Anatoli I Popov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8519866/publications.pdf

Version: 2024-02-01

215 papers 4,260 citations

94433 37 h-index 51 g-index

216 all docs

216 docs citations

216 times ranked

2414 citing authors

#	Article	IF	CITATIONS
1	Comparative <i>ab initio</i> calculations of SrTiO3, BaTiO3, PbTiO3, and SrZrO3 (001) and (111) surfaces as well as oxygen vacancies. Low Temperature Physics, 2022, 48, 80-88.	0.6	4
2	Optical, Structural, and Mechanical Properties of Gd ₃ Ga ₅ O ₁₂ Single Crystals Irradiated with ⁸⁴ Kr ⁺ Ions. Physica Status Solidi (B): Basic Research, 2022, 259, .	1.5	16
3	Increase in the density of Sr2Fe1.5Mo0.5O6-î´ membranes through an excess of iron oxide: The effect of iron oxide on transport and kinetic parameters. Surfaces and Interfaces, 2022, 29, 101784.	3.0	5
4	Oxygen Vacancy Formation and Migration within the Antiphase Boundaries in Lanthanum Scandate-Based Oxides: Computational Study. Materials, 2022, 15, 2695.	2.9	0
5	A few common misconceptions in the interpretation of experimental spectroscopic data. Optical Materials, 2022, 127, 112276.	3.6	34
6	Luminescence and Vacuum Ultraviolet Excitation Spectroscopy of Nanophosphors under Synchrotron Irradiation. Physica Status Solidi (B): Basic Research, 2022, 259, .	1.5	4
7	The Mechanism of the Formation of Grain Boundaries Nanopores in Polycrystalline Materials. , 2022, , .		O
8	Formation of porous Ga ₂ O ₃ /GaAs layers for electronic devices., 2022,,.		9
9	Multimode Representation of the Magnetic Field for the Analysis of the Nonlinear Behavior of Solar Activity as a Driver of Space Weather. Mathematics, 2022, 10, 1655.	2.2	1
10	Detection of hidden oxygen interstitials in neutron-irradiated corundum crystals. Optical Materials: X, 2022, , 100151.	0.8	1
11	Ab Initio Computations of O and AO as well as ReO2, WO2 and BO2-Terminated ReO3, WO3, BaTiO3, SrTiO3 and BaZrO3 (001) Surfaces. Symmetry, 2022, 14, 1050.	2.2	23
12	Ion-Track Template Synthesis and Characterization of ZnSeO3 Nanocrystals. Crystals, 2022, 12, 817.	2.2	11
13	Extended Positronâ€Trapping Defects in the Eu ³⁺ â€Doped BaGa ₂ O ₄ Ceramics Studied by Positron Annihilation Lifetime Method. Physica Status Solidi (B): Basic Research, 2022, 259, .	1.5	3
14	Synthesis and luminescent properties of Mn-doped alpha-tricalcium phosphate. Ceramics International, 2021, 47, 5335-5340.	4.8	18
15	Thermal annealing and transformation of dimer F centers in neutron-irradiated Al2O3 single crystals. Journal of Nuclear Materials, 2021, 543, 152600.	2.7	21
16	CdTe Nanocrystal Synthesis in SiO ₂ /Si Ionâ€Track Template: The Study of Electronic and Structural Properties. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, .	1.8	16
17	<i>Ab-Initio</i> Calculations of Oxygen Vacancy in Ga ₂ O ₃ Crystals. Latvian Journal of Physics and Technical Sciences, 2021, 58, 3-10.	0.6	12
18	Extraction–Pyrolytic Method for TiO2 Polymorphs Production. Crystals, 2021, 11, 431.	2,2	41

