Beibei Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8516953/publications.pdf

Version: 2024-02-01

		361413	330143
50	1,407 citations	20	37
papers	citations	h-index	g-index
51	51	51	1811
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nonvolatile modulation of luminescence in perovskite oxide thin films by ferroelectric gating. Optics Letters, 2022, 47, 1578.	3.3	O
2	Broadband Optical Amplification of PbS Quantumâ€Dotâ€Doped Glass Fibers. Advanced Photonics Research, 2022, 3, .	3.6	13
3	Electroluminescence from 4-nitroaryl organic color centers in semiconducting single-wall carbon nanotubes. Journal of Applied Physics, 2021, 129, .	2.5	12
4	Singleâ€Pulseâ€Induced Ultrafast Spatial Clustering of Metal in Glass: Fine Tunability and Application. Advanced Photonics Research, 2021, 2, 2000121.	3.6	7
5	Ultrafast Laser Inducing Continuous Periodic Crystallization in the Glass Activated via Laserâ€Prepared Crystalliteâ€Seeds. Advanced Optical Materials, 2021, 9, 2001962.	7.3	13
6	Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Advanced Photonics, $2021, 3, .$	11.8	71
7	Highly Emissive Deepâ€Red Perovskite Quantum Dots in Glass: Photoinduced Thermal Engineering and Applications. Advanced Optical Materials, 2021, 9, 2100094.	7.3	31
8	Self-organized phase-transition lithography for all-inorganic photonic textures. Light: Science and Applications, 2021, 10, 93.	16.6	24
9	Multiphoton upconversion and non-resonant optical nonlinearity in perovskite quantum dot doped glasses. Optics Letters, 2021, 46, 5216.	3.3	10
10	Lanthanide doped two dimensional heterostructure nanosheets with highly efficient harvest towards solar energy. Materials and Design, 2021, 210, 110023.	7.0	10
11	Tunable photo-patterning of organic color-centers. Materials and Design, 2021, 212, 110252.	7.0	1
12	Highly efficient phosphor-glass composites by pressureless sintering. Nature Communications, 2020, 11, 2805.	12.8	129
13	Photolithographic Patterning of Organic Colorâ€Centers. Advanced Materials, 2020, 32, e1906517.	21.0	14
14	Crystallization-Mediated Magnetoelectric Response in Two-Dimensional Molecular Charge Transfer Crystals. ACS Applied Electronic Materials, 2019, 1, 1735-1739.	4.3	2
15	Ubiquitous energy conversion of two-dimensional molecular crystals. Nanotechnology, 2019, 30, 15LT01.	2.6	1
16	Dynamic gating of infrared radiation in a textile. Science, 2019, 363, 619-623.	12.6	301
17	Quantitative infrared spectroscopy of environmentally sensitive and rough materials. Review of Scientific Instruments, 2019, 90, 113102.	1.3	1
18	Multifunctional molecular charge-transfer thin films. Nanoscale, 2019, 11, 22585-22589.	5.6	O

