Laura G Perry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8520299/publications.pdf

Version: 2024-02-01

26 papers 4,755 citations

471509 17 h-index 26 g-index

27 all docs

27 docs citations

times ranked

27

6338 citing authors

#	Article	IF	CITATIONS
1	THE ROLE OF ROOT EXUDATES IN RHIZOSPHERE INTERACTIONS WITH PLANTS AND OTHER ORGANISMS. Annual Review of Plant Biology, 2006, 57, 233-266.	18.7	3,654
2	Vulnerability of riparian ecosystems to elevated <scp><scp>CO₂</scp></scp> and climate change in arid and semiarid western <scp>N</scp> orth <scp>A</scp> merica. Global Change Biology, 2012, 18, 821-842.	9.5	145
3	Competitive control of invasive vegetation: a native wetland sedge suppresses Phalaris arundinacea in carbon-enriched soil. Journal of Applied Ecology, 2004, 41, 151-162.	4.0	126
4	Immobilizing nitrogen to control plant invasion. Oecologia, 2010, 163, 13-24.	2.0	126
5	Concentrations of the Allelochemical $(\hat{A}\pm)$ -Catechin IN Centaurea maculosa Soils. Journal of Chemical Ecology, 2007, 33, 2337-2344.	1.8	81
6	Chemical facilitation and induced pathogen resistance mediated by a rootâ€secreted phytotoxin. New Phytologist, 2007, 173, 852-860.	7.3	70
7	Elevated <scp>CO</scp> ₂ does not offset greater water stress predicted under climate change for native and exotic riparian plants. New Phytologist, 2013, 197, 532-543.	7.3	51
8	Screening of Grassland Plants for Restoration after Spotted Knapweed Invasion. Restoration Ecology, 2005, 13, 725-735.	2.9	49
9	Incorporating climate change projections into riparian restoration planning and design. Ecohydrology, 2015, 8, 863-879.	2.4	47
10	A Test of Two Annual Cover Crops for Controlling Phalaris arundinacea Invasion in Restored Sedge Meadow Wetlands. Restoration Ecology, 2003, 11, 297-307.	2.9	41
11	Founder control and coexistence in a simple model of asymmetric competition for light. Journal of Theoretical Biology, 2003, 222, 425-436.	1.7	34
12	The influence of light availability on competition between Phalaris arundinacea and a native wetland sedge. Plant Ecology, 2004, 170, 73-81.	1.6	33
13	Native cover crops suppress exotic annuals and favor native perennials in a greenhouse competition experiment. Plant Ecology, 2009, 204, 247-259.	1.6	32
14	A putative allelopathic agent of Russian knapweed occurs in invaded soils. Soil Biology and Biochemistry, 2007, 39, 1812-1815.	8.8	30
15	Phytotoxic Allelochemicals From Roots and Root Exudates of Leafy Spurge ($<$ i>Euphorbia esula $<$ $ $ i>L.). Plant Signaling and Behavior, 2006, 1, 323-327.	2.4	20
16	Effects of dams and geomorphic context on riparian forests of the Elwha River, Washington. Ecosphere, 2016, 7, e01621.	2.2	20
17	No evidence for root-mediated allelopathy in Centaurea solstitialis, a species in a commonly allelopathic genus. Biological Invasions, 2007, 9, 897-907.	2.4	19
18	Light competition for invasive species control: A model of cover crop–weed competition and implications for Phalaris arundinacea control in sedge meadow wetlands. Euphytica, 2006, 148, 121-134.	1.2	18

#	Article	IF	CITATIONS
19	Implications of climate change for water management of an arid inland lake in Northwest China. Lake and Reservoir Management, 2015, 31, 202-213.	1.3	18
20	Divergent effects of land-use, propagule pressure, and climate on woody riparian invasion. Biological Invasions, 2018, 20, 3271-3295.	2.4	9
21	Projected warming disrupts the synchrony of riparian seed release and snowmelt streamflow. New Phytologist, 2020, 225, 693-712.	7.3	8
22	Riparian Soil Development Linked to Forest Succession Above and Below Dams Along the Elwha River, Washington, USA. Ecosystems, 2017, 20, 104-129.	3.4	7
23	Invasion of Siberian Elm (Ulmus pumila) Along the South Platte River: the Roles of Seed Source, Human Influence, and River Geomorphology. Wetlands, 2022, 42, 1.	1.5	6
24	Chemical Signals in the Rhizosphere. Books in Soils, Plants, and the Environment, 2007, , 297-330.	0.1	3
25	Root Exudation and Rhizosphere Biology: Multiple Functions of a Plant Secondary Metabolite. , 2006, , 403-420.		2
26	Phytotoxins Produced by Invasive Weeds and Their Applications in Agriculture and the Restoration of Natural Areas. ACS Symposium Series, 2006, , 99-112.	0.5	1