Hideki Hosoda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8519382/publications.pdf

Version: 2024-02-01

271 papers

7,805 citations

66343 42 h-index 81 g-index

278 all docs

278 docs citations

times ranked

278

2374 citing authors

#	Article	IF	CITATIONS
1	Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Materialia, 2006, 54, 2419-2429.	7.9	811
2	Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 18-24.	5 . 6	333
3	Shape memory characteristics of Ti–22Nb–(2–8)Zr(at.%) biomedical alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 403, 334-339.	5. 6	319
4	Mechanical Properties and Shape Memory Behavior of Ti-Nb Alloys. Materials Transactions, 2004, 45, 2443-2448.	1.2	314
5	Texture and shape memory behavior of Ti–22Nb–6Ta alloy. Acta Materialia, 2006, 54, 423-433.	7.9	245
6	Lattice modulation and superelasticity in oxygen-added Î ² -Ti alloys. Acta Materialia, 2011, 59, 6208-6218.	7.9	223
7	Shape Memory Behavior of Ti–22Nb–(0.5–2.0)O(at%) Biomedical Alloys. Materials Transactions, 2005, 46, 852-857.	1.2	200
8	Shape memory properties of Ti–Nb–Mo biomedical alloys. Acta Materialia, 2010, 58, 4212-4223.	7.9	197
9	Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Materialia, 2009, 57, 1068-1077.	7.9	189
10	Mechanical Properties of a Ti-Nb-Al Shape Memory Alloy. Materials Transactions, 2004, 45, 1077-1082.	1.2	182
11	Effect of Ta addition on shape memory behavior of Ti–22Nb alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 417, 120-128.	5.6	174
12	Composition dependent crystallography of α ″-martensite in Ti–Nb-based β-titanium alloy. Philosophical Magazine, 2007, 87, 3325-3350.	1.6	155
13	Origin of {332} twinning in metastable β-Ti alloys. Acta Materialia, 2014, 64, 345-355.	7.9	143
14	Self-accommodation in Ti–Nb shape memory alloys. Acta Materialia, 2009, 57, 4054-4064.	7.9	141
15	Mechanical Properties and Shape Memory Behavior of Ti-Mo-Ga Alloys. Materials Transactions, 2004, 45, 1090-1095.	1.2	131
16	Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Acta Biomaterialia, 2015, 17, 56-67.	8.3	123
17	Cyclic deformation behavior of a Ti–26 at.% Nb alloy. Acta Materialia, 2009, 57, 2461-2469.	7.9	103
18	Anomalous temperature dependence of the superelastic behavior of Ti–Nb–Mo alloys. Acta Materialia, 2011, 59, 1464-1473.	7.9	102

#	Article	IF	Citations
19	Relationship between Texture and Macroscopic Transformation Strain in Severely Cold-Rolled Ti-Nb-Al Superelastic Alloy. Materials Transactions, 2004, 45, 1083-1089.	1.2	95
20	Interfacial defects in Ti–Nb shape memory alloys. Acta Materialia, 2008, 56, 3088-3097.	7.9	95
21	Effect of thermo-mechanical treatment on mechanical properties and shape memory behavior of Ti–(26–28)at.% Nb alloys. Materials Science & Directive Armonical Materials: Properties, Microstructure and Processing, 2006, 438-440, 839-843.	5.6	94
22	Superelastic properties of biomedical (Ti–Zr)–Mo–Sn alloys. Materials Science and Engineering C, 2015, 48, 11-20.	7.3	94
23	Material design and shape memory properties of smart composites composed of polymer and ferromagnetic shape memory alloy particles. Science and Technology of Advanced Materials, 2004, 5, 503-509.	6.1	88
24	Martensite transformation temperatures and mechanical properties of ternary NiTi alloys with offstoichiometric compositions. Intermetallics, 1998, 6, 291-301.	3.9	85
25	Anisotropy and Temperature Dependence of Young's Modulus in Textured TiNbAl Biomedical Shape Memory Alloy. Materials Transactions, 2005, 46, 1597-1603.	1.2	78
26	Effect of Nb content and heat treatment temperature on superelastic properties of Tiâ€"24Zrâ€"(8â€"12)Nbâ€"2Sn alloys. Scripta Materialia, 2015, 95, 46-49.	5. 2	78
27	Effect of Annealing Temperature on Microstructure and Shape Memory Characteristics of Ti–22Nb–6Zr(at%) Biomedical Alloy. Materials Transactions, 2006, 47, 505-512.	1.2	73
28	Texture of Ti–Ni rolled thin plates and sputter-deposited thin films. International Journal of Plasticity, 2000, 16, 1135-1154.	8.8	69
29	Effect of Sn addition on stress hysteresis and superelastic properties of a Ti–15Nb–3Mo alloy. Scripta Materialia, 2014, 72-73, 29-32.	5. 2	64
30	Mechanical properties of Ti–Nb biomedical shape memory alloys containing Ge or Ga. Materials Science and Engineering C, 2005, 25, 426-432.	7.3	62
31	Effects of short time heat treatment on superelastic properties of a Ti–Nb–Al biomedical shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 870-874.	5.6	60
32	Mechanical Properties of Ti-Base Shape Memory Alloys. Materials Science Forum, 2003, 426-432, 3121-3126.	0.3	56
33	Mechanical Properties of Ti–50(Pt,Ir) High-Temperature Shape Memory Alloys. Materials Transactions, 2006, 47, 650-657.	1.2	56
34	Room temperature aging behavior of Ti–Nb–Mo-based superelastic alloys. Acta Materialia, 2012, 60, 2437-2447.	7.9	56
35	Effect of Nb content on deformation behavior and shape memory properties of Ti–Nb alloys. Journal of Alloys and Compounds, 2013, 577, S435-S438.	5 . 5	54
36	Self-accommodation of B19′ martensite in Ti–Ni shape memory alloys. Part III. Analysis of habit plane variant clusters by the geometrically nonlinear theory. Philosophical Magazine, 2012, 92, 2247-2263.	1.6	52