#	Article	IF	CITATIONS
19	Self-Assembled Metal Molecular Networks by Nanoconfinement. Journal of Physical Chemistry Letters, 2019, 10, 206-213.	4.6	2
20	Synthesis and Structure of 2,5-Bis[<i>N</i> -(2,6-mesityl)iminomethyl]pyrrolylcobalt(II): Evidence for One-Electron-Oxidized, Redox Noninnocent Ligand Behavior. Inorganic Chemistry, 2017, 56, 3377-3385.	4.0	12
21	External Stimuli Responsive 2D Charge Transfer Polymers. Advanced Materials Interfaces, 2017, 4, 1600769.	3.7	7
22	A Freeâ€Standing Molecular Spin–Charge Converter for Ubiquitous Magneticâ€Energy Harvesting and Sensing. Advanced Materials, 2017, 29, 1605150.	21.0	26
23	Tunable two-dimensional interfacial coupling in molecular heterostructures. Nature Communications, 2017, 8, 312.	12.8	14
24	Hybrid Chalcopyrite–Polymer Magnetoconducting Materials. ACS Applied Materials & Amp; Interfaces, 2016, 8, 11215-11220.	8.0	20
25	Integrated Charge Transfer in Organic Ferroelectrics for Flexible Multisensing Materials. Small, 2016, 12, 4502-4507.	10.0	11
26	Multisensing Materials: Integrated Charge Transfer in Organic Ferroelectrics for Flexible Multisensing Materials (Small 33/2016). Small, 2016, 12, 4501-4501.	10.0	1
27	Multifunctional Chargeâ€∢ransfer Single Crystals through Supramolecular Assembly. Advanced Materials, 2016, 28, 5322-5329.	21.0	21
28	Solution-Processed Molecular Opto-Ferroic Crystals. Chemistry of Materials, 2016, 28, 2441-2448.	6.7	10
29	Chemically Driven Interfacial Coupling in Charge-Transfer Mediated Functional Superstructures. Nano Letters, 2016, 16, 2851-2859.	9.1	14
30	All-polymeric control of nanoferronics. Science Advances, 2015, 1, e1501264.	10.3	18
31	An organic approach for nanostructured multiferroics. Nanoscale, 2015, 7, 9122-9132.	5.6	34
32	Origin of structural relaxation dependent spectroscopic features of bismuth-activated glasses. Optics Express, 2014, 22, 15924.	3.4	5
33	Influence of high magnetic field on the luminescence of Eu3+-doped glass ceramics. Journal of Applied Physics, 2014, 116, .	2.5	14
34	Enhanced upconversion luminescence in NaYF4: Er nanoparticles with multi-wavelength excitation. Materials Letters, 2014, 128, 299-302.	2.6	38
35	Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films. Journal of Materials Chemistry C, 2014, 2, 2482.	5.5	28
36	Lanthanide doped nanoparticles as remote sensors for magnetic fields. Nanoscale, 2014, 6, 11002-11006.	5.6	38

#	Article	IF	CITATION
37	Near-mid infrared emission in Ce3+ and Tm3+ co-doped oxyfluoride glasses by excited at different wavelengths light. Journal of Non-Crystalline Solids, 2014, 391, 49-53.	3.1	7
38	Enhanced broadband excited upconversion luminescence in Ho-doped glasses by codoping with bismuth. Optics Letters, 2014, 39, 3022.	3.3	17
39	Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germanate glasses. Journal of Applied Physics, 2013, 113, 083503.	2.5	38
40	Selfâ€Limited Nanocrystallizationâ€Mediated Activation of Semiconductor Nanocrystal in an Amorphous Solid. Advanced Functional Materials, 2013, 23, 5436-5443.	14.9	73
41	Simple synthesis of ultra-small nanodiamonds with tunable size and photoluminescence. Carbon, 2013, 62, 374-381.	10.3	67
42	Enhanced broadband near-infrared luminescence in Bi-doped glasses by co-doping with Ag. Journal of Applied Physics, 2013, 113, 183506.	2.5	18
43	Ultra-broadband infrared luminescence of Bi-doped thin-films for integrated optics. Optics Express, 2013, 21, 18532.	3.4	8
44	Regulation of structure rigidity for improvement of the thermal stability of near-infrared luminescence in Bi-doped borate glasses. Optics Express, 2013, 21, 27835.	3.4	18
45	One-pot synthesis of luminescent hydrophilic silicon nanocrystals. RSC Advances, 2012, 2, 8254.	3.6	20
46	Enhanced broadband near-infrared luminescence of Bi-doped oxyfluoride glasses. Optics Express, 2012, 20, 29105.	3 . 4	26
47	Photoluminescence from Bi5(GaCl4)3 molecular crystal. Dalton Transactions, 2012, 41, 11055.	3.3	29
48	Broadband Near-Infrared Luminescence from \hat{I}^3 -ray Irradiated Bismuth-Doped Y4GeO8 Crystals. Journal of the Electrochemical Society, 2011, 158, G203.	2.9	21
49	Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution. Physical Chemistry Chemical Physics, 2011, 13, 20255.	2.8	77
50	Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses. Optics Express, 2011, 19, 23436.	3.4	32