Lisa A Parr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8520758/publications.pdf

Version: 2024-02-01

57	2,833	27 h-index	52
papers	citations		g-index
57	57	57	2269
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Visual preferences for directâ€gaze faces in infant macaques (<i>Macaca mulatta</i>) with limited face exposure. Developmental Psychobiology, 2019, 61, 228-238.	1.6	16
2	Intranasal oxytocin in rhesus monkeys alters brain networks that detect social salience and reward. American Journal of Primatology, 2018, 80, e22915.	1.7	11
3	Age-related decline in cognitive flexibility in female chimpanzees. Neurobiology of Aging, 2018, 72, 83-88.	3.1	34
4	An evaluation of central penetration from a peripherally administered oxytocin receptor selective antagonist in nonhuman primates. Bioorganic and Medicinal Chemistry, 2017, 25, 305-315.	3.0	7
5	Robust representations of individual faces in chimpanzees (Pan troglodytes) but not monkeys (Macaca) Tj ETQq1	1.0.78431	4 rgBT /Ove
6	The development of visual preferences for direct versus averted gaze faces in infant macaques (<i>Macaca mulatta</i>). Developmental Psychobiology, 2016, 58, 926-936.	1.6	22
7	Experienceâ€dependent changes in the development of face preferences in infant rhesus monkeys. Developmental Psychobiology, 2016, 58, 1002-1018.	1.6	20
8	Effects of chronic oxytocin on attention to dynamic facial expressions in infant macaques. Psychoneuroendocrinology, 2016, 74, 149-157.	2.7	19
9	The Macaque Social Responsiveness Scale (mSRS): A Rapid Screening Tool for Assessing Variability in the Social Responsiveness of Rhesus Monkeys (Macaca mulatta). PLoS ONE, 2016, 11, e0145956.	2.5	29
10	Familiar and unfamiliar face recognition in crested macaques (Macaca nigra). Royal Society Open Science, 2015, 2, 150109.	2.4	13
11	Establishing the reliability of rhesus macaque social network assessment from video observations. Animal Behaviour, 2015, 107, 115-123.	1.9	5
12	Facial expression recognition in crested macaques (Macaca nigra). Animal Cognition, 2015, 18, 985-990.	1.8	26
13	The Default Mode Network in Chimpanzees (Pan troglodytes) is Similar to That of Humans. Cerebral Cortex, 2015, 25, 538-544.	2.9	53
14	Human Faces Are Slower than Chimpanzee Faces. PLoS ONE, 2014, 9, e110523.	2.5	13
15	Intranasal oxytocin enhances socially-reinforced learning in rhesus monkeys. Frontiers in Behavioral Neuroscience, 2014, 8, .	2.0	19
16	Of Mice, Monkeys, And Men: Physiological And Morphological Evidence For Evolutionary Divergence Of Function In Mimetic Musculature. Anatomical Record, 2014, 297, 1250-1261.	1.4	6
17	Aerosolized oxytocin increases cerebrospinal fluid oxytocin in rhesus macaques. Psychoneuroendocrinology, 2014, 45, 49-57.	2.7	122
18	Did speech slow down the human face? Human facial muscles have a high proportion of slow myosin fibers compared to other primates (918.19). FASEB Journal, 2014, 28, 918.19.	0.5	0

#	Article	IF	CITATIONS
19	Differences in Neural Activation for Object-Directed Grasping in Chimpanzees and Humans. Journal of Neuroscience, 2013, 33, 14117-14134.	3.6	88
20	How the Thatcher illusion reveals evolutionary differences in the face processing of primates. Animal Cognition, 2013, 16, 691-700.	1.8	13
21	Intranasal oxytocin selectively attenuates rhesus monkeys' attention to negative facial expressions. Psychoneuroendocrinology, 2013, 38, 1748-1756.	2.7	110
22	Process Versus Product in Social Learning: Comparative Diffusion Tensor Imaging of Neural Systems for Action Execution–Observation Matching in Macaques, Chimpanzees, and Humans. Cerebral Cortex, 2013, 23, 1014-1024.	2.9	142
23	How Good are Mice and Monkeys as Models for Human Face Transplants? Comparative Physiological Perspectives on Myosin Fiber Types. FASEB Journal, 2013, 27, 192.3.	0.5	0
24	The organization of conspecific face space in nonhuman primates. Quarterly Journal of Experimental Psychology, 2012, 65, 2411-2434.	1.1	11
25	The perception of two-tone Mooney faces in chimpanzees (<i>Pan troglodytes</i>). Cognitive Neuroscience, 2012, 3, 21-28.	1.4	7
26	The composite face effect in chimpanzees (Pan troglodytes) and rhesus monkeys (Macaca mulatta) Journal of Comparative Psychology (Washington, D C: 1983), 2012, 126, 339-346.	0.5	9
27	Early life stress affects cerebral glucose metabolism in adult rhesus monkeys (Macaca mulatta). Developmental Cognitive Neuroscience, 2012, 2, 181-193.	4.0	26
28	A Comparative Study of Face Processing Using Scrambled Faces. Perception, 2012, 41, 460-473.	1.2	7
29	Effect of Familiarity and Viewpoint on Face Recognition in Chimpanzees. Perception, 2011, 40, 863-872.	1.2	14
30	The inversion effect reveals species differences in face processing. Acta Psychologica, 2011, 138, 204-210.	1.5	12
31	The importance of surface-based cues for face discrimination in non-human primates. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1964-1972.	2.6	12
32	The evolution of face processing in primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 1764-1777.	4.0	129
33	Face Perception in Non-Human Primates. , 2011, , .		2
34	Visual kin recognition in nonhuman primates: (Pan troglodytes and Macaca mulatta): Inbreeding avoidance or male distinctiveness?. Journal of Comparative Psychology (Washington, D C: 1983), 2010, 124, 343-350.	0.5	40
35	Face Processing in the Chimpanzee Brain. Current Biology, 2009, 19, 50-53.	3.9	79
36	Facial expression recognition in rhesus monkeys, Macaca mulatta. Animal Behaviour, 2009, 77, 1507-1513.	1.9	83