#	Article	IF	CITATIONS
37	Effect of {001}ã€^110〉 texture on superelastic strain of Ti–Nb–Al biomedical shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 865-869.	5.6	50
38	Effect of nitrogen addition and annealing temperature on superelastic properties of Ti–Nb–Zr–Ta alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6844-6852.	5 . 6	50
39	Antiphase boundary-like stacking fault in α″-martensite of disordered crystal structure in β-titanium shape memory alloy. Philosophical Magazine, 2010, 90, 3475-3498.	1.6	47
40	Potential of IrAl base alloys as ultrahigh-temperature smart coatings. Intermetallics, 2000, 8, 1081-1090.	3.9	46
41	Martensitic Transformation and Superelasticity of Ti-Nb-Pt Alloys. Materials Transactions, 2007, 48, 400-406.	1.2	45
42	Crystallographic orientation and stress-amplitude dependence of damping in the martensite phase in textured Ti–Nb–Al shape memory alloy. Acta Materialia, 2010, 58, 2535-2544.	7.9	44
43	Shape memory effect and pseudoelasticity of TiPt. Intermetallics, 2010, 18, 2275-2280.	3.9	44
44	Heating-induced martensitic transformation and time-dependent shape memory behavior of Ti–Nb–O alloy. Acta Materialia, 2014, 80, 317-326.	7.9	44
45	Role of oxygen atoms in α″ martensite of Ti-20 at.% Nb alloy. Scripta Materialia, 2016, 112, 15-18.	5.2	40
46	Effect of Boron Concentration on Martensitic Transformation Temperatures, Stress for Inducing Martensite and Slip Stress of Ti-24 mol%Nb-3 mol%Al Superelastic Alloy. Materials Transactions, 2007, 48, 407-413.	1.2	38
47	SHAPE MEMORY EFFECT AND CYCLIC DEFORMATION BEHAVIOR OF Ti â€" Nb â€" N ALLOYS. Functional Materials Letters, 2009, 02, 79-82.	1.2	37
48	Optimum rolling ratio for obtaining {001}<110 > recrystallization texture in Ti–Nb–Al biomedical shape memory alloy. Materials Science and Engineering C, 2016, 61, 499-505.	7.3	37
49	High-temperature mechanical and shape memory properties of TiPt–Zr and TiPt–Ru alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 564, 34-41.	5 . 6	36
50	Incompatibility and preferred morphology in the self-accommodation microstructure of \hat{l}^2 -titanium shape memory alloy. Philosophical Magazine, 2013, 93, 618-634.	1.6	36
51	Ti(Pt, Pd, Au) based High Temperature Shape Memory Alloys. Materials Today: Proceedings, 2015, 2, S517-S522.	1.8	35
52	Orthodontic Buccal Tooth Movement by Nickel-Free Titanium-Based Shape Memory and Superelastic Alloy Wire. Angle Orthodontist, 2006, 76, 1041-1046.	2.4	32
53	Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber. Japanese Journal of Applied Physics, 2014, 53, 042502.	1.5	32
54	Effect of Sn and Zr addition on the martensitic transformation behavior of Ti-Mo shape memory alloys. Journal of Alloys and Compounds, 2017, 695, 76-82.	5 . 5	32

#	Article	IF	Citations
55	Phase Stability and Mechanical Properties of IrAl Alloys. Materials Transactions, JIM, 1997, 38, 871-878.	0.9	31
56	Plastic deformation behaviour of single-crystalline martensite of Ti-Nb shape memory alloy. Scientific Reports, 2017, 7, 15715.	3.3	31
57	Effects of Si addition on superelastic properties of Ti–Nb–Al biomedical shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 835-838.	5.6	29
58	Effect of Nitrogen Addition on Superelasticity of Ti-Zr-Nb Alloys. Materials Transactions, 2009, 50, 2726-2730.	1.2	28
59	Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy. Journal of Alloys and Compounds, 2013, 577, S404-S407.	5.5	28
60	A comparative study on the effects of the ï‰ and î± phases on the temperature dependence of shape memory behavior of a Ti–27Nb alloy. Scripta Materialia, 2015, 103, 37-40.	5.2	27
61	Phase Constitution and Mechanical Properties of Ti-(Cr, Mn)-Sn Biomedical Alloys. Materials Science Forum, 2010, 654-656, 2118-2121.	0.3	24
62	Effect of Sn and Zr content on superelastic properties of Ti-Mo-Sn-Zr biomedical alloys. Materials Science & Science & Properties, Microstructure and Processing, 2017, 704, 72-76.	5.6	24
63	Effects of ternary additions on martensitic transformation of TiAu. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 383-386.	5.6	23
64	Tensile behavior of micro-sized specimen made of single crystalline nickel. Materials Letters, 2015, 153, 36-39.	2.6	23
65	Effects of hydrothermal treatment and pelletizing temperature on the mechanical properties of empty fruit bunch pellets. Applied Energy, 2019, 251, 113385.	10.1	23
66	Alloys Design of PdTi-Based Shape Memory Alloys Based on Defect Structures and Site Preference of Ternary Elements. Journal of Intelligent Material Systems and Structures, 1996, 7, 312-320.	2.5	22
67	Effect of Cu Addition on Shape Memory Behavior of Ti-18 mol%Nb Alloys. Materials Transactions, 2007, 48, 414-421.	1.2	22
68	<l>In Vitro</l> Biocompatibility of Ni-Free Ti-Based Shape Memory Alloys for Biomedical Applications. Materials Transactions, 2010, 51, 1944-1950.	1.2	22
69	Effect of microstructure on hydrogen pulverization of two phase alloys. Intermetallics, 1998, 6, 61-69.	3.9	21
70	Compressive mechanical properties of multi-phase alloys based on B2 CoAl and E21 Co3AlC. Intermetallics, 2000, 8, 749-757.	3.9	21
71	Vibration damping of Ni-Mn-Ga/silicone composites. Scripta Materialia, 2018, 146, 9-12.	5.2	21
72	Magnetic field-induced rubber-like behavior in Ni-Mn-Ga particles/polymer composite. Scientific Reports, 2019, 9, 3443.	3.3	21

