
Birgit Vogel-Heuser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8515058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward a Graphical Modeling Tool for Response-Time Requirements Based on Soft and Hard Real-Time Capabilities in Industrial Cyber-Physical Systems. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2022, 3, 13-22.	3.9	7
2	Different complex word problems require different combinations of cognitive skills. Educational Studies in Mathematics, 2022, 109, 89-114.	2.8	5
3	MICOSE4aPS: Industrially Applicable Maturity Metric to Improve Systematic Reuse of Control Software. ACM Transactions on Software Engineering and Methodology, 2022, 31, 1-24.	6.0	4
4	BPMN++ to support managing organisational, multiteam and systems engineering aspects in cyber physical production systems design and operation. Design Science, 2022, 8, .	2.1	1
5	Boosting Extra-Functional Code Reusability in Cyber-Physical Production Systems: The Error Handling Case Study. IEEE Transactions on Emerging Topics in Computing, 2022, 10, 60-73.	4.6	5
6	A model-driven engineering design process for the development of control software for Intralogistics Systems. Automatisierungstechnik, 2022, 70, 164-180.	0.8	3
7	Towards automatic generation of functionality semantics to improve PLC software modularization. Automatisierungstechnik, 2022, 70, 181-191.	0.8	5
8	Automation software architectures in automated production systems: an industrial case study in the packaging machine industry. Production Engineering, 2022, 16, 847-856.	2.3	3
9	A CPPS-architecture and workflow for bringing agent-based technologies as a form of artificial intelligence into practice. Automatisierungstechnik, 2022, 70, 580-598.	0.8	3
10	The INCLUSIVE System: A General Framework for Adaptive Industrial Automation. IEEE Transactions on Automation Science and Engineering, 2021, 18, 1969-1982.	5.2	13
11	Evaluating Docker for Lightweight Virtualization of Distributed and Time-Sensitive Applications in Industrial Automation. IEEE Transactions on Industrial Informatics, 2021, 17, 3566-3576.	11.3	38
12	Interdisciplinary effects of technical debt in companies with mechatronic products —Âa qualitative study. Journal of Systems and Software, 2021, 171, 110809.	4.5	14
13	A General Methodology for Adapting Industrial HMIs to Human Operators. IEEE Transactions on Automation Science and Engineering, 2021, 18, 164-175.	5.2	14
14	A Host Intrusion Detection System architecture for embedded industrial devices. Journal of the Franklin Institute, 2021, 358, 210-236.	3.4	8
15	Knowledge-Based Automation for Smart Manufacturing Systems. IEEE Transactions on Automation Science and Engineering, 2021, 18, 2-4.	5.2	0
16	Model-Driven Approach for Realization of Data Collection Architectures for Cyber-Physical Systems of Systems to Lower Manual Implementation Efforts. Sensors, 2021, 21, 745.	3.8	5
17	Managing Variability and Reuse of Extra-functional Control Software in CPPS. , 2021, , .		6
18	Improve Test Quality by Applying a Clustering-based Test Planning Procedure for Customer Experience Vehicle Functions. , 2021, , .		0

#	Article	IF	CITATIONS
19	Concepts for Retrofitting Industrial Programmable Logic Controllers for Industrie 4.0 Scenarios. , 2021, , .		3
20	Product Quality Monitoring in Hydraulic Presses Using a Minimal Sample of Sensor and Actuator Data. ACM Transactions on Internet Technology, 2021, 21, 1-23.	4.4	3
21	(Re)deployment of Smart Algorithms in Cyber–Physical Production Systems Using DSL4hDNCS. Proceedings of the IEEE, 2021, 109, 542-555.	21.3	11
22	Automation platform independent multi-agent system for robust networks of production resources in industry 4.0. Journal of Intelligent Manufacturing, 2021, 32, 2023-2041.	7.3	14
