
Pierre Emmanuel Courty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8516948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature, 2008, 452, 88-92.	27.8	1,003
2	The role of ectomycorrhizal communities in forest ecosystem processes: New perspectives and emerging concepts. Soil Biology and Biochemistry, 2010, 42, 679-698.	8.8	412
3	Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytologist, 2005, 167, 309-319.	7.3	244
4	Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytologist, 2019, 223, 1127-1142.	7.3	237
5	Take a Trip Through the Plant and Fungal Transportome of Mycorrhiza. Trends in Plant Science, 2016, 21, 937-950.	8.8	192
6	Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytologist, 2005, 165, 599-611.	7.3	164
7	Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biology and Biochemistry, 2007, 39, 1947-1955.	8.8	161
8	Diet of Arbuscular Mycorrhizal Fungi: Bread and Butter?. Trends in Plant Science, 2017, 22, 652-660.	8.8	158
9	Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza, 2013, 23, 597-625.	2.8	157
10	The family of ammonium transporters (<scp>AMT</scp>) in <i><scp>S</scp>orghum bicolor</i> : two <scp>AMT</scp> members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi. New Phytologist, 2013, 198, 853-865.	7.3	146
11	Temporal Changes in the Ectomycorrhizal Community in Two Soil Horizons of a Temperate Oak Forest. Applied and Environmental Microbiology, 2008, 74, 5792-5801.	3.1	140
12	Relation between oak tree phenology and the secretion of organic matter degrading enzymes by Lactarius quietus ectomycorrhizas before and during bud break. Soil Biology and Biochemistry, 2007, 39, 1655-1663.	8.8	124
13	The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. Journal of Ecology, 2013, 101, 1335-1344.	4.0	124
14	Structure and Expression Profile of the Phosphate Pht1 Transporter Gene Family in Mycorrhizal <i>Populus trichocarpa</i> Â Â. Plant Physiology, 2011, 156, 2141-2154.	4.8	123
15	Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytologist, 2015, 205, 1632-1645.	7.3	119
16	The H+-ATPase HA1 of <i>Medicago truncatula</i> Is Essential for Phosphate Transport and Plant Growth during Arbuscular Mycorrhizal Symbiosis Â. Plant Cell, 2014, 26, 1808-1817.	6.6	118
17	Inorganic Nitrogen Uptake and Transport in Beneficial Plant Root-Microbe Interactions. Critical Reviews in Plant Sciences, 2015, 34, 4-16.	5.7	118
18	Laccase and phosphatase activities of the dominant ectomycorrhizal types in a lowland oak forest. Soil Biology and Biochemistry, 2006, 38, 1219-1222.	8.8	95

#	Article	IF	CITATIONS
19	Phylogenetic analysis, genomic organization, and expression analysis of multiâ€copper oxidases in the ectomycorrhizal basidiomycete <i>Laccaria bicolor</i> . New Phytologist, 2009, 182, 736-750.	7.3	93
20	Plant Symbionts Are Engineers of the Plant-Associated Microbiome. Trends in Plant Science, 2019, 24, 905-916.	8.8	93
21	Does the addition of labile substrate destabilise old soil organic matter?. Soil Biology and Biochemistry, 2014, 76, 149-160.	8.8	86
22	Temporal and functional pattern of secreted enzyme activities in an ectomycorrhizal community. Soil Biology and Biochemistry, 2010, 42, 2022-2025.	8.8	75
23	Role of the GRAS transcription factor ATA/RAM1 in the transcriptional reprogramming of arbuscular mycorrhiza in Petunia hybrida. BMC Genomics, 2017, 18, 589.	2.8	72
24	Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Mycorrhiza, 2018, 28, 779-785.	2.8	70
25	Sulfate transporters in the plantââ,¬â"¢s response to drought and salinity: regulation and possible functions. Frontiers in Plant Science, 2014, 5, 580.	3.6	68
26	Analysis of expressed sequence tags from the ectomycorrhizal basidiomycetes Laccaria bicolor and Pisolithus microcarpus. New Phytologist, 2003, 159, 117-129.	7.3	67
27	GintAMT3 – a Low-Affinity Ammonium Transporter of the Arbuscular Mycorrhizal Rhizophagus irregularis. Frontiers in Plant Science, 2016, 7, 679.	3.6	66
28	Carbon and Nitrogen Metabolism in Mycorrhizal Networks and Mycoheterotrophic Plants of Tropical Forests: A Stable Isotope Analysis Â. Plant Physiology, 2011, 156, 952-961.	4.8	65