#	Article	IF	Citations
73	β型ãfã,¿ãf³å½¢çŠ¶è¨æ†¶å•́金. Keikinzoku/Journal of Japan Institute of Light Metals, 2005, 55, 613-617.	0.4	20
74	Pseudoelastic Properties of Cold-Rolled TiNbAl Alloy. Materials Science Forum, 2005, 475-479, 2323-2328.	0.3	20
75	Ageing behavior of Ti–6Cr–3Sn β titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 530, 504-510.	5.6	19
76	Martensitic Transformation of TiAu Shape Memory Alloys. Materials Science Forum, 0, 561-565, 1541-1544.	0.3	18
77	Phase Transformation and Shape Memory Effect of Ti(Pt, Ir). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2901-2911.	2.2	18
78	Effect of Annealing Temperature on Microstructure and Superelastic Properties of Ti-Au-Cr-Zr Alloy. Materials Transactions, 2015, 56, 404-409.	1.2	18
79	Effect of Cr additions on the phase constituent, mechanical properties, and shape memory effect of near–eutectoid Ti–4Au towards the biomaterial applications. Journal of Alloys and Compounds, 2021, 867, 159037.	5. 5	18
80	Improvement in room temperature ductility of intermetallic alloys through microstructural control. Intermetallics, 1996, 4, S171-S179.	3.9	17
81	Crystallography of Martensite in TiAu Shape Memory Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 111-120.	2.2	17
82	Effect of uniform distribution of α phase on mechanical, shape memory and pseudoelastic properties of Ti–6Cr–3Sn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 555, 28-35.	5.6	17
83	Mechanical Properties of Ti-Nb Biomedical Shape Memory Alloys Containing 13- and 14-Group Elements. Materials Science Forum, 2005, 475-479, 2329-2332.	0.3	16
84	Acoustic Study of Martensitic Phase Transformation in TiNbAl Shape Memory Alloy. Japanese Journal of Applied Physics, 2005, 44, 4322-4324.	1.5	16
85	X-ray Diffraction Analysis of Ti-18 mol%Nb Based Shape Memory Alloys Containing 3d Transition Metal Elements. Materials Transactions, 2006, 47, 1209-1213.	1.2	16
86	Comparative Study of Ti- <l>x</l> Cr-3Sn Alloys for Biomedical Applications. Materials Transactions, 2011, 52, 1787-1793.	1.2	16
87	Effect of 3d transition metal additions on the phase constituent, mechanical properties, and shape memory effect of near–eutectoid Ti–4Au biomedical alloys. Journal of Alloys and Compounds, 2021, 857, 157599.	5.5	16
88	Hardness and Aging of Ni ₂ MnGa Ferromagnetic Shape Memory Alloys. Materials Transactions, 2002, 43, 852-855.	1.2	15
89	Formation process of the incompatible martensite microstructure in a beta-titanium shape memory alloy. Acta Materialia, 2017, 124, 351-359.	7.9	15
90	Microstructural Evolution in βâ€Metastable Ti–Mo–Sn–Al Alloy During Isothermal Aging. Advanced Engineering Materials, 2019, 21, 1900416.	3.5	15

#	Article	IF	Citations
91	Large magnetostrains of Ni-Mn-Ga/silicone composite containing system of oriented 5M and 7M martensitic particles. Scripta Materialia, 2022, 207, 114265.	5.2	15
92	Prediction of Substitutional Behavior of Ternary Elements in B2 Type NiTi, CoTi, FeTi and NiAl. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1996, 60, 793-801.	0.4	15
93	Effect of Co addition on oxidation behavior of IrAl. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 352, 16-22.	5.6	14
94	Fabrication of Ti-Sn-Cr Shape Memory Alloy by PM Process and its Properties. Materials Science Forum, 0, 706-709, 1943-1947.	0.3	14
95	Effect of α phase precipitation on martensitic transformation and mechanical properties of metastable β Ti–6Cr–3Sn biomedical alloy. Journal of Alloys and Compounds, 2013, 577, S427-S430.	5.5	14
96	Phase transformation, oxidation and shape memory properties of Ti–50Au–10Zr alloy for high temperature applications. Journal of Alloys and Compounds, 2014, 595, 200-205.	5.5	14
97	Tensile behavior of micro-sized specimen fabricated from nanocrystalline nickel film. Microelectronic Engineering, 2015, 141, 17-20.	2.4	14
98	Cold rolling of B2 intermetallics. Journal of Alloys and Compounds, 2000, 302, 266-273.	5.5	13
99	Characterization of phase transformations, long range order and thermal properties of Ni _{2} MnGa alloys. International Journal of Applied Electromagnetics and Mechanics, 2001, 12, 9-17.	0.6	13
100	Phase constitution of some intermetallics in continuous quaternary pillar phase diagrams. Journal of Phase Equilibria and Diffusion, 2001, 22, 394-399.	0.3	13
101	Phase Stability and Mechanical Properties of Ti-Ni Shape Memory Alloys Containing Platinum Group Metals. Materials Science Forum, 2003, 426-432, 2333-2338.	0.3	13
102	Effect of Nb Addition on Shape Memory Behavior of Ti– Mo– Ga Alloys. Materials Transactions, 2006, 47, 518-522.	1.2	13
103	Tailoring thermomechanical treatment of Ni-Fe-Ga melt-spun ribbons for elastocaloric applications. Journal of Materials Research and Technology, 2019, 8, 4540-4546.	5.8	13
104	Mechanical Properties of Co Alloys Based on a E21 Type CO3AlC Intermetallic Compound. Materials Research Society Symposia Proceedings, 1992, 288, 793.	0.1	12
105	Substitution Behavior of Additional Elements in the L1 ₂ -Type Al ₃ Li Metastable Phase in Al-Li Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1994, 58, 865-871.	0.4	12
106	Hydrogen absorption of Nb–Al alloy bulk specimens. Journal of Alloys and Compounds, 1998, 281, 268-274.	5.5	12
107	Cytocompatibility Evaluation of Ti-Ni and Ti-Mo-Al System Shape Memory Alloys. Materials Transactions, 2007, 48, 361-366.	1.2	12
108	Composition dependence of phase transformation behavior and shape memory effect of Ti(Pt, Ir). Journal of Alloys and Compounds, 2013, 577, S399-S403.	5.5	12

