Susan T Lovett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8518080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DnaA and SspA Regulation of the <i>iraD</i> gene of <i>E. coli:</i> an alternative DNA damage response independent of LexA/RecA. Genetics, 2022, , .	2.9	3
2	DNA damage-signaling, homologous recombination and genetic mutation induced by 5-azacytidine and DNA-protein crosslinks in Escherichia coli. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2021, 822, 111742.	1.0	3
3	The Role of Replication Clamp-Loader Protein HolC of Escherichia coli in Overcoming Replication/Transcription Conflicts. MBio, 2021, 12, .	4.1	6
4	Alternative complexes formed by the Escherichia coli clamp loader accessory protein HolC (x) with replication protein HolD (Γ΄) and repair protein YoaA. DNA Repair, 2021, 100, 103006.	2.8	7
5	DNA polymerase III protein, HolC, helps resolve replication/transcription conflicts. Microbial Cell, 2021, 8, 143-145.	3.2	3
6	Genetic Analysis of DinG Family Helicase YoaA and Its Interaction with Replication Clamp Loader Protein HolC in Escherichia coli. Journal of Bacteriology, 2021, 203, e0022821.	2.2	2
7	Frequent template switching in postreplication gaps: suppression of deleterious consequences by the Escherichia coli Uup and RadD proteins. Nucleic Acids Research, 2020, 48, 212-230.	14.5	12
8	The ASM Journals Committee Values the Contributions of Black Microbiologists. Infection and Immunity, 2020, 88, .	2.2	0
9	The ASM Journals Committee Values the Contributions of Black Microbiologists. Microbiology Spectrum, 2020, 8, .	3.0	0
10	Identifying Small Molecules That Promote Quasipalindrome-Associated Template-Switch Mutations in Escherichia coli. G3: Genes, Genomes, Genetics, 2020, 10, 1809-1815.	1.8	2
11	The ASM Journals Committee Values the Contributions of Black Microbiologists. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	0
12	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Virology, 2020, 94, .	3.4	0
13	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Bacteriology, 2020, 202, .	2.2	0
14	The ASM Journals Committee Values the Contributions of Black Microbiologists. Microbiology and Molecular Biology Reviews, 2020, 84, .	6.6	0
15	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Microbiology and Biology Education, 2020, 21, .	1.0	2
16	The ASM Journals Committee Values the Contributions of Black Microbiologists. MSystems, 2020, 5, .	3.8	0
17	The ASM Journals Committee Values the Contributions of Black Microbiologists. Microbiology Resource Announcements, 2020, 9, .	0.6	0
18	The ASM Journals Committee Values the Contributions of Black Microbiologists. MBio, 2020, 11, .	4.1	3

#	Article	IF	CITATIONS
19	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Clinical Microbiology, 2020, 58, .	3.9	1
20	The ASM Journals Committee Values the Contributions of Black Microbiologists. Applied and Environmental Microbiology, 2020, 86, .	3.1	1
21	The ASM Journals Committee Values the Contributions of Black Microbiologists. MSphere, 2020, 5, .	2.9	1
22	The ASM Journals Committee Values the Contributions of Black Microbiologists. Molecular and Cellular Biology, 2020, 40, .	2.3	0
23	The ASM Journals Committee Values the Contributions of Black Microbiologists. Clinical Microbiology Reviews, 2020, 33, .	13.6	1
24	Structure–Activity Relationship of Peptide-Conjugated Chloramphenicol for Inhibiting <i>Escherichia coli</i> . Journal of Medicinal Chemistry, 2019, 62, 10245-10257.	6.4	7
25	Stimulation of Replication Template-Switching by DNA-Protein Crosslinks. Genes, 2019, 10, 14.	2.4	6
26	Diglycine Enables Rapid Intrabacterial Hydrolysis for Activating Anbiotics against Gramâ€negative Bacteria. Angewandte Chemie, 2019, 131, 10741-10744.	2.0	7
27	Diglycine Enables Rapid Intrabacterial Hydrolysis for Activating Anbiotics against Gramâ€negative Bacteria. Angewandte Chemie - International Edition, 2019, 58, 10631-10634.	13.8	24
28	Between sisters: Watching replication-associated recombinational DNA repair. Journal of Cell Biology, 2018, 217, 2225-2227.	5.2	0
29	Template-switching during replication fork repair in bacteria. DNA Repair, 2017, 56, 118-128.	2.8	43
30	SSB recruitment of Exonuclease I aborts template-switching in Escherichia coli. DNA Repair, 2017, 57, 12-16.	2.8	7
31	Recombinational branch migration by the RadA/Sms paralog of RecA in Escherichia coli. ELife, 2016, 5, .	6.0	44
32	Connecting Replication and Repair: YoaA, a Helicase-Related Protein, Promotes Azidothymidine Tolerance through Association with Chi, an Accessory Clamp Loader Protein. PLoS Genetics, 2015, 11, e1005651.	3.5	20
33	Genetic analysis of <scp><i>E</i></scp> <i>scherichia coli</i> â€ <scp>R</scp> ad <scp>A</scp> : functional motifs and genetic interactions. Molecular Microbiology, 2015, 95, 769-779.	2.5	49
34	Break-Induced DNA Replication. Cold Spring Harbor Perspectives in Biology, 2013, 5, a010397-a010397.	5.5	191
35	Azidothymidine and other chain terminators are mutagenic for template-switch-generated genetic mutations. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6171-6174.	7.1	22
36	A glimpse of molecular competition. Nature, 2012, 491, 198-200.	27.8	1