#	Article	IF	Citations
19	Texturing of Indium Phosphide for Improving the Characteristics of Space Solar Cells., 2021,,.		1
20	Ab initio Calculations of Bulk and (001) Surface F-centers in ABO3 Perovskites., 2021,,.		0
21	Fast Luminescence Studies of NaLaF4: Pr3+ Glass Ceramics. , 2021, , .		0
22	Investigation of Critical Points of Pore Formation Voltage on the Surface of Semiconductors of A ₃ B ₅ Group., 2021,,.		1
23	Study of phase composition, photocatalytic activity, and photoluminescence of TiO2 with Eu additive produced by the extraction-pyrolytic method. Journal of Materials Research and Technology, 2021, 13, 2350-2360.	5.8	32
24	Effect of Poly(Titanium Oxide) on the Viscoelastic and Thermophysical Properties of Interpenetrating Polymer Networks. Crystals, 2021, 11, 794.	2.2	42
25	First Principles Calculations of Atomic and Electronic Structure of TiAl3+- and TiAl2+-Doped YAlO3. Materials, 2021, 14, 5589.	2.9	2
26	Spectroscopic studies of Cr3+ ions in natural single crystal of magnesium aluminate spinel MgAl2O4. Optical Materials, 2021, 121, 111496.	3.6	14
27	Small radius electron and hole polarons in Pb <i>X<cub>2 (<i>$X> = F, Cl, Br) crystals: a computational study. Journal of Materials Chemistry C, 2021, 9, 16536-16544.$</i></cub></i>	5.5	8
28	Nanostructure Formation on ZnSe Crystal Surface by Electrochemical Etching., 2021,,.		2
29	Morphology Study of the Porosity of the GaP Surface Layer Formed on the Surface of a Single Crystal by Electrochemical Etching. , 2021, , .		0
30	Evidence for the formation of two types of oxygen interstitials in neutron-irradiated α-Al2O3 single crystals. Scientific Reports, 2021, 11, 20909.	3.3	14
31	Tendencies in ABO3 Perovskite and SrF2, BaF2 and CaF2 Bulk and Surface F-Center Ab Initio Computations at High Symmetry Cubic Structure. Symmetry, 2021, 13, 1920.	2.2	30
32	Vacancy Defects in Ga2O3: First-Principles Calculations of Electronic Structure. Materials, 2021, 14, 7384.	2.9	40
33	Evolution of Free Volumes in Polycrystalline BaGa2O4 Ceramics Doped with Eu3+ Ions. Crystals, 2021, 11, 1515.	2.2	14
34	Influence of "Productive―Impurities (Cd, Na, O) on the Properties of the Cu ₂ ZnSnS ₄ Absorber of Model Solar Cells. Latvian Journal of Physics and Technical Sciences, 2021, 58, 13-23.	0.6	0
35	Positron Annihilation Lifetime Spectroscopy Insight on Free Volume Conversion of Nanostructured MgAl2O4 Ceramics. Nanomaterials, 2021, 11, 3373.	4.1	33
36	Ab initio calculations of CaZrO3 (011) surfaces: systematic trends in polar (011) surface calculations of ABO3 perovskites. Journal of Materials Science, 2020, 55, 203-217.	3.7	23

#	Article	IF	Citations
37	Hybrid density functional calculations of hyperfine coupling tensor for hole-type defects in MgAl2O4. Nuclear Instruments & Methods in Physics Research B, 2020, 464, 60-64.	1.4	15
38	Structural and electronic properties of β-NaYF4 and β-NaYF4:Ce3+. Optical Materials, 2020, 99, 109529.	3.6	7
39	Thermal annealing of radiation damage produced by swift 132Xe ions in MgO single crystals. Nuclear Instruments & Methods in Physics Research B, 2020, 462, 163-168.	1.4	17
40	Accumulation of radiation defects and modification of micromechanical properties under MgO crystal irradiation with swift 132Xe ions. Nuclear Instruments & Methods in Physics Research B, 2020, 463, 50-54.	1.4	19
41	Impact of Gadolinium on the Structure and Magnetic Properties of Nanocrystalline Powders of Iron Oxides Produced by the Extraction-Pyrolytic Method. Materials, 2020, 13, 4147.	2.9	32
42	Raman spectra of vacancy-containing LiF: Predictions from first principles. Nuclear Instruments & Methods in Physics Research B, 2020, 480, 33-37.	1.4	6
43	Atomic, electronic and magnetic structure of an oxygen interstitial in neutron-irradiated Al2O3 single crystals. Scientific Reports, 2020, 10, 15852.	3.3	18
44	Ion track template technology for fabrication of CdTe and CdO nanocrystals. Nuclear Instruments & Methods in Physics Research B, 2020, 481, 30-34.	1.4	12
45	Time-resolved luminescence of YAG:Ce and YAGG:Ce ceramics prepared by electron beam assisted synthesis. Nuclear Instruments & Methods in Physics Research B, 2020, 479, 222-228.	1.4	23
46	Low temperature structural transformations on the (001) surface of SrTiO3 single crystals. Low Temperature Physics, 2020, 46, 740-750.	0.6	11
47	Structure properties of CdTe nanocrystals created in SiO2/Si ion track templates. Surface and Coatings Technology, 2020, 401, 126269.	4.8	11
48	Thermal annealing of radiation defects in MgF2 single crystals induced by neutrons at low temperatures. Nuclear Instruments & Methods in Physics Research B, 2020, 480, 16-21.	1.4	5
49	Comparative Ab Initio Calculations of ReO3, SrZrO3, BaZrO3, PbZrO3 and CaZrO3 (001) Surfaces. Crystals, 2020, 10, 745.	2.2	46
50	EPR and optical spectroscopy of neutron-irradiated Gd3Ga5O12 single crystals. Nuclear Instruments & Methods in Physics Research B, 2020, 480, 22-26.	1.4	6
51	Peculiarities of the diffusion-controlled radiation defect accumulation kinetics under high fluencies. Nuclear Instruments & Methods in Physics Research B, 2020, 480, 45-48.	1.4	0
52	The peculiarities of the radiation damage accumulation kinetics in the case of defect complex formation. Nuclear Instruments & Methods in Physics Research B, 2020, 481, 1-5.	1.4	0
53	First principles calculations of the vibrational properties of single and dimer F-type centers in corundum crystals. Journal of Chemical Physics, 2020, 153, 134107.	3.0	5
54	Distinctive features of diffusion-controlled radiation defect recombination in stoichiometric magnesium aluminate spinel single crystals and transparent polycrystalline ceramics. Scientific Reports, 2020, 10, 7810.	3.3	50