#	Article	IF	CITATIONS
109	Strengthening of β Ti–6Cr–3Sn alloy through β grain refinement, α phase precipitation and resulting effects on shape memory properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 829-835.	5.6	12
110	High-Temperature Shape Memory Alloys Based on Ti-Platinum Group Metals Compounds. Materials Science Forum, 0, 783-786, 2541-2545.	0.3	12
111	Aluminum matrix texture in Al–Al ₃ Ti functionally graded materials analyzed by electron back-scattering diffraction. Japanese Journal of Applied Physics, 2016, 55, 01AG03.	1.5	12
112	Estimation of Defect Structure and Site Preference of Additional Elements in B2-Type Nial, Coal and Feal at Offstoichiometry. Materials Research Society Symposia Proceedings, 1994, 364, 437.	0.1	11
113	Effect of boron addition on transformation behavior and tensile properties of Ti–Nb–Al alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 830-834.	5.6	11
114	Crystal Growth of Cobalt Film Fabricated by Electrodeposition with Dense Carbon Dioxide. Journal of the Electrochemical Society, 2015, 162, D423-D426.	2.9	11
115	Compatibility at Junction Planes between Habit Plane Variants with Internal Twin in Ti-Ni-Pd Shape Memory Alloy. Materials Transactions, 2016, 57, 233-240.	1.2	11
116	Influence of the precipitates on the shape memory effect and superelasticity of the near–eutectoid Ti–Au–Fe alloy towards biomaterial applications. Intermetallics, 2021, 133, 107180.	3.9	11
117	Microstructure of $\hat{l}\pm\hat{A}+\hat{A}\hat{l}^2$ dual phase formed from isothermal $\hat{l}\pm\hat{a}\in^3$ phase via novel decomposition pathway in metastable \hat{l}^2 -Ti alloy. Journal of Alloys and Compounds, 2021, 868, 159237.	5 . 5	11
118	Enhancement of the shape memory effect by the introductions of Cr and Sn into the β–Ti alloy towards the biomedical applications. Journal of Alloys and Compounds, 2021, 875, 160088.	5.5	11
119	Effects of Aging on Phase Constitution, Lattice Parameter and Mechanical Properties of Ti-4 mol%Au Near-Eutectoid Alloy. Materials Transactions, 2007, 48, 385-389.	1.2	10
120	Effect of Aging on Mechanical Properties of Ti-Mo-Al Biomedical Shape Memory Alloy. Materials Science Forum, 2010, 654-656, 2150-2153.	0.3	10
121	Development of ã€^001〉-fiber texture in cold-groove-rolled Ti-Mo-Al-Zr biomedical alloy. Materialia, 2018, 1, 52-61.	2.7	10
122	Effects of Cr and Sn additives on the martensitic transformation and deformation behavior of Ti-Cr-Sn biomedical shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141668.	5.6	10
123	Estimation of the Vacancy Properties in Ordered Ni ₃ Al Alloys by Cluster Variation Method. Materials Transactions, JIM, 1992, 33, 698-705.	0.9	9
124	The effect of hydrogen on the hardness of Feâ^'Al alloys. Jom, 1997, 49, 56-59.	1.9	9
125	Effect of wet environment on hardness and yield stress of B2 Fe–Al alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 258, 135-145.	5.6	9
126	Phase Transformation of B2-PtTi with Ir. Materials Science Forum, 2003, 426-432, 2267-2272.	0.3	9

#	Article	IF	CITATIONS
127	Diffusion Bonding of Co to TiAu High Temperature Shape Memory Alloy. Materials Transactions, 2008, 49, 1998-2005.	1.2	9
128	Compressive Fracture Behavior of Bi-added Ni ₅₀ Mn ₂₈ Ga ₂₂ Ferromagnetic Shape Memory Alloys. Materials Research Society Symposia Proceedings, 2013, 1516, 139-144.	0.1	9
129	Comparison of Bond Order, Metal d Orbital Energy Level, Mechanical and Shape Memory Properties of Ti–Cr–Sn and Ti–Ag–Sn Alloys. Materials Transactions, 2013, 54, 566-573.	1.2	9
130	Compression response of Ni–Mn–Ga/silicone composite and study of three-dimensional deformation of particles. Smart Materials and Structures, 2018, 27, 085024.	3 . 5	9
131	Elaboration of magnetostrain-active NiMnGa particles/polymer layered composites. Materials Letters, 2021, 289, 129427.	2.6	9
132	Enhancement of mechanical properties and shape memory effect of Ti–Cr–based alloys via Au and Cu modifications. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104707.	3.1	9
133	Effects of Second Phases on the Pulverization of Nb ₃ Al-Base Alloys by Hydrogenation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1997, 61, 1132-1138.	0.4	9
134	Shape Memory Behavior of NiMnGa/Epoxy Smart Composites. Materials Science Forum, 2005, 475-479, 2067-2070.	0.3	8
135	Damping Capacity of Ti-Nb-Al Shape Memory β-Titanium Alloy with {001} _β ⟨110⟩ _β Texture. Materials Transactions, 2007, 48, 395-399.	1.2	8
136	Orthodontic Tooth Movement in Rats Using Ni-Free Ti-Based Shape Memory Alloy Wire. Materials Transactions, 2007, 48, 367-372.	1.2	8
137	Phase Constituents of Ti-Cr-Au and Ti-Cr-Au-Zr Alloy Systems. Materials Science Forum, 2010, 654-656, 2122-2125.	0.3	8
138	Phase Constitution and Mechanical Property of Ti-Cr and Ti-Cr-Sn Alloys Containing 3D Transition Metal Elements. Advanced Materials Research, 0, 89-91, 307-312.	0.3	8
139	Cold Workability, Mechanical Properties, Pseoudoelastic and Shape Memory Response of Silver Added Ti-5Cr Alloys. Advanced Materials Research, 0, 409, 639-644.	0.3	8
140	Deformation Texture of Ti-26mol%Nb-3mol%Al β-Titanium Alloy. Materials Science Forum, 0, 706-709, 1899-1902.	0.3	8
141	Isothermal martensitic transformation behavior of Ti–Nb–O alloy. Materials Letters, 2019, 257, 126691.	2.6	8
142	Anisotropy of Young's Modulus in a Ti-Mo-Al-Zr Alloy with Goss Texture. Materials Transactions, 2016, 57, 1998-2001.	1.2	8
143	Change of Ms Temperatures and its Correlation to Atomic Configurations of Offstoichiometric NiTi-Cr and NiTi-Co Alloys. Materials Research Society Symposia Proceedings, 1996, 459, 287.	0.1	7
144	Potentials of Shape Memory Effect in (Pt, Ir)-50 at%Ti. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 634-642.	0.4	7

