivity. European Journal of Organic Chemistry, 2005, 2005, 653-662.	2.4	24
27	Studies on the Efficient Generation of PhosphorusCarbon Bonds via a Rearrangement of P ^{III} Esters Catalysed by Trimethylhalosilanes. Chemistry - A European Journal, 2009, 15, 1747-1756.	3.3	24
28	Carbonylative Suzuki–Miyaura coupling catalyzed by palladium supported on aminopropyl polymethylsiloxane microspheres under atmospheric pressure of CO. Journal of Molecular Catalysis A, 2016, 417, 76-80.	4.8	24
29	C5-substituents of uridines and 2-thiouridines present at the wobble position of tRNA determine the formation of their keto-enol or zwitterionic forms - a factor important for accuracy of reading of guanosine at the 3′-end of the mRNA codons. Nucleic Acids Research, 2017, 45, gkw1347.	14.5	24
30	Computational benchmark for calculation of silane and siloxane thermochemistry. Journal of Molecular Modeling, 2016, 22, 35.	1.8	21
31	Tertiary trisilyloxonium ion in cationic ring-opening polymerisation of a model cyclic siloxane, octamethyl-1,4-dioxatetrasilacyclohexane. Journal of Organometallic Chemistry, 2003, 686, 373-378.	1.8	20
32	Boronation of 1,8-Bis(diphenylphosphino)naphthalene: Formation of Cyclic Boronium Salts. Organometallics, 2009, 28, 4929-4937.	2.3	20
33	Behavior of oligo(dimethylsiloxanols) in the presence of protic acids in an acid-base inert solvent. Kinetics of the competition of disproportionation, ester formation, and condensation. Macromolecules, 1993, 26, 5389-5395.	4.8	19
34	Ringâ€opening polymerization of strained cyclotetrasilanes as a new route towards well defined polysilylenes. Makromolekulare Chemie Macromolecular Symposia, 1993, 73, 167-176.	0.6	19
35	Interaction of P(III) compounds with silyl halides. Tetrahedron, 1985, 41, 2471-2477.	1.9	18
36	Disproportionation of oligodimethylsiloxanols in the presence of a protic acid in dioxane. Journal of Organometallic Chemistry, 1993, 446, 91-97.	1.8	17

#	Article	IF	Citations
37	Acid-Catalyzed Condensation of Model Oligo(dimethylsiloxanediol)s. Macromolecules, 1994, 27, 6245-6253.	4.8	17
38	Polysiloxanol condensation and disproportionation in the presence of a superacid. Journal of Organometallic Chemistry, 2004, 689, 705-713.	1.8	17
39	Hydrolysis of Fluorosilanes:  A Theoretical Study. Journal of Physical Chemistry A, 2005, 109, 12020-12026.	2,5	16
40	Palladium supported on aminopropyl-functionalized polymethylsiloxane microspheres: Simple and effective catalyst for the Suzuki–Miyaura C–C coupling. Journal of Molecular Catalysis A, 2015, 407, 230-235.	4.8	16
41	Thermochemistry of Redistribution of Poly[oxymulti(dimethylsilylenes)], —[(Me2Si)mO]n—, to Polysiloxanes and Polysilanes. Theoretical Study. Macromolecular Theory and Simulations, 2001, 10, 158-164.	1.4	15
42	Polycondensation and disproportionation of an oligosiloxanol in the presence of a superbase. Journal of Organometallic Chemistry, 2002, 660, 14-26.	1.8	15
43	C5-Substituted 2-Selenouridines Ensure Efficient Base Pairing with Guanosine; Consequences for Reading the NNG-3′ Synonymous mRNA Codons. International Journal of Molecular Sciences, 2020, 21, 2882.	4.1	15
44	The mechanism of the reaction of organic phosphites with trialkylsilyl iodide. Iodoanhydrides of PIII, acids as intermediates. Journal of Organometallic Chemistry, 1981, 215, 355-365.	1.8	14
45	Fluorine-19 NMR studies of the reaction of octaphenylcyclotetrasilane with triflic acid. Organometallics, 1992, 11, 3257-3262.	2.3	13
46	The nature and consequences of the interaction of phosphoryl nucleophiles with a triorganosilyl chloride. Journal of Organometallic Chemistry, 1985, 288, 275-282.	1.8	12
47	Enantiodifferentiation of a silane and the analogous hydrocarbon by the dirhodium method—silaneâ√dirhodium complex interaction. Tetrahedron: Asymmetry, 2006, 17, 1743-1748.	1.8	12