#	Article	IF	Citations
55	About complexity of the 2.16-eV absorption band in MgO crystals irradiated with swift Xe ions. Radiation Measurements, 2020, 135, 106379.	1.4	11
56	Ab initio calculations of pure and Co+2-doped MgF2 crystals. Nuclear Instruments & Methods in Physics Research B, 2020, 470, 10-14.	1.4	5
57	Luminescence and vacuum ultraviolet excitation spectroscopy of samarium doped SrB4O7. Journal of Alloys and Compounds, 2020, 826, 154205.	5.5	21
58	Radiation-induced defects in sapphire single crystals irradiated by a pulsed ion beam. Nuclear Instruments & Methods in Physics Research B, 2020, 466, 1-7.	1.4	24
59	Comparative quantum chemistry study of the F-center in lanthanum trifluoride. Nuclear Instruments & Methods in Physics Research B, 2020, 474, 57-62.	1.4	9
60	Ion track template technique for fabrication of ZnSe2O5 nanocrystals. Nuclear Instruments & Methods in Physics Research B, 2020, 476, 10-13.	1.4	11
61	Low-temperature studies of Cr3+ ions in natural and neutron-irradiated g-Al spinel. Low Temperature Physics, 2020, 46, 1154-1159.	0.6	9
62	<i>Ab initio</i> calculations of the electronic structure for Mn2+-doped YAlO3 crystals. Low Temperature Physics, 2020, 46, 1160-1164.	0.6	3
63	<i>Ab initio</i> calculations of structural, electronic and vibrational properties of BaTiO3 and SrTiO3 perovskite crystals with oxygen vacancies. Low Temperature Physics, 2020, 46, 1185-1195.	0.6	26
64	First principles hybrid Hartree-Fock-DFT calculations of bulk and (001) surface <i>F</i> centers in oxide perovskites and alkaline-earth fluorides. Low Temperature Physics, 2020, 46, 1206-1212.	0.6	16
65	Low-temperature luminescence of CdI2 under synchrotron radiation. Low Temperature Physics, 2020, 46, 1213-1216.	0.6	0
66	Computer Simulation of the Electric Transport Properties of the FeSe Monolayer. Latvian Journal of Physics and Technical Sciences, 2020, 57, 3-11.	0.6	1
67	Temperature dependence of luminescence of LiF crystals doped with different metal oxides. Low Temperature Physics, 2020, 46, 1235-1240.	0.6	1
68	Efficiency of <i>H</i> center stabilization in alkali halide crystals at low-temperature uniaxial deformation. Low Temperature Physics, 2020, 46, 1165-1169.	0.6	1
69	Low-temperature radiation effects and surface phenomena in the wide-bandgap materials. Low Temperature Physics, 2020, 46, 1147-1148.	0.6	0
70	Intrinsic nanostructures on the (001) surface of strontium titanate at low temperatures. Low Temperature Physics, 2020, 46, 1170-1177.	0.6	3
71	Afterglow, TL and OSL properties of Mn2+-doped ZnGa2O4 phosphor. Scientific Reports, 2019, 9, 9544.	3.3	43
72	Time-resolved cathodoluminescence spectroscopy of YAG and YAG:Ce3+ phosphors. Optical Materials, 2019, 96, 109289.	3.6	22