#	Article	IF	CITATIONS
145	Effect of Carbon Addition of Shape Memory Properties of TiNb Alloys. Materials Science Forum, 2010, 638-642, 2046-2051.	0.3	7
146	Effect of Cold-Rolling Rate on Texture in Ti-Mo-Al-Zr Shape Memory Alloy. Materials Science Forum, 0, 738-739, 262-266.	0.3	7
147	Magnetoelastic Anomalies Exhibited by Ni–Fe(Co)–Ga Polycrystalline Ferromagnetic Shape Memory Alloy. Materials Transactions, 2013, 54, 1535-1538.	1.2	7
148	Effect of Al and Cu Contents on Mechanical Properties of Au-Cu-Al Shape Memory Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 80, 27-36.	0.4	7
149	Effect of Sn Content on Phase Constitution and Mechanical Properties of Ti-Cr-Sn Shape Memory Alloys. Materials Today: Proceedings, 2015, 2, S825-S828.	1.8	7
150	Preparation of Nb-Cr Alloy Powder by Hydrogenation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1998, 62, 681-689.	0.4	7
151	Investigations of Effects of Intermetallic Compound on the Mechanical Properties and Shape Memory Effect of Ti–Au–Ta Biomaterials. Materials, 2021, 14, 5810.	2.9	7
152	Prediction of the Type of Defect Structures in Binary Off-stoichiometric Intermetallic Compounds by Pseudo-Ground State Analysis. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1994, 58, 483-487.	0.4	6
153	Cluster variation method approach to estimating vacancy properties in B2 type ordered NiAl and NiFeAl alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 192-193, 930-935.	5.6	6
154	Phase Stability in Wear-Induced Supersaturated Al-Ti Solid Solution. Materials Science Forum, 2002, 396-402, 1467-1472.	0.3	6
155	Transformation Behavior of TiNiPt Thin Films Fabricated Using Melt Spinning Technique. Materials Research Society Symposia Proceedings, 2004, 842, 144.	0.1	6
156	Martensitic Transformation Behavior and Shape Memory Properties of Ti–Ni–Pt Melt-Spun Ribbons. Materials Transactions, 2006, 47, 540-545.	1.2	6
157	High-Temperature Shape Memory Effect of Ti-(Pt,Ir). Materials Science Forum, 2007, 539-543, 3273-3278.	0.3	6
158	Martensitic Transformation and Related Properties of AuTi-FeTi Pseudobinary Alloys. Advanced Materials Research, 0, 922, 25-30.	0.3	6
159	Impact Damping in NiMnGa/Polymer Composites. Materials Transactions, 2014, 55, 629-632.	1.2	6
160	Effects of hydrothermal treatment and pelletizing temperature on physical properties of empty fruit bunch pellets. Energy Procedia, 2019, 158, 681-687.	1.8	6
161	Brillouin characterization of slimmed polymer optical fibers for strain sensing with extremely wide dynamic range. Optics Express, 2018, 26, 28030.	3.4	6
162	Investigations of mechanical properties and deformation behaviors of the Cr modified Ti–Au shape memory alloys. Journal of Alloys and Compounds, 2022, 897, 163134.	5. 5	6

#	Article	IF	CITATIONS
163	Mechanical Properties of E21 (Mn, Fe)3AIC-Base Alloys. Materials Research Society Symposia Proceedings, 1998, 552, 1.	0.1	5
164	Phase Transformation of Ti-Ni Containing Platinum-Group Metals. Materials Research Society Symposia Proceedings, 2002, 753, 1.	0.1	5
165	Self-Accommodation Morphology in Ti-Nb-Al Shape Memory Alloy. Materials Science Forum, 2010, 654-656, 2154-2157.	0.3	5
166	Effect of Ageing on Mechanical and Shape Memory Properties of Ti-5Cr-4Ag Alloy. Key Engineering Materials, 0, 510-511, 111-117.	0.4	5
167	Effect of Zr Addition on Martensitic Transformation in TiMoSn Alloy. Advanced Materials Research, 0, 922, 137-142.	0.3	5
168	TiAu based shape memory alloys for high temperature applications. IOP Conference Series: Materials Science and Engineering, 2014, 60, 012018.	0.6	5
169	Effect of Nb Addition on Martensitic Transformation Behavior of AuTi-15Co Based Biomedical Shape Memory Alloys. Materials Transactions, 2015, 56, 429-434.	1.2	5
170	Deformation Behavior of Ti-4Au-5Cr-8Zr Superelastic Alloy With or Without Containing Ti3Au Precipitates. Materials Today: Proceedings, 2015, 2, S821-S824.	1.8	5
171	InÂvitro evaluation of biocompatibility of Ti–Mo–Sn–Zr superelastic alloy. Journal of Biomaterials Applications, 2015, 30, 119-130.	2.4	5
172	Mechanical properties of Sn electrodeposited in supercritical CO2 emulsions using micro-compression test. Microelectronic Engineering, 2015, 141, 219-222.	2.4	5
173	Deformation Behavior of Pure Cu and Cu-Ni-Si Alloy Evaluated by Micro-Tensile Testing. Materials Transactions, 2016, 57, 1897-1901.	1.2	5
174	Large Anhysteretic Deformation of Shape Memory Alloys at Postcritical Temperatures and Stresses. Physica Status Solidi (B): Basic Research, 2018, 255, 1700273.	1.5	5
175	Influence of internal stress on magnetostrain effect in Ni–Mn–Ga/polymer composite. Results in Materials, 2019, 2, 100037.	1.8	5
176	Evaluations of mechanical properties and shape memory behaviors of the aging–treated Ti–Au–Mo alloys. Materials Chemistry and Physics, 2021, 269, 124775.	4.0	5
177	Non-linear elastic behavior of Ni-Fe-Ga(Co) shape memory alloy and Landau-energy landscape reconstruction. Acta Materialia, 2021, 224, 117530.	7.9	5
178	Enhancement of the superelastic behavior of the Ti–Au–Cr–based shape memory alloys via the manipulations of annealing–treatments and Ta additions. Materials Science & manipulations of annealing–treatments and Processing, 2022, 847, 143312.	5.6	5
179	Phase constituent and microstructure manipulations via annealing for enhancements of mechanical property and functionalities of Ti–Au–Cr–Ta biomedical shape memory alloys. Journal of Alloys and Compounds, 2022, 920, 166016.	5.5	5
180	Estimation of defect structures and site-preference of ternary elements in a transition metal trialuminide Al3Nb by pseudo-ground state analysis Keikinzoku/Journal of Japan Institute of Light Metals, 1994, 44, 675-681.	0.4	4

