Harel Z Shouval

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8521363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conditions for Synaptic Specificity during the Maintenance Phase of Synaptic Plasticity. ENeuro, 2022, 9, ENEURO.0064-22.2022.	1.9	2
2	Learning precise spatiotemporal sequences via biophysically realistic learning rules in a modular, spiking network. ELife, 2021, 10, .	6.0	17
3	Behavioral Time Scale Plasticity of Place Fields: Mathematical Analysis. Frontiers in Computational Neuroscience, 2021, 15, 640235.	2.1	9
4	Active intrinsic conductances in recurrent networks allow for long-lasting transients and sustained activity with realistic firing rates as well as robust plasticity. Journal of Computational Neuroscience, 2021, , 1.	1.0	0
5	Network dynamics of Broca's area during word selection. PLoS ONE, 2019, 14, e0225756.	2.5	25
6	Persistent increased PKMζ in long-term and remote spatial memory. Neurobiology of Learning and Memory, 2017, 138, 135-144.	1.9	56
7	On the origin of sensory errors: Contrast discrimination under temporal constraint. Journal of Vision, 2017, 17, 6.	0.3	0
8	The Role of Multiple Neuromodulators in Reinforcement Learning That Is Based on Competition between Eligibility Traces. Frontiers in Synaptic Neuroscience, 2016, 8, 37.	2.5	14
9	Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice. ELife, 2016, 5, .	6.0	138
10	Atypical PKCs in memory maintenance: the roles of feedback and redundancy. Learning and Memory, 2015, 22, 344-353.	1.3	42
11	Visually Cued Action Timing in the Primary Visual Cortex. Neuron, 2015, 86, 319-330.	8.1	66
12	Networks that learn the precise timing of event sequences. Journal of Computational Neuroscience, 2015, 39, 235-254.	1.0	26
13	Distinct Eligibility Traces for LTP and LTD in Cortical Synapses. Neuron, 2015, 88, 528-538.	8.1	149
14	A Simple Network Architecture Accounts for Diverse Reward Time Responses in Primary Visual Cortex. Journal of Neuroscience, 2015, 35, 12659-12672.	3.6	23
15	What does scalar timing tell us about neural dynamics?. Frontiers in Human Neuroscience, 2014, 8, 438.	2.0	4
16	Plasticity of network dynamics as observed experimentally requires heterogeneity of the network connectivity pattern. BMC Neuroscience, 2013, 14, .	1.9	1
17	Matching biochemical and functional efficacies confirm ZIP as a potent competitive inhibitor of PKMζ in neurons. Neuropharmacology, 2013, 64, 37-44.	4.1	50
18	Scaling of Perceptual Errors Can Predict the Shape of Neural Tuning Curves. Physical Review Letters, 2013, 110, 168102.	7.8	4

HAREL Z SHOUVAL

#	Article	IF	CITATIONS
19	On the precision of quasi steady state assumptions in stochastic dynamics. Journal of Chemical Physics, 2012, 137, 044105.	3.0	22
20	What is the appropriate description level for synaptic plasticity?. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19103-19104.	7.1	7
21	A single spiking neuron that can represent interval timing: analysis, plasticity and multi-stability. Journal of Computational Neuroscience, 2011, 30, 489-499.	1.0	12
22	A network of spiking neurons that can represent interval timing: mean field analysis. Journal of Computational Neuroscience, 2011, 30, 501-513.	1.0	31
23	Spike timing dependent plasticity: a consequence of more fundamental learning rules. Frontiers in Computational Neuroscience, 2010, 4, .	2.1	95
24	Learning reward timing in cortex through reward dependent expression of synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6826-6831.	7.1	70
25	Translational switch for longâ€ŧerm maintenance of synaptic plasticity. Molecular Systems Biology, 2009, 5, 284.	7.2	38
26	Evaluating statistical methods used to estimate the number of postsynaptic receptors. Journal of Neuroscience Methods, 2009, 178, 393-401.	2.5	3
27	Structural Plasticity Can Produce Metaplasticity. PLoS ONE, 2009, 4, e8062.	2.5	27
28	Spatiotemporal molecular dynamics and synaptic plasticity. BMC Neuroscience, 2008, 9, .	1.9	0
29	Modeling stochastic calcium dynamics in the dendritic spines: a hybrid algorithm. BMC Neuroscience, 2008, 9, P86.	1.9	Ο
30	A Biophysical Model of Synaptic Plasticity and Metaplasticity Can Account for the Dynamics of the Backward Shift of Hippocampal Place Fields. Journal of Neurophysiology, 2008, 100, 983-992.	1.8	13
31	Effect of Stochastic Synaptic and Dendritic Dynamics on Synaptic Plasticity in Visual Cortex and Hippocampus. Journal of Neurophysiology, 2007, 97, 375-386.	1.8	30
32	Spatiotemporal dynamics of calcium and calmodulin at the spine. BMC Neuroscience, 2007, 8, .	1.9	0
33	A Biophysical Basis for the Inter-spike Interaction of Spike-timing-dependent Plasticity. Biological Cybernetics, 2006, 95, 113-121.	1.3	17
34	Simulating place field dynamics using spike timing-dependent plasticity. Neurocomputing, 2006, 69, 1253-1259.	5.9	9
35	Stochastic Properties of Synaptic Transmission Affect the Shape of Spike Time–Dependent Plasticity Curves. Journal of Neurophysiology, 2005, 93, 1069-1073.	1.8	69
36	Clusters of interacting receptors can stabilize synaptic efficacies. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14440-14445.	7.1	60

HAREL Z SHOUVAL

#	Article	IF	CITATIONS
37	Analysis of the intraspinal calcium dynamics and its implications for the plasticity of spiking neurons. Physical Review E, 2004, 69, 011907.	2.1	10
38	Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14943-14948.	7.1	89
39	A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10831-10836.	7.1	576
40	Converging evidence for a simplified biophysical model of synaptic plasticity. Biological Cybernetics, 2002, 87, 383-391.	1.3	68
41	Visual Experience and Deprivation Bidirectionally Modify the Composition and Function of NMDA Receptors in Visual Cortex. Neuron, 2001, 29, 157-169.	8.1	360