29	Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots. Journal of Experimental Botany, 2011, 62, 249-260.	4.8	63
30	Saprotrophic capabilities as functional traits to study functional diversity and resilience of ectomycorrhizal community. Oecologia, 2009, 161, 661-664.	2.0	61
31	Optimized assay and storage conditions for enzyme activity profiling of ectomycorrhizae. Mycorrhiza, 2011, 21, 589-600.	2.8	56
32	Mycorrhizal Associations and Trophic Modes in Coexisting Orchids: An Ecological Continuum between Auto- and Mixotrophy. Frontiers in Plant Science, 2017, 8, 1497.	3.6	55
33	Secreted enzymatic activities of ectomycorrhizal fungi as a case study of functional diversity and functional redundancy. Annals of Forest Science, 2011, 68, 69-80.	2.0	50
34	Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species. Mycorrhiza, 2015, 25, 639-647.	2.8	50
35	Two ectomycorrhizal truffles, <i>Tuber melanosporum</i> and <i>T.Âaestivum</i> , endophytically colonise roots of nonâ€ectomycorrhizal plants in natural environments. New Phytologist, 2020, 225, 2542-2556.	7.3	50
36	The microbiota of the grapevine holobiont: A key component of plant health. Journal of Advanced Research, 2022, 40, 1-15,	9.5	49

#	Article	IF	CITATIONS
37	Woody Plant Declines. What's Wrong with the Microbiome?. Trends in Plant Science, 2020, 25, 381-394.	8.8	48
38	Regulation of plants' phosphate uptake in common mycorrhizal networks: Role of intraradical fungal phosphate transporters. Plant Signaling and Behavior, 2016, 11, e1131372.	2.4	47
39	Transcriptome analysis of the Populus trichocarpa–Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation. Plant and Cell Physiology, 2017, 58, 1003-1017.	3.1	43
40	Research perspectives on functional diversity in ectomycorrhizal fungi. New Phytologist, 2007, 174, 240-243.	7.3	39
41	Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel Rhizophagus irregularis monosaccharide transporters, are involved in both sugar uptake from the soil and from the plant partner. Plant Physiology and Biochemistry, 2016, 107, 354-363.	5.8	36
42	Initial stages of Fagus sylvatica wood colonization by the white-rot basidiomycete Trametes versicolor: Enzymatic characterization. International Biodeterioration and Biodegradation, 2008, 61, 287-293.	3.9	35
43	Functional Profiling and Distribution of the Forest Soil Bacterial Communities Along the Soil Mycorrhizosphere Continuum. Microbial Ecology, 2013, 66, 404-415.	2.8	32
44	Genes associated with lignin degradation in the polyphagous white-rot pathogen Heterobasidion irregulare show substrate-specific regulation. Fungal Genetics and Biology, 2013, 56, 17-24.	2.1	32
45	Developmental and Environmental Regulation of Aquaporin Gene Expression across Populus Species: Divergence or Redundancy?. PLoS ONE, 2013, 8, e55506.	2.5	32
46	Into the functional ecology of ectomycorrhizal communities: environmental filtering of enzymatic activities. Journal of Ecology, 2016, 104, 1585-1598.	4.0	28
47	Phylogenetic, structural, and functional characterization of AMT3;1, an ammonium transporter induced by mycorrhization among model grasses. Mycorrhiza, 2017, 27, 695-708.	2.8	28
48	Identification of arbuscular mycorrhiza-inducible Nitrate Transporter 1/Peptide Transporter Family (NPF) genes in rice. Mycorrhiza, 2018, 28, 93-100.	2.8	28
49	Species-dependent partitioning of C and N stable isotopes between arbuscular mycorrhizal fungi and their C3 and C4 hosts. Soil Biology and Biochemistry, 2015, 82, 52-61.	8.8	26
50	Arbuscular mycorrhizal fungi, a key symbiosis in the development of quality traits in crop production, alone or combined with plant growth-promoting bacteria. Mycorrhiza, 2021, 31, 655-669.	2.8	26
51	Simple microplate assays to measure iron mobilization and oxalate secretion by ectomycorrhizal tree roots. Soil Biology and Biochemistry, 2008, 40, 2460-2463.	8.8	25
52	Strigolactones Play an Important Role in Shaping Exodermal Morphology via a KAI2-Dependent Pathway. IScience, 2019, 17, 144-154.	4.1	24