#	Article	IF	Citations
181	Mechanical Properties of (Pt, Ir)Ti. Materials Science Forum, 2005, 475-479, 1987-1990.	0.3	4
182	Orthodontic tooth movement in rats using Ni-free Ti-base SMA wire. International Congress Series, 2005, 1284, 310-311.	0.2	4
183	Effect of Nitrogen Addition on Superelasticity of Ti-Zr-Nb Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 955-959.	0.4	4
184	Mechanical properties of shape memory alloys. , 2009, , 20-36.		4
185	Compression Behavior and Texture Development of Polymer Matrix Composites Based on NiMnGa Ferromagnetic Shape Memory Alloy Particles. Materials Science Forum, 2010, 654-656, 2103-2106.	0.3	4
186	Effect of Nitrogen Addition on Mechanical Property of Ti-Cr-Sn Alloy. Materials Science Forum, 2010, 654-656, 2126-2129.	0.3	4
187	Martensitic transformation and superelastic properties of titanium alloys containing interstitial elements. Keikinzoku/Journal of Japan Institute of Light Metals, 2012, 62, 257-262.	0.4	4
188	Electrodeposition of Tin Using Supercritical Carbon Dioxide Emulsions. ECS Electrochemistry Letters, 2014, 3, D44-D45.	1.9	4
189	Martensitic Transformation and Mechanical Properties of Fe-added Au-Cu-Al Shape Memory Alloy with Various Heat Treatment Conditions. Materials Research Society Symposia Proceedings, 2014, 1760, 1.	0.1	4
190	Preferential Morphology of Self-accommodation Microstructure in Ti-Ni-Pd Shape Memory Alloy. Materials Today: Proceedings, 2015, 2, S549-S552.	1.8	4
191	Martensitic Transformation and Mechanical Properties of AuCuAl-Based Biomedical Shape Memory Alloys Containing Various Quaternary Elements. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2016, 80, 71-76.	0.4	4
192	Evaluation of the Shape Memory Effect by Micro-Compression Testing of Single Crystalline Ti-27Nb Ni-Free Alloy. Materials, 2020, 13, 110.	2.9	4
193	Developments of the Electroactive Materials for Non-Enzymatic Glucose Sensing and Their Mechanisms. Electrochem, 2021, 2, 347-389.	3.3	4
194	Investigations of Deformation Behavior and Microstructure of Al Tailored Ti–Mo High Temperature Shape Memory Alloys during Isothermal Holding at 393 K. Micro, 2022, 2, 113-122.	2.0	4
195	New dislocation dissociation accompanied by anti-phase shuffling in the α″ martensite phase of a Ti alloy. Acta Materialia, 2022, 227, 117705.	7.9	4
196	Promoted mechanical properties and functionalities via Ta–tailored Ti–Au–Cr shape memory alloys towards biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 133, 105358.	3.1	4
197	Effects of Boron Addition on the Mechanical Properties of Ni-Fe-Al Ternary β Phase. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1998, 62, 912-918.	0.4	3
198	Factors for Controlling Martensitic Transformation Temperature of TiNi Shape Memory Alloy by Addition of Ternary Elements. Materials Research Society Symposia Proceedings, 2004, 842, 150.	0.1	3