48	Molecular modeling of the lipase-catalyzed hydrolysis of acetoxymethyl(i-propoxy)phenylphosphine oxide and its P-borane analogue. Journal of Molecular Graphics and Modelling, 2012, 38, 290-297.	2.4	12
49	Monte Carlo simulation of the cyclization-chain extension kinetics for the cationic polymerization of hexamethylcyclotrisiloxane. Macromolecules, 1991, 24, 2498-2505.	4.8	11
50	Novel structural and thermotropic behavior of poly(diphenylphosphazene). Macromolecular Chemistry and Physics, 1994, 195, 1823-1842.	2.2	11
51	Structural Studies of the Bisimidazole 5,5-Dimethyl-1,3,2-Dioxaphosphorinane-2-Thioxo-2-Hydroxy Complex. Journal of Physical Chemistry B, 1998, 102, 4488-4494.	2.6	11
52	Silanones and metasilicates from negatively charged \tilde{r} +SiO(\hat{a} - \hat{r}) and \tilde{r} SiO2($2\hat{a}$ - \hat{r}) precursors. Theoretical study. Journal of Organometallic Chemistry, 2002, 642, 163-170.	1.8	11
53	Evolution of Chain Microstructure and Kinetics of Reaching Equilibrium in Living Reversible Copolymerization. Macromolecular Theory and Simulations, 2016, 25, 196-214.	1.4	11
54	Optically active silyl esters of phosphorus. II. Stereochemistry of reactions with nucleophiles. Tetrahedron, 1989, 45, 4403-4414.	1.9	10

#	Article	IF	Citations
55	Kinetic and mechanistic studies of the transformation of the catalyst, tris(pentafluorophenyl)borane, in the presence of silyl and germyl hydrides. Journal of Catalysis, 2019, 379, 90-99.	6.2	10
56	Optically active triorganosilyl esters of phosphorus synthesis and structure. Tetrahedron, 1986, 42, 385-397.	1.9	9
57	The extension of the mechanistic concept of the nucleophilic catalysis in the silicon chemistry to some reactions of the P(III) center: Analogies between silylation and phosphorylation. Heteroatom Chemistry, 1991, 2, 63-70.	0.7	9
58	Limitations, mechanism and understanding of the origins of stereocontrol in (S)-dimethylsulfonium-(p-tolylsulfinyl)methylide-mediated epoxidation reactions. Tetrahedron: Asymmetry, 2010, 21, 177-186.	1.8	9
59	Polymerization of Cyclic Siloxanes, Silanes, and Related Monomers. , 2012, , 451-476.		9
60	Kinetics of the condensation of oligosiloxanes containing acetoxyl and hydroxyl end groups catalyzed by uncharged nucleophiles in an acid-base inert solvent. Journal of Organometallic Chemistry, 1989, 377, 197-204.	1.8	8
61	Hydrolysis of trialkoxysilanes catalysed by the fluoride anion. Nucleophilic <i>vs.</i> basic catalysis. New Journal of Chemistry, 2019, 43, 15222-15232.	2.8	8
62	Reactions of titanium alkoxide with SiH containing polymers as a route to titanium/siloxane hybrid materials with enhanced refractive index. Applied Organometallic Chemistry, 2020, 34, e5571.	3.5	8
63	Soluble Alkylthiopolysiloxane-Supported Palladium Catalysts for the Heck Reaction. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 1586-1598.	1.6	7
64	Stereoselective Cyclopropanation as a Way to 1â€Aminocyclopropaneâ€1â€phosphonic Acids: Rationale for Phosphoryl Group Migration. European Journal of Organic Chemistry, 2016, 2016, 2064-2074.	2.4	7
65	Reaction of Silyl Hydrides with Tetrabutoxygermanium in the Presence of B(C ₆ F ₅) ₃ : Difference between Silicon and Germanium Chemistries and Easy Route to GeH ₄ . Organometallics, 2018, 37, 1585-1590.	2.3	7
66	Quantum chemical study of thiosulfinic acids and their anions. Computational and Theoretical Chemistry, 2008, 863, 105-110.	1.5	6
67	Application of 29Si NMR spectroscopy in organosilicon polymers' investigations. Polimery, 2007, 52, 730-735.	0.7	6
68	Copolymerization of functional cyclotrisiloxanes – a reactivity comparison. Polimery, 2010, 55, 503-511.	0.7	6
69	1-(Acylamino)alkylphosphonic Acids—Alkaline Deacylation. Molecules, 2018, 23, 859.	3.8	5
70	Reasons for enhanced activity of doxorubicin on co-delivery with octa(3-aminopropyl)silsesquioxane. RSC Advances, 2020, 10, 15579-15585.	3.6	5