#	Article	IF	CITATIONS
73	Optical investigation of the OH $<$ sup $>$ â $^{\circ}<$ lsup $>$ groups in the LiNbO $<$ sub $>$ 3 $<$ lsub $>$ doped by copper. Integrated Ferroelectrics, 2019, 196, 32-38.	0.7	5
74	Time-resolved pulsed OSL of ceramic YAP:Mn phosphors. Integrated Ferroelectrics, 2019, 196, 24-31.	0.7	5
75	Structural investigation of crystallized Ge-Ga-Se chalcogenide glasses. IOP Conference Series: Materials Science and Engineering, 2019, 503, 012020.	0.6	3
76	Fast-neutron-induced and as-grown structural defects in magnesium aluminate spinel crystals with different stoichiometry. Optical Materials, 2019, 91, 42-49.	3.6	45
77	Systematic trends in YAlO ₃ , SrTiO ₃ , BaTiO ₃ , BaZrO ₃ (001) and (111) surface <i>ab initio</i> calculations. International Journal of Modern Physics B, 2019, 33, 1950390.	2.0	11
78	Nanoporous characterization of modified humidity-sensitive MgO-Al2O3 ceramics by positron annihilation lifetime spectroscopy method. IOP Conference Series: Materials Science and Engineering, 2019, 503, 012019.	0.6	7
79	The first principles calculations of CO2 adsorption on (101 \hat{A}^- 0) ZnO surface. AIP Conference Proceedings, 2019, , .	0.4	9
80	Shallow and deep trap levels in X-ray irradiated \hat{l}^2 -Ga2O3: Mg. Nuclear Instruments & Methods in Physics Research B, 2019, 441, 12-17.	1.4	43
81	Comparative Ab initio Calculations for ABO3 Perovskite (001), (011) and (111) as well as YAlO3 (001) Surfaces and F Centers. Journal of Nano- and Electronic Physics, 2019, 11, 01001-1-01001-6.	0.5	12
82	Computer Simulations of the Band Structure and Density of States of the Linear Chains of NaCl Ions. Latvian Journal of Physics and Technical Sciences, 2019, 56, 49-56.	0.6	2
83	Kinetics of the electronic center annealing in Al2O3 crystals. Journal of Nuclear Materials, 2018, 502, 295-300.	2.7	21
84	Optical absorption and Raman studies of neutron-irradiated Gd3Ga5O12 single crystals. Nuclear Instruments & Methods in Physics Research B, 2018, 435, 306-312.	1.4	21
85	Anomalous Kinetics of Diffusion-Controlled Defect Annealing in Irradiated Ionic Solids. Journal of Physical Chemistry A, 2018, 122, 28-32.	2.5	46
86	Systematic trends in $(0\ 0\ 1)$ surface ab initio calculations of ABO 3 perovskites. Journal of Saudi Chemical Society, 2018, 22, 459-468.	5.2	135
87	Creation and thermal annealing of structural defects in neutron-irradiated MgAl2O4 single crystals. Nuclear Instruments & Methods in Physics Research B, 2018, 435, 31-37.	1.4	55
88	Kinetics of dimer F type center annealing in MgF2 crystals. Nuclear Instruments & Methods in Physics Research B, 2018, 435, 79-82.	1.4	16
89	Thermally induced fading of Mn-doped YAP nanoceramics. Journal of Physics: Conference Series, 2018, 987, 012009.	0.4	6

Radiation creation of cation defects in alkali halide crystals: Review and today's concept (Review) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 G

#	Article	IF	Citations
91	Crystalline phase detection in glass ceramics by EPR spectroscopy. Low Temperature Physics, 2018, 44, 341-345.	0.6	13
92	Ab initio calculations for the polar (0†0†1) surfaces of YAlO3. Nuclear Instruments & Methods in Physics Research B, 2018, 434, 1-5.	1.4	14
93	altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:msubsup><mml:mrow><mml:mtext>Mn</mml:mtext></mml:mrow><mml: <mml:math="" altimg="si2.gif" and="" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>Mn</mml:mtext></mml:mrow><mml:mrow><mml:msubsup><mml:msubsup><mml:mtext>Mn</mml:mtext></mml:msubsup></mml:msubsup></mml:mrow><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msubsup><mml:msub< td=""><td>3.0</td><td>12</td></mml:msub<></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:msubsup></mml:mrow></mml:></mml:msubsup></mml:mrow>	3.0	12
94	Optical Materials, 2018, 85, 162-166. Atomic structure of manganese-doped yttrium orthoaluminate. Nuclear Instruments & Methods in Physics Research B, 2018, 434, 6-8.	1.4	5
95	Nonlinear optical response of bulk ZnO crystals with different content of intrinsic defects. Optical Materials, 2018, 84, 738-747.	3.6	46
96	Comparison of the F-type center thermal annealing in heavy-ion and neutron irradiated Al2O3 single crystals. Nuclear Instruments & Methods in Physics Research B, 2018, 433, 93-97.	1.4	47
97	Luminescence Properties and Decay Kinetics of Mn ²⁺ and Eu ³⁺ Co-Dopant Ions In MgGa ₂ O ₄ Ceramics. Latvian Journal of Physics and Technical Sciences, 2018, 55, 43-51.	0.6	2
98	Fabrication and characterization of magnetic FePt nanoparticles prepared by extraction–pyrolysis method. Chemija, 2018, 29, .	0.2	6
99	Effects of Mn doping on dielectric properties of ferroelectric relaxor PLZT ceramics. Current Applied Physics, 2017, 17, 169-173.	2.4	18
100	Analysis of self-trapped hole mobility in alkali halides and metal halides. Solid State Ionics, 2017, 302, 3-6.	2.7	29
101	Long-term evolution of luminescent properties in Cdl2 crystals. Low Temperature Physics, 2016, 42, 594-596.	0.6	9
102	Low-temperature radiation effects in wide gap materials. Low Temperature Physics, 2016, 42, 537-538.	0.6	0
103	Cathodoluminescence characterization of polystyrene-BaZrO3 hybrid composites. Low Temperature Physics, 2016, 42, 597-600.	0.6	37
104	UV-VUV synchrotron radiation spectroscopy of NiWO4. Low Temperature Physics, 2016, 42, 543-546.	0.6	15
105	Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. Low Temperature Physics, 2016, 42, 601-605.	0.6	44
106	Optical absorption and luminescence studies of fast neutron-irradiated complex oxides for jewellery applications. Low Temperature Physics, 2016, 42, 584-587.	0.6	9
107	Theoretical analysis of the kinetics of low-temperature defect recombination in alkali halide crystals. Low Temperature Physics, 2016, 42, 588-593.	0.6	27
108	Optical and Vibrational Spectra of CsCl-Enriched GeS2-Ga2S3 Glasses. Nanoscale Research Letters, 2016, 11, 132.	5.7	14