#	Article	IF	CITATIONS
199	Anisotropy in Elastic Properties of Textured TiNbAl Shape Memory Alloy. Materials Science Forum, 2005, 475-479, 1983-1986.	0.3	3
200	New Internalized Distraction Device for Craniofacial Plastic Surgery Using Ni-Free, Ti-Based Shape Memory Alloy. Journal of Craniofacial Surgery, 2010, 21, 1839-1842.	0.7	3
201	Evaluation of Solubility Limit of Carbon in Ni3AlC1-x. Materials Research Society Symposia Proceedings, 2011, 1295, 77.	0.1	3
202	Effect of Heat Treatment Condition on Texture in Ti-Mo-Al-Zr Shape Memory Alloy. Advanced Materials Research, 0, 922, 622-625.	0.3	3
203	Oxidation Behavior of Au-55 mol%Ti High Temperature Shape Memory Alloy during Heating in Ar-50 vol%O ₂ Environment. Materials Transactions, 2015, 56, 600-604.	1.2	3
204	Phase Constituent and Reverse Martensitic Transformation Temperature of PtTi-CoTi Diffusion Couple Heat-Treated at 1373K. Materials Research Society Symposia Proceedings, 2015, 1760, 163.	0.1	3
205	Mechanical property enhancement of the Ag–tailored Au–Cu–Al shape memory alloy via the ductile phase toughening. Intermetallics, 2021, 139, 107349.	3.9	3
206	Shape Memory Alloys. Journal of the Robotics Society of Japan, 2006, 24, 430-435.	0.1	3
207	Achievement of Room Temperature Superelasticity in Ti-Mo-Al Alloy System via Manipulation of I‰ Phase Stability. Materials, 2022, 15, 861.	2.9	3
208	Smart Oxygen Diffusion Barrier Based on IrAl Alloy. Materials Research Society Symposia Proceedings, 1998, 552, 1.	0.1	2
209	Phase Stability and Mechanical Properties of Ti(Ni, Ru) Alloys. Materials Research Society Symposia Proceedings, 2002, 753, 1.	0.1	2
210	Smart Coatings – Multilayered and Multifunctional in-situ Ultrahigh-temperature Coatings. , 2006, , 419-445.		2
211	Rolling Texture of α"-Phase in Ti-22mol%Nb-3mol%Al Biomedical Shape Memory Alloy. Materials Science Forum, 2007, 561-565, 1517-1520.	0.3	2
212	Orientation Dependent Internal Friction of Textured Ti-Nb-Al Shape Memory Alloy. Materials Science Forum, 2007, 561-565, 1533-1536.	0.3	2
213	Martensite Variant Reorientation of NiMnGa/Silicone Composites Containing Polystyrene Foam Particles. Advanced Materials Research, 0, 409, 645-650.	0.3	2
214	Development of NiMnGa/Polymer Composite Materials. Materials Science Forum, 0, 706-709, 31-36.	0.3	2
215	Corrosion Behavior of NiTi and Ni-free Ti-based Biomedical Shape Memory Alloys. Zairyo To Kankyo/Corrosion Engineering, 2014, 63, 301-308.	0.2	2
216	Effect of Zr Addition on Mechanical and Shape Memory Properties of Ti-5Mo-3Sn Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 80, 37-44.	0.4	2

#	Article	IF	CITATIONS
217	Effect of Annealing Temperature on Texture Formation of Ti-4Au-5Cr-8Zr Biomedical Superelastic Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 80, 45-50.	0.4	2
218	Quantitative Evaluation of Resolution-Level Local-Micro Deformation Based on Three Dimensional Microstructure Images. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 80, 85-91.	0.4	2
219	Deformation of Biomedical AuCuAl-Based Shape Memory Alloy Micropillars. MRS Advances, 2017, 2, 1411-1415.	0.9	2
220	Compressive Deformation Behavior and Magnetic Susceptibility of Au ₂ CuAl Biomedical Shape Memory Alloys. Materials Transactions, 2019, 60, 662-665.	1.2	2
221	The Effect of Particle Shape on Magnetic Field-Induced Rubber-Like Behavior of Ni-Mn-Ga/Silicone Composites. IOP Conference Series: Materials Science and Engineering, 2020, 886, 012055.	0.6	2
222	Superelastic behavior of single crystalline Ni48Fe20Co5Ga27 micro-pillars near austenite–martensite critical point. AIP Advances, 2021, 11, 025213.	1.3	2
223	Heterogeneous Deformation Behavior of Cu-Ni-Si Alloy by Micro-Size Compression Testing. Crystals, 2020, 10, 1162.	2.2	2
224	Phase Constitution and Oxidation Resistance of B2 (Ir, Co)Al. Materials Research Society Symposia Proceedings, 2002, 753, 1.	0.1	1
225	Phase Constitution and Transformation Behavior of Ni ₂ 2MnGa-Cu ₂ MnAl Pseudobinary Intermetallic Compounds. Materials Science Forum, 2005, 475-479, 841-844.	0.3	1
226	Mechanical Properties of E21 Ti3AlC-base Alloy. Materials Research Society Symposia Proceedings, 2006, 980, 8.	0.1	1
227	Internal Structure of B19 Martensite in AuTi Shape Memory Alloy. Materials Research Society Symposia Proceedings, 2006, 980, 12.	0.1	1
228	Phase Constitution, Crystal Structures and Hardness of Ti60-xAu40Cox and Ti34-xAu44Co22+x (x=0, 2) Tj ETQqC	0.0 _{.1} rgBT	Overlock 10
229	Effect of Ti3Si on Texture in Ti-Nb Based Shape Memory Alloys. Materials Research Society Symposia Proceedings, 2006, 980, 50.	0.1	1
230	Reply to â€~On substructure in titanium alloy martensite'. Philosophical Magazine, 2011, 91, 2079-2080.	1.6	1
231	Composition Dependence of Compatibility in Self-Accommodation Microstructure of \hat{l}^2 -Titanium Shape Memory Alloy. Advances in Science and Technology, 0, , .	0.2	1
232	Competition between invariant habit plane and compatible junction plane in TiNb-based shape memory alloy. Journal of Alloys and Compounds, 2013, 577, S92-S95.	5.5	1
233	The strain rate sensitivity behavior in Ti based shape memory alloys. Transactions of the Materials Research Society of Japan, 2013, 38, 545-548.	0.2	1
234	Determination of Preferred Morphology of Self-Accommodating Martensite in Ti-Nb-Al Shape Memory Alloy Using Optical Microscopy. Advanced Materials Research, 0, 922, 260-263.	0.3	1