#	Article	IF	CITATIONS
37	β-Galactosidase-instructed formation of molecular nanofibers and a hydrogel. Nanoscale, 2011, 3, 2859.	5.6	34
38	Phenotypic Landscape of a Bacterial Cell. Cell, 2011, 144, 143-156.	28.9	623
39	The DNA Exonucleases of <i>Escherichia coli</i> . EcoSal Plus, 2011, 4, .	5.4	77
40	Toxicity and tolerance mechanisms for azidothymidine, a replication gap-promoting agent, in Escherichia coli. DNA Repair, 2011, 10, 260-270.	2.8	42
41	Insights Into Mutagenesis Using <i>Escherichia coli</i> Chromosomal <i>lacZ</i> Strains That Enable Detection of a Wide Spectrum of Mutational Events. Genetics, 2011, 188, 247-262.	2.9	31
42	The 2011 Thomas Hunt Morgan Medal: James Haber. Genetics, 2011, 187, 987-989.	2.9	0
43	A Role for Nonessential Domain II of Initiator Protein, DnaA, in Replication Control. Genetics, 2009, 183, 39-49.	2.9	25
44	Growth Phase and (p)ppGpp Control of IraD, a Regulator of RpoS Stability, in <i>Escherichia coli</i> . Journal of Bacteriology, 2009, 191, 7436-7446.	2.2	52
45	A DNA damage response in <i>Escherichia coli</i> involving the alternative sigma factor, RpoS. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 611-616.	7.1	79
46	The ObgE/CgtA GTPase influences the stringent response to amino acid starvation in <i>Escherichia coli</i> . Molecular Microbiology, 2009, 73, 253-266.	2.5	67
47	Cell cycle synchronization of Escherichia coli using the stringent response, with fluorescence labeling assays for DNA content and replication. Methods, 2009, 48, 8-13.	3.8	99
48	Reconstitution of initial steps of dsDNA break repair by the RecF pathway of <i>E. coli</i> . Genes and Development, 2009, 23, 1234-1245.	5.9	138
49	Mechanisms of Recombination: Lessons from <i>E. coli</i> . Critical Reviews in Biochemistry and Molecular Biology, 2008, 43, 347-370.	5.2	91
50	The Stringent Response and Cell Cycle Arrest in Escherichia coli. PLoS Genetics, 2008, 4, e1000300.	3.5	119
51	RecA-independent recombination is efficient but limited by exonucleases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 216-221.	7.1	113
52	Polymerase Switching in DNA Replication. Molecular Cell, 2007, 27, 523-526.	9.7	23
53	Chromosome segregation control by Escherichia coli ObgE GTPase. Molecular Microbiology, 2007, 65, 569-581.	2.5	41
54	Replication arrest-stimulated recombination: Dependence on the RecA paralog, RadA/Sms and translesion polymerase, DinB. DNA Repair, 2006, 5, 1421-1427.	2.8	57

#	Article	lF	CITATIONS
55	Cis and Trans-acting Effects on a Mutational Hotspot Involving a Replication Template Switch. Journal of Molecular Biology, 2006, 356, 300-311.	4.2	45
56	DNA Repeat Rearrangements Mediated by DnaK-Dependent Replication Fork Repair. Molecular Cell, 2006, 21, 595-604.	9.7	88
57	RecJ exonuclease: substrates, products and interaction with SSB. Nucleic Acids Research, 2006, 34, 1084-1091.	14.5	112
58	The role of replication initiation control in promoting survival of replication fork damage. Molecular Microbiology, 2006, 60, 229-239.	2.5	43
59	Resurrecting a broken genome. Nature, 2006, 443, 517-519.	27.8	28
60	A Bacterial G Protein-Mediated Response to Replication Arrest. Molecular Cell, 2005, 17, 549-560.	9.7	77
61	Filling the Gaps in Replication Restart Pathways. Molecular Cell, 2005, 17, 751-752.	9.7	23
62	Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Molecular Microbiology, 2004, 52, 1243-1253.	2.5	232
63	Connecting Replication and Recombination. Molecular Cell, 2003, 11, 554-556.	9.7	20
64	Stabilization of perfect and imperfect tandem repeats by single-strand DNA exonucleases. Proceedings of the United States of America, 2003, 100, 1134-1139.	7.1	48
65	Role for radA/sms in Recombination Intermediate Processing in Escherichia coli. Journal of Bacteriology, 2002, 184, 6836-6844.	2.2	103
66	Crossing Over Between Regions of Limited Homology in <i>Escherichia coli</i> : RecA-Dependent and RecA-Independent Pathways. Genetics, 2002, 160, 851-859.	2.9	135
67	Instability of repetitive DNA sequences: The role of replication in multiple mechanisms. Proceedings of the United States of America, 2001, 98, 8319-8325.	7.1	313
68	In vivo requirement for RecJ, ExoVII, Exol, and ExoX in methyl-directed mismatch repair. Proceedings of the United States of America, 2001, 98, 6765-6770.	7.1	192
69	Redundant Exonuclease Involvement in Escherichia coli Methyl-directed Mismatch Repair. Journal of Biological Chemistry, 2001, 276, 31053-31058.	3.4	114
70	Evidence for Two Mechanisms of Palindrome-Stimulated Deletion in <i>Escherichia coli</i> : Single-Strand Annealing and Replication Slipped Mispairing. Genetics, 2001, 158, 527-540.	2.9	72
71	A Thermostable Single-Strand DNase fromMethanococcus jannaschii Related to the RecJ Recombination and Repair Exonuclease from Escherichia coli. Journal of Bacteriology, 2000, 182, 607-612.	2.2	24
72	A novel mutational hotspot in a natural quasipalindrome in Escherichia coli. Journal of Molecular Biology, 2000, 302, 553-564.	4.2	65