#	Article	IF	Citations
109	Photostimulated luminescence properties of neutron image plates. Optical Materials, 2016, 59, 83-86.	3.6	10
110	Positron trapping defects in free-volume investigation of Ge–Ga–S–CsCl glasses. Radiation Measurements, 2016, 90, 117-121.	1.4	23
111	Multicolor photon emission from organic thin films on different substrates. Radiation Measurements, 2016, 90, 38-42.	1.4	4
112	Stabilization of primary mobile radiation defects in MgF2 crystals. Nuclear Instruments & Methods in Physics Research B, 2016, 374, 24-28.	1.4	42
113	Kinetics of F center annealing and colloid formation in Al2O3. Nuclear Instruments & Methods in Physics Research B, 2016, 374, 107-110.	1.4	46
114	Influence of complex impurity centres on radiation damage in wide-gap metal oxides. Nuclear Instruments & Methods in Physics Research B, 2016, 374, 90-96.	1.4	44
115	Modified Hydroxyapatite Structure and Properties: Modeling and Synchrotron Data Analysis of Modified Hydroxyapatite Structure. Ferroelectrics, 2015, 475, 135-147.	0.6	49
116	Excitation of different chromium centres by synchrotron radiation in MgO:Cr single crystals. Physica B: Condensed Matter, 2015, 477, 133-136.	2.7	14
117	FTIR Studies of Silicon Carbide 1D-Nanostructures. Materials Science Forum, 2015, 821-823, 261-264.	0.3	12
118	Modification of Polymer-Magnetic Nanoparticles by Luminescent and Conducting Substances. Molecular Crystals and Liquid Crystals, 2014, 590, 35-42.	0.9	35
119	ĐœĐ¾ĐĐμĐ»Đ¸Ñ€Đ¾ĐºĐ½Đ¸Đμ и Đ°Đ½Đ°Đ»Đ¸Đ· ĐĐ°Đ½Đ½Ñ«Ñ ÑĐ¸Đ½ÑÑ€Đ¾Ñ,Đ¾Ñ€Đ¾Đ½E) ¹ / 1D6 /4Đ ³ f	03 /4
120	Comparative study of the luminescence properties of macro- and nanocrystalline MgO using synchrotron radiation. Nuclear Instruments & Methods in Physics Research B, 2013, 310, 23-26.	1.4	45
121	Study of polar and electrical properties of Hydroxyapatite: Modeling and data analysis. , 2013, , .		0
122	Bil3 nanoclusters in melt-grown Cdl2 crystals studied by optical absorption spectroscopy. Physica B: Condensed Matter, 2013, 413, 12-14.	2.7	11
123	Luminescence and ultraviolet excitation spectroscopy of Srl2 and Srl2:Eu2+. Radiation Measurements, 2013, 56, 13-17.	1.4	35
124	Effect of polymer matrix on the structure and luminescence properties of barium zirconate nanocrystals. Chemistry of Metals and Alloys, 2013, 6, 177-182.	0.1	4
125	Vibrational properties of LaPO4 nanoparticles in mid- and far-infrared domain. Journal of Applied Physics, 2012, 112, .	2.5	55
126	Synchrotron radiation studies on luminescence of Eu2+-doped LaCl3 microcrystals embedded in a NaCl matrix. Nuclear Instruments & Methods in Physics Research B, 2012, 274, 78-82.	1.4	21