#	Article	IF	Citations
235	Effect of Heat Treatment Temperature on Microstructure and Hardness of Zr-9 mol%Au Near-Eutectoid Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 80, 77-84.	0.4	1
236	Deformation Behaviour of Al-Mg Alloy Bi-Crystal Micro-Pillar Evaluated by Micro-Compression Test. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 80, 66-70.	0.4	1
237	The Effect of Aging Temperature on Morphology of α Phase in Ti-3Mo-6Sn-5Zr Shape Memory Alloy. Materials Today: Proceedings, 2015, 2, S817-S820.	1.8	1
238	Phase Constitution and Martensitic Transformation Behavior of Au-51Ti-18Co Biomedical Shape Memory Alloy Heat-Treated at 1173K to 1373K. Materials Science Forum, 2016, 879, 256-261.	0.3	1
239	Role of Interstitial Oxygen Atom on Martensitic Transformation of Ti-Nb Alloy. Advances in Science and Technology, 0, , .	0.2	1
240	Micro-compression study of Ni-Fe(Co)-Ga magnetic shape memory alloy for MEMS sensors. , 2017, , .		1
241	Phase Reaction and Diffusion Behavior between AuTi and CoTi Intermetallic Compounds. Materials Transactions, 2019, 60, 631-635.	1.2	1
242	Mechanical Properties Enhancement of the Au-Cu-Al Alloys via Phase Constitution Manipulation. Materials, 2021, 14, 3122.	2.9	1
243	Effects of Volume Fraction of Constituent Phases, Lattice Strain and Mechanical Properties on the Hydrogen Pulverization of Nb-Cr-Ti Intermetallic Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 1535-1544.	0.4	1
244	Martensitic Transformation of TiAu Shape Memory Alloys. Materials Science Forum, 0, , 1541-1544.	0.3	1
245	Effect of Alloy Composition on Lattice Deformation Strain of TiNbAl Biomedical Shape Memory Alloy. IEEJ Transactions on Sensors and Micromachines, 2006, 126, 164-165.	0.1	1
246	Goss Orientation Evolution in Ti–5.5Mo–8Al–6Zr Shape Memory Alloy upon Heat Treatment. Materials Transactions, 2019, 60, 1890-1897.	1.2	1
247	Phase Stability, Microstructure and Mechanical Properties in the Multi-Phse Alloys Based on the L12-Ni3(Al,Be). Materials Research Society Symposia Proceedings, 1994, 364, 855.	0.1	0
248	Anomalous Temperature Dependence of Yield Stress and Work Hardening Coefficient of B2-Stabilized NiTi Alloys. Materials Research Society Symposia Proceedings, 1996, 460, 635.	0.1	0
249	Mechanical Properties of L12 Type Zn3Ti-Base Alloy. Materials Research Society Symposia Proceedings, 1998, 552, 1.	0.1	0
250	"Smart Materials― Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 567.	0.4	0
251	Martensitic Transformation Behavior and Shape Memory Properties of Ti-Ni-Pt Melt Spun Ribbon. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 628-633.	0.4	0
252	New Piezoelectric Composites-Design, Fabrication and Characterization. Materials Science Forum, 2005, 475-479, 2083-2088.	0.3	0

#	Article	IF	CITATIONS
253	In Situ Synthesis and Properties of Aluminum Composites with Ultrafine TiB ₂ and Al ₂ 0 ₃ Particulates. Materials Science Forum, 2005, 475-479, 925-928.	0.3	0
254	Magnetically Graded Ni3Al Fabricated by Inhomogeneous Deformation and Heat Treatment. Journal of Intelligent Material Systems and Structures, 2006, 17, 1105-1113.	2.5	0
255	Mechanical Properties of Al-5.7wt% Ni Eutectic Alloy Severely Deformed by Equal-Channel Angular Pressing. Materials Science Forum, 2007, 539-543, 2916-2921.	0.3	0
256	Orthodontic Tooth Movement in Rats Using Ni-Free Ti-Based Shape Memory Alloy Wire. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 503-509.	0.4	0
257	Phase Equilibrium of the AuMn-Cu ₂ MnGa System. Advanced Materials Research, 0, 89-91, 574-579.	0.3	0
258	Stress Amplitude Dependence of Internal Friction in TiNbAl Shape Memory Alloy. Materials Science Forum, 2010, 638-642, 2064-2067.	0.3	0
259	Mechanical Spectroscopic Study of Equal-Channel Angular Pressed Al-Ni Eutectic Alloy. Solid State Phenomena, 2012, 184, 173-178.	0.3	0
260	Novel Research Fields Derived from the Study on Intermetallic Compounds < br/>br/>^ ^mdash; From Green Innovation to Life Innovation^ ^mdash;. Materia Japan, 2012, 51, 168-178.	0.1	0
261	Formation Process of Triangular Morphology of Self-Accommodation Martensite in Ti-Nb-Al Shape Memory Alloy. MATEC Web of Conferences, 2015, 33, 06001.	0.2	0
262	Incompatibility of Martensite Variant Clusters in Self-accommodation Microstructure in Ti-Ni-Pd High Temperature Shape Memory Alloy. Materials Research Society Symposia Proceedings, 2015, 1760, 193.	0.1	0
263	Lattice Parameter Dependence of Kinematic Compatibility in Martensite Microstructure of Cubic-Orthorhombic Transformation. Materials Transactions, 2016, 57, 751-754.	1.2	0
264	Temperature Dependency of Diffusional Transformation Texture Development in Steel Sheet. Materials Transactions, 2017, 58, 554-560.	1.2	0
265	An <i>In Situ</i>) Observation of Slip Deformation in a Compressed Ti-Mo-Al Single Crystal. Materials Science Forum, 2018, 941, 1463-1467.	0.3	0
266	A study on lattice matching method by CoRu layer between CoCrPtB magnetic layer and CrTi-(Mo, W) alloy underlayer. Journal of Magnetism and Magnetic Materials, 2019, 469, 545-549.	2.3	0
267	Lightweight, multifunctional materials based on magnetic shape memory alloys., 2021,, 187-237.		0
268	Mechanical Properties of Ti-Nb-Mo-Al Alloys. Transactions of the Materials Research Society of Japan, 2007, 32, 631-634.	0.2	0
269	Antiphase Boundary Like Defect Inside α″-Martensite in Ti-Nb-Al Shape Memory Alloy. , 0, , 335-340.		0
270	VACANCY PROPERTIES OF ORDERED INTERMETALLIC ALLOYS IN THE NI-A1 SYSTEM., 1993,, 1481-1484.		0

#	Article	IF	CITATIONS
271	Effect of cross-sectional area reduction rate and alloy composition on the formation of <001>-fiber texture in Ti-Mo-Al-Zr alloy wire. MATEC Web of Conferences, 2020, 321, 11019.	0.2	0