#	Article	IF	CITATIONS
37	Visual expertise does not predict the composite effect across species: A comparison between spider (Ateles geoffroyi) and rhesus (Macaca mulatta) monkeys. Brain and Cognition, 2009, 71, 187-195.	1.8	14
38	Discrimination of faces and houses by rhesus monkeys: the role of stimulus expertise and rotation angle. Animal Cognition, 2008, 11, 467-474.	1.8	28
39	Rhesus monkeys (Macaca mulatta) lack expertise in face processing. Journal of Comparative Psychology (Washington, D C: 1983), 2008, 122, 390-402.	0.5	54
40	Facial expression categorization by chimpanzees using standardized stimuli Emotion, 2008, 8, 216-231.	1.8	88
41	A comparison of resting-state brain activity in humans and chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17146-17151.	7.1	177
42	New Developments in Understanding Emotional Facial Signals in Chimpanzees. Current Directions in Psychological Science, 2007, 16, 117-122.	5. 3	69
43	A Cross-species Comparison of Facial Morphology and Movement in Humans and Chimpanzees Using the Facial Action Coding System (FACS). Journal of Nonverbal Behavior, 2007, 31, 1-20.	1.0	163
44	Three studies on configural face processing by chimpanzees. Brain and Cognition, 2006, 62, 30-42.	1.8	43
45	The Perception of Unfamiliar Faces and Houses by Chimpanzees: Influence of Rotation Angle. Perception, 2006, 35, 1473-1483.	1.2	27
46	The Discrimination of Faces and Their Emotional Content by Chimpanzees (Pan troglodytes). Annals of the New York Academy of Sciences, 2006, 1000, 56-78.	3.8	49
47	Understanding chimpanzee facial expression: insights into the evolution of communication. Social Cognitive and Affective Neuroscience, 2006, $1,221-228$.	3.0	112
48	Emotional communication in primates: implications for neurobiology. Current Opinion in Neurobiology, 2005, 15, 716-720.	4.2	91
49	Influence of Social Context on the Use of Blended and Graded Facial Displays in Chimpanzees. International Journal of Primatology, 2005, 26, 73-103.	1.9	91
50	Perceptual biases for multimodal cues in chimpanzee (Pan troglodytes) affect recognition. Animal Cognition, 2004, 7, 171-8.	1.8	65
51	Understanding other's emotions: From affective resonance to empathic action. Behavioral and Brain Sciences, 2002, 25, 44-45.	0.7	2
52	Recognizing facial cues: Individual discrimination by chimpanzees (Pan troglodytes) and rhesus monkeys (Macaca mulatta) Journal of Comparative Psychology (Washington, D C: 1983), 2000, 114, 47-60.	0.5	192
53	Visual kin recognition in chimpanzees. Nature, 1999, 399, 647-648.	27.8	171
54	Hand Preferences for a Haptic Task in Chimpanzees (Pan troglodytes). International Journal of Primatology, 1999, 20, 867-881.	1.9	19

#	Article	IF	CITATIONS
55	Why Faces May Be Special: Evidence of the Inversion Effect in Chimpanzees. Journal of Cognitive Neuroscience, 1998, 10, 615-622.	2.3	111
56	Lateralized behavior and lymphocyte counts in chimpanzees (<i>pan troglodytes</i>): A crossâ€sectional and longitudinal assessment. Developmental Neuropsychology, 1998, 14, 519-533.	1.4	3
57	The Perception of Facial Expressions By Chimpanzees, <i>Pan Troglodytes</i> . Interaction Studies, 1998, 2, 1-23.	1.0	60