#	Article	IF	CITATIONS
127	LaPO4:Ce,Tb and YVO4:Eu nanophosphors: Luminescence studies in the vacuum ultraviolet spectral range. Journal of Applied Physics, 2011, 110, 053522.	2.5	48
128	Electronic excitations in ZnWO4 and ZnxNi1 \hat{a} 'x WO4 (x = 0.1 \hat{a} ' 0.9) using VUV synchrotron radiation. Open Physics, 2011, 9, .	1.7	17
129	Polar nanoregions in Pb(Mg1/3Nb2/3)O3 (PMN): insights from a supercell approach. Open Physics, 2011, 9, 438-445.	1.7	0
130	Luminescence of nano- and macrosized LaPO4:Ce,Tb excited by synchrotron radiation. Optical Materials, 2011, 33, 1102-1105.	3.6	38
131	First-principles simulations of the electronic density of states for superionic Ag2Cdl4 crystals. Solid State Ionics, 2011, 188, 31-35.	2.7	3
132	Numerical Evidences of Polarization Switching in PMN Type Relaxor Ferroelectrics. Integrated Ferroelectrics, 2011, 123, 32-39.	0.7	0
133	Basic properties of the F-type centers in halides, oxides and perovskites. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 3084-3089.	1.4	159
134	Mechanism for energy transfer processes between Ce3+ and Tb3+ in LaPO4:Ce,Tb nanocrystals by time-resolved luminescence spectroscopy. Physica Status Solidi (B): Basic Research, 2010, 247, 2252-2257.	1.5	52
135	Surfactant-assisted synthesis of Cd1â^'xCoxS nanocluster alloys and their structural, optical and magnetic properties. Journal of Alloys and Compounds, 2010, 493, 240-245.	5 . 5	52
136	Silicon carbide nanowires: synthesis and cathodoluminescence. Physica Status Solidi (B): Basic Research, 2009, 246, 2806-2808.	1.5	35
137	CsPbCl3 nanocrystals dispersed in the Rb0,8Cs0,2Cl matrix studied by far-infrared spectroscopy. Solid State Communications, 2009, 149, 593-597.	1.9	18
138	Far IR spectra of Ag2CdI4 at temperature range 10–420ÂK: complementary experimental and first-principle theoretical study. European Physical Journal B, 2009, 70, 443-447.	1.5	12
139	Combustion Formation of Novel Nanomaterials: Synthesis and Cathodoluminescence of Silicon Carbide Nanowires. Acta Physica Polonica A, 2009, 116, S-142-S-145.	0.5	3
140	Microstructure of Ag $<$ sub $>$ 2 $<$ /sub $>$ Bl $<$ sub $>$ 4 $<$ /sub $>$ (B = Ag, Cd) superionics studied by SEM, impedance spectroscopy and fractal dimension analysis. Journal of Physics Condensed Matter, 2008, 20, 474211.	1.8	14
141	Charge transport in electrically responsive polymer layers. Journal of Physics: Conference Series, 2007, 93, 012042.	0.4	8
142	Cadmium clusters in Cdl ₂ layered crystals: the influence on the optical properties. Journal of Physics Condensed Matter, 2007, 19, 395015.	1.8	23
143	Theoretical simulations of regular and defective aluminium nitride nanotubes. Journal of Physics: Conference Series, 2007, 93, 012005.	0.4	1
144	THE KINETICS OF RADIATION-INDUCED POINT DEFECT AGGREGATION AND METALLIC COLLOID FORMATION IN IONIC SOLIDS., 2007, , 153-192.		10

#	Article	IF	CITATIONS
145	Influence of F centres on structural and electronic properties of AlN single-walled nanotubes. Journal of Physics Condensed Matter, 2007, 19, 395021.	1.8	29
146	Luminescence, vibrational and XANES studies of AlN nanomaterials. Radiation Measurements, 2007, 42, 708-711.	1.4	34
147	Optical, infrared and electron-microscopy studies of metallic clusters in layered crystals. Radiation Measurements, 2007, 42, 851-854.	1.4	16
148	Structural and electronic properties of single-walled AlN nanotubes of different chiralities and sizes. Journal of Physics Condensed Matter, 2006, 18, S2045-S2054.	1.8	37
149	Characterization of aluminium nitride nanostructures by XANES and FTIR spectroscopies with synchrotron radiation. Journal of Physics Condensed Matter, 2006, 18, S2095-S2104.	1.8	47
150	Steering a multi-MeV positron beam with a curved crystal. JETP Letters, 2006, 83, 95-97.	1.4	3
151	Using a deformed crystal for bending a sub-GeV positron beam. Nuclear Instruments & Methods in Physics Research B, 2006, 252, 3-6.	1.4	21
152	Neutron characterization of aluminium nitride nanotubes. Journal of Neutron Research, 2006, 14, 287-291.	1.1	7
153	Storage properties of Ce3+ doped haloborate phosphors enriched with 10B isotope. Journal of Applied Physics, 2004, 95, 7898-7902.	2.5	9
154	Fast electron–hole plasma luminescence from track-cores in heavy-ion irradiated wide-band-gap crystals. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 48-53.	1.4	22
155	Diffusion-controlled annihilation and aggregation of F-centers in thermochemically reduced MgO crystals. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 208-211.	1.4	5
156	Kinetics of nanocavity formation based onF-center aggregation in thermochemically reduced MgO single crystals. Physical Review B, 2001, 64, .	3.2	37
157	Dynamics of F-center annihilation in thermochemically reduced MgO single crystals. Solid State Communications, 2001, 118, 163-167.	1.9	39
158	Novel ultra-fast luminescence from incipient ion tracks of insulator crystals: electron–hole plasma formation in the track core. Radiation Measurements, 2001, 34, 99-103.	1.4	11
159	Copper and iron precipitates in thermochemically reduced yttria-stabilized zirconia crystals. Philosophical Magazine Letters, 2001, 81, 555-561.	1.2	3
160	The kinetics of defect aggregation and metal colloid formation in ionic solids under irradiation. Radiation Effects and Defects in Solids, 2001, 155, 113-125.	1,2	43
161	Photoconversion of F+ centers in neutron-irradiated MgO. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 220-224.	1.4	36
162	Low temperature X-ray luminescence of KNbO3 crystals. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 305-308.	1.4	15

