Juan Pellico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8516016/publications.pdf

Version: 2024-02-01

516710 501196 32 844 16 28 h-index citations g-index papers 33 33 33 1348 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Radiolabelling of nanomaterials for medical imaging and therapy. Chemical Society Reviews, 2021, 50, 3355-3423.	38.1	145
2	Nanoparticle-Based Paramagnetic Contrast Agents for Magnetic Resonance Imaging. Contrast Media and Molecular Imaging, 2019 , 2019 , $1-13$.	0.8	86
3	Fast synthesis and bioconjugation of ⁶⁸ Ga coreâ€doped extremely small iron oxide nanoparticles for PET/MR imaging. Contrast Media and Molecular Imaging, 2016, 11, 203-210.	0.8	68
4	Regulation of Mother-to-Offspring Transmission of mtDNA Heteroplasmy. Cell Metabolism, 2019, 30, 1120-1130.e5.	16.2	66
5	Iron Oxide Nanoparticles: An Alternative for Positive Contrast in Magnetic Resonance Imaging. Inorganics, 2020, 8, 28.	2.7	45
6	One-Step Fast Synthesis of Nanoparticles for MRI: Coating Chemistry as the Key Variable Determining Positive or Negative Contrast. Langmuir, 2017, 33, 10239-10247.	3.5	43
7	Parallel Multifunctionalization of Nanoparticles: A One-Step Modular Approach for in Vivo Imaging. Bioconjugate Chemistry, 2015, 26, 153-160.	3.6	39
8	In vivo imaging of lung inflammation with neutrophil-specific 68Ga nano-radiotracer. Scientific Reports, 2017, 7, 13242.	3.3	37
9	Cu-Doped Extremely Small Iron Oxide Nanoparticles with Large Longitudinal Relaxivity: One-Pot Synthesis and in Vivo Targeted Molecular Imaging. ACS Omega, 2019, 4, 2719-2727.	3.5	35
10	Recent advances in the preparation and application of multifunctional iron oxide and liposome-based nanosystems for multimodal diagnosis and therapy. Interface Focus, 2016, 6, 20160055.	3.0	26
11	Superparamagnetic Nanoparticles for Atherosclerosis Imaging. Nanomaterials, 2014, 4, 408-438.	4.1	25
12	Dy-DOTA integrated mesoporous silica nanoparticles as promising ultrahigh field magnetic resonance imaging contrast agents. Nanoscale, 2018, 10, 21041-21045.	5.6	24
13	Recent advances in positron emission particle tracking: a comparative review. Reports on Progress in Physics, 2022, 85, 016101.	20.1	24
14	Magnetic Nanoparticles Supporting Bio-responsive T1/T2 Magnetic Resonance Imaging. Materials, 2019, 12, 4096.	2.9	19
15	Molecular Imaging with 68Ga Radio-Nanomaterials: Shedding Light on Nanoparticles. Applied Sciences (Switzerland), 2018, 8, 1098.	2.5	18
16	Unambiguous detection of atherosclerosis using bioorthogonal nanomaterials. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 26-35.	3.3	18
17	Microwave-driven synthesis of bisphosphonate nanoparticles allows in vivo visualisation of atherosclerotic plaque. RSC Advances, 2015, 5, 1661-1665.	3.6	16
18	Iron Oxide Nanoradiomaterials: Combining Nanoscale Properties with Radioisotopes for Enhanced Molecular Imaging. Contrast Media and Molecular Imaging, 2017, 2017, 1-24.	0.8	15

#	Article	IF	CITATIONS
19	Protein corona and phospholipase activity drive selective accumulation of nanomicelles in atherosclerotic plaques. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 643-650.	3.3	12
20	HAP-Multitag, a PET and Positive MRI Contrast Nanotracer for the Longitudinal Characterization of Vascular Calcifications in Atherosclerosis. ACS Applied Materials & Interfaces, 2021, 13, 45279-45290.	8.0	12
21	Biodistribution of 68/67Ga-Radiolabeled Sphingolipid Nanoemulsions by PET and SPECT Imaging. International Journal of Nanomedicine, 2021, Volume 16, 5923-5935.	6.7	10
22	Heteroplasmy of Wild-Type Mitochondrial DNA Variants in Mice Causes Metabolic Heart Disease With Pulmonary Hypertension and Frailty. Circulation, 2022, 145, 1084-1101.	1.6	10
23	Thrombo-tag, an <i>in vivo</i> formed nanotracer for the detection of thrombi in mice by fast pre-targeted molecular imaging. Nanoscale, 2020, 12, 22978-22987.	5.6	9
24	Gallium: New developments and applications in radiopharmaceutics. Advances in Inorganic Chemistry, 2021, 78, 1-35.	1.0	9
25	Delayed alveolar clearance of nanoparticles through control of coating composition and interaction with lung surfactant protein A. Materials Science and Engineering C, 2022, 134, 112551.	7.3	9
26	Assessment of regional pulmonary blood flow using 68Ga-DOTA PET. EJNMMI Research, 2017, 7, 7.	2.5	7
27	Water gated contrast switching with polymer–silica hybrid nanoparticles. Chemical Communications, 2019, 55, 8540-8543.	4.1	6
28	Quantitative assessment of myocardial blood flow and extracellular volume fraction using 68Ga-DOTA-PET: A feasibility and validation study in large animals. Journal of Nuclear Cardiology, 2020, 27, 1249-1260.	2.1	4
29	Covalent functionalization of magnetic nanoparticles for biomedical imaging. SPIE Newsroom, 0, , .	0.1	3
30	Synthesis of ⁶⁸ Ga Core-doped Iron Oxide Nanoparticles for Dual Positron Emission Tomography /(T ₁)Magnetic Resonance Imaging. Journal of Visualized Experiments, 2018, , .	0.3	3
31	Microwave-driven Synthesis of Iron Oxide Nanoparticles for Fast Detection of Atherosclerosis. Journal of Visualized Experiments, 2016, , .	0.3	1
32	Promoting high T2 contrast in Dy-doped MSNs through Curie effects. Journal of Materials Chemistry B, 2022, 10, 302-305.	5.8	0