#	Article	IF	CITATIONS
73	Exonuclease X of Escherichia coli. Journal of Biological Chemistry, 1999, 274, 30094-30100.	3.4	63
74	Expansion of DNA repeats in Escherichia coli : effects of recombination and replication functions 1 1Edited by J. H. Miller. Journal of Molecular Biology, 1999, 289, 21-27.	4.2	48
75	Identification of RNase T as a High-Copy Suppressor of the UV Sensitivity Associated With Single-Strand DNA Exonuclease Deficiency in Escherichia coli. Genetics, 1999, 151, 929-934.	2.9	25
76	Tandem Repeat Recombination Induced by Replication Fork Defects in Escherichia coli Requires a Novel Factor, RadC. Genetics, 1999, 152, 5-13.	2.9	60
77	Mutational Analysis of the RecJ Exonuclease of <i>Escherichia coli</i> : Identification of Phosphoesterase Motifs. Journal of Bacteriology, 1999, 181, 6098-6102.	2.2	37
78	Slipped Misalignment Mechanisms of Deletion Formation: In Vivo Susceptibility to Nucleases. Journal of Bacteriology, 1999, 181, 477-482.	2.2	55
79	Slipped misalignment mechanisms of deletion formation: analysis of deletion endpoints. Journal of Molecular Biology, 1998, 276, 559-569.	4.2	35
80	Identification of a Potent DNase Activity Associated with RNase T of Escherichia coli. Journal of Biological Chemistry, 1998, 273, 35126-35131.	3.4	30
81	Single-Strand DNA-Specific Exonucleases in Escherichia coli: Roles in Repair and Mutation Avoidance. Genetics, 1998, 149, 7-16.	2.9	129
82	Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus. Journal of Molecular Biology, 1997, 266, 1016-1031.	4.2	139
83	Purification, catalytic properties and thermostability of 3-isopropylmalate dehydrogenase from Escherichia coli. BBA - Proteins and Proteomics, 1997, 1337, 105-112.	2.1	24
84	Enhanced Deletion Formation by Aberrant DNA Replication in <i>Escherichia coli</i> . Genetics, 1997, 146, 457-470.	2.9	99
85	Stabilization of diverged tandem repeats by mismatch repair: evidence for deletion formation via a misaligned replication intermediate Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 7120-7124.	7.1	77
86	Enhancement of RecA Strand-transfer Activity by the RecJ Exonuclease of Escherichia coli. Journal of Biological Chemistry, 1995, 270, 6881-6885.	3.4	41
87	Revision of the amino-acid sequence of 3-isopropylmalate dehydrogenase from Salmonella typhimurium by means of X-ray crystallography. Gene, 1995, 164, 85-87.	2.2	6
88	Recombination between repeats in Escherichia coli by a recA-independent, proximity-sensitive mechanism. Molecular Genetics and Genomics, 1994, 245, 294-300.	2.4	88
89	Release of 5′-terminal deoxyribose-phosphate residues from incised abasic sites in DNA by theEscherichia coliRecJ protein. Nucleic Acids Research, 1994, 22, 993-998.	14.5	104
90	Sequence of the RAD55 gene of Saccharomyces cerevisiae: similarity of RAD55 to prokaryotic RecA and other RecA-like proteins. Gene, 1994, 142, 103-106.	2.2	104

#	Article	IF	CITATIONS
91	Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell, 1993, 75, 351-361.	28.9	324
92	Characterization of Null Mutants of the <i>RAD55</i> Gene of <i>Saccharomyces cerevisiae</i> : Effects of Temperature, Osmotic Strength and Mating Type. Genetics, 1987, 116, 547-553.	2.9	113
93	Genetic Analysis of Regulation of the RecF Pathway of Recombination in Escherichia coli K-12. Journal of Bacteriology, 1983, 153, 1471-1478.	2.2	81
94	The DNA Damage Response. , 0, , 205-228.		12
95	Misalignment-Mediated Mutations and Genetic Rearrangements at Repetitive DNA Sequences. , 0, , 449-464.		0