#	Article	lF	Citations
163	F centre production in CsI and CsI–Tl crystals under Kr ion irradiation at 15 K. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 545-549.	1.4	33
164	Tracks induced in TeO2 by heavy ions at low velocities. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 949-953.	1.4	42
165	Formation of anion-vacancy clusters and nanocavities in thermochemically reduced MgO single crystals. Physical Review B, 2000, 62, 9299-9304.	3.2	52
166	The Dynamics of the Hydride Ion in MgO Single Crystals. Defect and Diffusion Forum, 1999, 169-170, 1-0.	0.4	9
167	Ab initioand semiempirical calculations ofHâ^'centers in MgO crystals. Physical Review B, 1999, 59, 1885-1890.	3.2	17
168	Photoconversion and dynamic hole recycling process in anion vacancies in neutron-irradiated MgO crystals. Physical Review B, 1999, 60, 3787-3791.	3.2	40
169	Photoconversion ofF-type centers in thermochemically reduced MgO single crystals. Physical Review B, 1999, 59, 4786-4790.	3.2	42
170	Radiation-induced point defects in simple oxides. Nuclear Instruments & Methods in Physics Research B, 1998, 141, 1-15.	1.4	248
171	Computer Modelling of Radiation Damage in Cation Sublattice of Corundum. Physica Status Solidi (B): Basic Research, 1998, 207, 69-73.	1.5	12
172	A simple analysis of the HA centre destruction temperatures for doped alkali halides. Solid State Communications, 1998, 106, 289-291.	1.9	4
173	Characterization of LiF and CaF2 surfaces using MIES and UPS (HeI). Journal of Electron Spectroscopy and Related Phenomena, 1998, 88-91, 725-732.	1.7	16
174	Photo- and thermo-stimulated luminescence of Cslâ€"Tl crystal after UV light irradiation at 80 K. Radiation Effects and Defects in Solids, 1998, 143, 345-355.	1.2	32
175	Performance data of optically stimulable irradiated materials (doped alkali halides) oriented for imaging and dosimetry purposes. , 1997, , .		0
176	Efficiency and dynamic range of the photostimulable x-ray storage material KBr:In., 1997, 2967, 74.		0
177	Possible mechanism of energy storage in optically stimulable materials: doped alkali halides. , 1997, , .		0
178	Photostimulated processes in the CsI-Tl crystal after UV irradiation., 1997, 2967, 111.		1
179	Calculations of Diffusion Energies for Defects in MgO Crystals. Defect and Diffusion Forum, 1997, 143-147, 1231-1236.	0.4	14
180	Charge distribution and optical properties of and F centres in crystals. Journal of Physics Condensed Matter, 1997, 9, L315-L321.	1.8	32