23	Anforderungsbasierter Test für die Validierung komplexer Automatisierungssysteme. Automatisierungstechnik, 2021, 69, 417-429.	0.8	3
24	A Metric and Visualization of Completeness in Multi-Dimensional Data Sets of Sensor and Actuator Data Applied to a Condition Monitoring Use Case. Applied Sciences (Switzerland), 2021, 11, 5022.	2.5	0
25	Supporting Maintenance of Variant-Rich Automated Production Systems by Tracing of Variable Signal Paths in Electrical CAD. , 2021, , .		0
26	Cyber-physical production systems for SMEs-A generic multi agent based architecture and case study. , 2021, , .		3
27	Frequency and Impact of Technical Debt Characteristics in Companies Producing Mechatronic Products. , 2021, , .		3
28	An ontology-based approach for preprocessing in machine learning. , 2021, , .		2
29	Potential for combining semantics and data analysis in the context of digital twins. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200368.	3.4	12
30	Digital Technologies and Automation: The Human and Eco-Centered Foundations for the Factory of the Future [TC Spotlight]. IEEE Robotics and Automation Magazine, 2021, 28, 174-179.	2.0	6
31	Custom-tailored clone detection for IEC 61131-3 programming languages. Journal of Systems and Software, 2021, 182, 111070.	4.5	12
32	Measuring the Overall Complexity of Graphical and Textual IEC 61131-3 Control Software. IEEE Robotics and Automation Letters, 2021, 6, 5784-5791.	5.1	8
33	Hierarchical Reinforcement Learning for Waypoint-based Exploration in Robotic Devices. , 2021, , .		4
34	Integration of a formal specification approach into CPPS engineering workflow for machinery validation. , 2021, , .		0
35	Industry 4.0 and Industry 5.0—Inception, conception and perception. Journal of Manufacturing Systems, 2021, 61, 530-535.	13.9	686
36	Modelling Industrial Technical Compromises in Production Systems with Causal Loop Diagrams. IFAC-PapersOnLine, 2021, 54, 212-219.	0.9	4

#	Article	IF	CITATIONS
37	Modelling technical compromises in electronics manufacturing with BPMN+TD – an industrial use case. IFAC-PapersOnLine, 2021, 54, 912-917.	0.9	3
38	Leveraging the Asset Administration Shell for Agent-Based Production Systems. IFAC-PapersOnLine, 2021, 54, 837-844.	0.9	19
39	Modular Production Control with Multi-Agent Deep Q-Learning. , 2021, , .		7
40	Modelling Production Workflows in Automotive Manufacturing. , 2021, , .		3
41	Towards a Quantitative Time Analysis and Decision Support for the Deployment of Al-Algorithms in Distributed Cyber-Physical Production Systems. , 2021, , .		1
42	An International Case Study on Control Software Development in Large-Scale Plant Manufacturing Companies of One Industrial Sector at Different Locations. , 2021, , .		3
43	Decision Graph and Matrix Visualization during Interdisciplinary Engineering Collaboration. , 2021, , .		Ο
44	Modellkonsistenz in der Entwicklung von Materialflusssystemen. ZWF Zeitschrift Fuer Wirtschaftlichen Fabrikbetrieb, 2021, 116, 820-825.	0.3	3
45	An approach for leveraging Digital Twins in agent-based production systems. Automatisierungstechnik, 2021, 69, 1026-1039.	0.8	17
46	Leveraging Digital Twins for Compatibility Checks in Production Systems Engineering. , 2021, , .		4
47	Low-entry Barrier Multi-Agent System for Small- and Middle-sized Enterprises in the Sector of Automated Production Systems. , 2021, , .		3
48	Guest Editorial Special Section on the 2018 Conference on Automation Science and Engineering (CASE). IEEE Transactions on Automation Science and Engineering, 2020, 17, 1182-1183.	5.2	0
49	Visual Leakage Inspection in Chemical Process Plants Using Thermographic Videos and Motion Pattern Detection. Sensors, 2020, 20, 6659.	3.8	1
50	Deep Q-learning for the Control of PLC-based Automated Production Systems. , 2020, , .		5