53	Gene Transcription in <i>Lactarius quietus</i> - <i>Quercus petraea</i> Ectomycorrhizas from a Forest Soil. Applied and Environmental Microbiology, 2008, 74, 6598-6605.	3.1	23
54	Imbalanced Regulation of Fungal Nutrient Transports According to Phosphate Availability in a Symbiocosm Formed by Poplar, Sorghum, and Rhizophagus irregularis. Frontiers in Plant Science, 2019, 10, 1617.	3.6	23

#	Article	lF	CITATIONS
55	The effect of different nitrogen sources on the symbiotic interaction between Sorghum bicolor and Glomus intraradices : Expression of plant and fungal genes involved in nitrogen assimilation. Soil Biology and Biochemistry, 2015, 86, 159-163.	8.8	21
56	Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroomâ€forming fungi. New Phytologist, 2022, 233, 2294-2309.	7.3	21
57	Benefits from living together? Clades whose species use similar habitats may persist as a result of ecoâ€evolutionary feedbacks. New Phytologist, 2017, 213, 66-82.	7.3	18
58	Rapid nitrogen transfer in the <i><i>Sorghum bicolor-Sorghum bicolor-Glomus mosseae</i></i> arbuscular mycorrhizal symbiosis. Plant Signaling and Behavior, 2013, 8, e25229.	2.4	16
59	Mixotrophy in Pyroleae (Ericaceae) from Estonian boreal forests does not vary with light or tissue age. Annals of Botany, 2017, 120, 361-371.	2.9	16
60	Expression of major intrinsic protein genes in Sorghum bicolor roots under water deficit depends on arbuscular mycorrhizal fungal species. Soil Biology and Biochemistry, 2020, 140, 107643.	8.8	15
61	Carbon partitioning in a walnut-maize agroforestry system through arbuscular mycorrhizal fungi. Rhizosphere, 2020, 15, 100230.	3.0	14
62	Tracking the carbon source of arbuscular mycorrhizal fungi colonizing C3 and C4 plants using carbon isotope ratios (δ13C). Soil Biology and Biochemistry, 2013, 58, 341-344.	8.8	12
63	The ¹³ C content of the orchid <i>Epipactis palustris</i> (L.) Crantz responds to light as in autotrophic plants. Botany Letters, 2018, 165, 265-273.	1.4	12
64	Identification of Putative Interactors of Arabidopsis Sugar Transporters. Trends in Plant Science, 2021, 26, 13-22.	8.8	12
65	Isotopic evidence in adult oak trees of a mixotrophic lifestyle during spring reactivation. Soil Biology and Biochemistry, 2013, 58, 136-139.	8.8	10
66	Impact of soil pedogenesis on the diversity and composition of fungal communities across the California soil chronosequence of Mendocino. Mycorrhiza, 2018, 28, 343-356.	2.8	10
67	A historical perspective on mycorrhizal mutualism emphasizing arbuscular mycorrhizas and their emerging challenges. Mycorrhiza, 2021, 31, 637-653.	2.8	10
68	Mycorrhizae support oaks growing in a phylogenetically distant neighbourhood. Soil Biology and Biochemistry, 2014, 78, 204-212.	8.8	9
69	Plant identity and density can influence arbuscular mycorrhizal fungi colonization, plant growth, and reproduction investment in coculture. Botany, 2015, 93, 405-412.	1.0	9
70	Characterization of Arbuscular Mycorrhizal Communities in Roots of Vineyard Plants. Rhizosphere Biology, 2019, , 27-34.	0.6	6
71	Imaging plant tissues: advances and promising clearing practices. Trends in Plant Science, 2022, 27, 601-615.	8.8	6
72	Editorial: Transport in Plant Microbe Interactions. Frontiers in Plant Science, 2016, 7, 809.	3.6	4

#	Article	IF	CITATIONS
73	The Lotus japonicus ROP3 Is Involved in the Establishment of the Nitrogen-Fixing Symbiosis but Not of the Arbuscular Mycorrhizal Symbiosis. Frontiers in Plant Science, 2021, 12, 696450.	3.6	3
74	Proteome adaptations under contrasting soil phosphate regimes of Rhizophagus irregularis engaged in a common mycorrhizal network. Fungal Genetics and Biology, 2021, 147, 103517.	2.1	2
75	Analysis of Common Mycorrhizal Networks in Microcosms. Rhizosphere Biology, 2019, , 271-279.	0.6	1
76	New clearing protocol for tannic roots optical imaging. Trends in Plant Science, 2021, , .	8.8	1
77	Enzyme Activities of Root Tips and in situ Profiles of Soils and Rhizospheres. Soil Science Society of America Book Series, 2015, , 275-309.	0.3	ο
78	Mycorrhizas: Role in N and P cycling and nutrition of forest trees. , 2022, , 405-422.		0