#	Article	IF	CITATIONS
181	Time-resolved luminescence and induced absorption in PbWO4. Journal of Luminescence, 1997, 72-74, 693-695.	3.1	2
182	Time-resolved luminescence of Cslî—,Tl crystals excited by pulsed electron beam. Nuclear Instruments & Methods in Physics Research B, 1997, 122, 602-605.	1.4	20
183	Semi-empirical simulations of F-center diffusion in KCl crystals. Journal of Physics and Chemistry of Solids, 1997, 58, 103-106.	4.0	9
184	Luminescence properties of KNbO3 crystals. Journal of Luminescence, 1997, 72-74, 672-674.	3.1	20
185	The Temperature Dependence of Scintillation Parameters in PbWO4 Crystals. Physica Status Solidi (B): Basic Research, 1997, 203, 585-589.	1.5	35
186	Semi-empirical simulations of the electron centers in MgO crystal. Computational Materials Science, 1996, 5, 298-306.	3.0	40
187	Quantum chemical simulations of the optical properties and diffusion of electron centres in mgo crystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 37, 212-214.	3.5	29
188	Quantum chemical calculations of the electron center diffusion in MgO crystals. Physica Status Solidi (B): Basic Research, 1996, 195, 61-66.	1.5	40
189	Quantum chemical simulations of the optical properties and diffusion of electron centres in MgO crystals., 1996,, 212-214.		1
190	Computer Simulations of lâ€Center Annealing in KCl and KBr Crystals. Theoretical Interpretation of Thermostimulated Experiments. Physica Status Solidi (B): Basic Research, 1995, 190, 353-362.	1.5	7
191	Photostimulated emission of KBrâ€"In previously exposed to UV- or X-radiation. Nuclear Instruments & Methods in Physics Research B, 1995, 101, 252-254.	1.4	8
192	ESD of nonthermal halogen atoms from In-doped (001) KBr. Nuclear Instruments & Methods in Physics Research B, 1995, 100, 228-231.	1.4	11
193	Calculations of the geometry and optical properties of FMgcenters and dimer (F2-type) centers in corundum crystals. Physical Review B, 1995, 51, 8770-8778.	3.2	70
194	Photostimulated luminescence of KBr-in crystals. Radiation Effects and Defects in Solids, 1995, 135, 125-128.	1.2	1
195	Defects in ion implanted and electron irradiated Mgo and Al ₂ O ₃ . Radiation Effects and Defects in Solids, 1995, 136, 169-173.	1.2	46
196	Theoretical simulations of I-center annealing in KCl crystals. Radiation Effects and Defects in Solids, 1995, 134, 83-86.	1.2	2
197	Excitation spectra of activator luminescenceâ€"the observation of a new D absorption band in KBr:In crystals. Radiation Effects and Defects in Solids, 1994, 128, 27-33.	1.2	2
198	The kinetics of diffusion-controlled annealing of Frenkel defects in alkali halide crystals. Nuclear Instruments & Methods in Physics Research B, 1994, 91, 83-86.	1.4	0

#	Article	IF	CITATIONS
199	A novel model for F+to F photoconversion in corundum crystals. Journal of Physics Condensed Matter, 1994, 6, L569-L573.	1.8	26
200	A Contradiction between Pulsed and Steady-State Studies in the Recombination Kinetics of Close Frenkel Defects in KBr and KCl Crystals. Journal of the Physical Society of Japan, 1994, 63, 2602-2611.	1.6	19
201	The Kinetics of Correlated Annealing of F, I Centres in KBr Crystals. Physica Status Solidi (B): Basic Research, 1993, 175, K39.	1.5	8
202	The Observation of a New Dâ€Absorption Band in KBr–In Crystals. Physica Status Solidi (B): Basic Research, 1993, 176, 255-259.	1.5	2
203	Stimulation Energy of the Xâ€Ray Storage Material KBr: In. Physica Status Solidi (B): Basic Research, 1993, 180, K31.	1.5	14
204	Correlated annealing of radiation defects in alkali halide crystals. Journal of Physics Condensed Matter, 1992, 4, 5901-5910.	1.8	27
205	Manifesttion of Hâ€Centre Aggregation in the Excitonâ€Induced Thermostimulated Luminescence of KBr: In and KBr: Tl Crystals. Physica Status Solidi (B): Basic Research, 1992, 169, K47.	1.5	4
206	Optical Destruction and Restoration of {F, In ²⁺ } Pairs in KBrIn Crystals. Physica Status Solidi (B): Basic Research, 1992, 170, 395-401.	1.5	14
207	Kinetics of correlated annealing of radiation defects in alkali halide crystals. Nuclear Instruments & Methods in Physics Research B, 1992, 65, 512-515.	1.4	3
208	Optical production and destruction of V2 centres in KBr-In and KBr-T1 crystals. Nuclear Instruments & Methods in Physics Research B, 1992, 65, 521-524.	1.4	6
209	Determination of the oscillator strength of F centres in KBr-In by photostimulated luminescence. Journal of Physics Condensed Matter, 1991, 3, 1265-1270.	1.8	11
210	Determination of the Effective Absorption Crossâ€Section of Fâ€Centres in KBrâ€"In by Photostimulated Luminescence. Physica Status Solidi (B): Basic Research, 1990, 161, 85-89.	1.5	5
211	Luminescence characteristics of magnesium aluminate spinel crystals of different stoichiometry. IOP Conference Series: Materials Science and Engineering, 0, 503, 012021.	0.6	17
212	The Two Types of Oxygen Interstitials in Neutronâ€Irradiated Corundum Single Crystals: Joint Experimental and Theoretical Study. Physica Status Solidi (B): Basic Research, 0, , 2100317.	1.5	5
213	Freeâ€volume extended defects in structurallyâ€modified Geâ€Gaâ€S/Se glasses. Physica Status Solidi (B): Basic Research, O, , .	1.5	5
214	Electronic Structure, Optical, and Elastic Properties of AgGaS ₂ Crystal: Theoretical Study. Advanced Theory and Simulations, 0, , 2200247.	2.8	1
215	Extended Positron–Positronium Trapping Defects in the MgAl ₂ O ₄ Spinel Ceramics. Physica Status Solidi (B): Basic Research, 0, , 2100473.	1.5	4