71	Nucleophilic Substitution at Tetracoordinate Phosphorus. Stereochemical Course and Mechanisms of Nucleophilic Displacement Reactions at Phosphorus in Diastereomeric cis- and trans-2-Halogeno-4-methyl-1,3,2-dioxaphosphorinan-2-thiones: Experimental and DFT Studies. Molecules, 2021, 26, 3655.	3.8	5
72	Interactions of hexachlorodiphosphazenium ion with an alcohol and with some siliconâ€"oxygen reagents and their role in the catalysis of polycondensation in silanolâ€"alkoxysilane systems. Journal of Organometallic Chemistry, 1996, 526, 351-361.	1.8	4

#	Article	IF	Citations
73	Comparison of steric hindrance in silylenium and carbenium cations and their complexes. Journal of Organometallic Chemistry, 2003, 686, 164-174.	1.8	4
74	New palladium catalyst immobilized on epoxy resin: synthesis, characterization and catalytic activity. Applied Organometallic Chemistry, 2016, 30, 4-11.	3.5	4
75	Mechanism of the cationic ring opening polymerization of cyclosiloxanes - interpretation of new results. Polimery, 2004, 49, 491-497.	0.7	4
76	Nucleophilic Substitution at Heteroatoms—Identity Substitution Reactions at Phosphorus and Sulfur Centers: Do They Proceed in a Concerted (SN2) or Stepwise (A–E) Way?. Molecules, 2022, 27, 599.	3.8	4
77	Novel tetrahedral tetranickel cluster with alkylidyne ligand (NiCp)4(\hat{l} /43-CR). Journal of Organometallic Chemistry, 2006, 691, 5825-5830.	1.8	3
78	Rhodium(I) complex catalyst immobilized on terpolymers of <i>N</i> â€vinylpyrrolidinone and 1â€vinylimidazole. Journal of Applied Polymer Science, 2012, 124, 3538-3546.	2.6	3
79	Differentiation of Diastereoisomers of Protected 1,2-Diaminoalkylphosphonic Acids by El Mass Spectrometry and Density Functional Theory. Journal of the American Society for Mass Spectrometry, 2013, 24, 388-398.	2.8	3
80	Nucleophilic Substitution at Tetracoordinate Sulfur. Kinetics and Mechanism of the Chloride-Chloride Exchange Reaction in Arenesulfonyl Chlorides: Counterintuitive Acceleration of Substitution at Sulfonyl Sulfur by ortho-Alkyl Groups and Its Origin. Molecules, 2020, 25, 1428.	3.8	3
81	Selectivity of siloxaneâ€siloxane copolymer synthesis by ring opening polymerization. Macromolecular Symposia, 1998, 132, 405-414.	0.7	2
82	1-(<i>N</i> -Acylamino)alkylphosphonic acidsâ€"Deacylation in aqueous solutions. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 651-658.	1.6	2
83	Steady State and Equilibrium in Reversible Copolymerization at Constant Comonomer Concentrations. Macromolecular Theory and Simulations, 2017, 26, 1700039.	1.4	2
84	Modifications of siloxane polymers. Polimery, 2007, 52, 496-502.	0.7	2
85	Structure and reactivity of thiosulfonic acids and their anions: A theoretical study. Heteroatom Chemistry, 2012, 23, 329-339.	0.7	1
86	Polymerization of Cyclic Siloxanes, Silanes, and Related Monomers. , 2016, , .		1
87	Unexpected formation of a significant amount of polymer primary hydroxyl groups in synthesis of star-shaped polymer from linear alcoholate chains and diepoxides. Polymer, 2016, 99, 713-720.	3.8	1
88	Reactions of Zirconium (IV) n â€Propoxide with SiHâ€Functional Polysiloxanes as a Route to Siloxane–Zirconium Hybrid Materials with Enhanced Refractive Index. Macromolecular Rapid Communications, 2021, 42, 2000601.	3.9	1
89	Polysiloxanes as supports for transition metal catalysts. Polimery, 2016, 61, 407-412.	0.7	1
90	DFT Study of the Silyl Esters of Thiophosphorus Acids. Silicon, 2010, 2, 247-252.	3.3	0

#	Article	IF	CITATIONS
91	The Heck synthesis of βâ€arylated ketones catalyzed by palladium immobilized on functional polysiloxane microspheres. Applied Organometallic Chemistry, 2020, 34, e5969.	3.5	O
92	Effect of temperature on B(C ₆ F ₅) ₃ -catalysed reduction of germanium alkoxides by hydrosilanes – a new route to germanium nanoparticles. Dalton Transactions, 2020, 49, 7319-7323.	3.3	0