51	Identifying Runtime Issues in Object-Oriented IEC 61131-3-Compliant Control Software using Metrics. , 2020, , .		3
52	Challenges for the digital transformation of development processes in engineering. , 2020, , .		3
53	Safe Three-Dimensional Assembly Line Design for Robots Based on Combined Multiobjective Approach. Applied Sciences (Switzerland), 2020, 10, 8844.	2.5	2
54	Graphical modeling notation for data collection and analysis architectures in cyber-physical systems of systems. Journal of Industrial Information Integration, 2020, 19, 100155.	6.4	10

#	Article	IF	CITATIONS
55	Interdisciplinary engineering of cyber-physical production systems: highlighting the benefits of a combined interdisciplinary modelling approach on the basis of an industrial case. Design Science, 2020, 6, .	2.1	15
56	Overview and classification of approaches for the simulation of networked control systems. Automatisierungstechnik, 2020, 68, 151-165.	0.8	1
57	The role of spatial, verbal, numerical, and general reasoning abilities in complex word problem solving for young female and male adults. Mathematics Education Research Journal, 2020, 32, 189-211.	1.7	19
58	Design, Application, and Evaluation of a Multiagent System in the Logistics Domain. IEEE Transactions on Automation Science and Engineering, 2020, , 1-14.	5.2	8
59	A Knowledge Based System for Managing Heterogeneous Sources of Engineering Information. IFAC-PapersOnLine, 2020, 53, 10511-10517.	0.9	4
60	Condition monitoring for the Binder Jetting AM-process with machine learning approaches. , 2020, , .		5
61	A Cross-disciplinary Model-Based Systems Engineering Workflow of Automated Production Systems Leveraging Socio-technical Aspects. , 2020, , .		7
62	Towards Providing Feasibility Feedback in Intralogistics Using a Knowledge Graph. , 2020, , .		4
63	Multi-agent systems to enable Industry 4.0. Automatisierungstechnik, 2020, 68, 445-458.	0.8	21
64	Applying Dynamic Programming to Test Case Scheduling for Automated Production Systems. Communications in Computer and Information Science, 2020, , 3-20.	0.5	2
65	Remote Operations. Springer Reference Technik, 2020, , 1-8.	0.0	0
66	Causal Inference in Industrial Alarm Data by Timely Clustered Alarms and Transfer Entropy. , 2020, , .		10
67	Analysis of metamodels for modelâ€based production automation system engineering. IET Collaborative Intelligent Manufacturing, 2020, 2, 45-55.	3.3	4
68	Supporting troubleshooting in machine and plant manufacturing by backstepping of PLC-control software. , 2020, , .		0
69	Using Eye Tracking to Assess User Behavior in Virtual Training. Advances in Intelligent Systems and Computing, 2020, , 341-347.	0.6	1
70	Smart Data Architekturen. Springer Reference Technik, 2020, , 1-25.	0.0	0
71	BPMN+I to support decision making in innovation management for automated production systems including technological, multi team and organizational aspects. IFAC-PapersOnLine, 2020, 53, 10891-10898.	0.9	7
72	Datenqualitäin CPPS. Springer Reference Technik, 2020, , 1-11.	0.0	0

#	Article	IF	CITATIONS
73	Conception and Development of a Support System for Assembly Technology. Lecture Notes in Computer Science, 2020, , 639-657.	1.3	Ο
74	Handover Abilities in Reconfigurable Material Flow Systems for Topology Computing. Lecture Notes in Logistics, 2020, , 451-461.	0.8	1
75	Comparison of Communication Technologies for Industrial Middlewares and DDS-based Realization. IFAC-PapersOnLine, 2020, 53, 10935-10942.	0.9	2
76	A concept for fault diagnosis combining Case-Based Reasoning with topological system models. IFAC-PapersOnLine, 2020, 53, 8217-8224.	0.9	2
77	Formalization of Design Patterns and Their Automatic Identification in PLC Software for Architecture Assessment. IFAC-PapersOnLine, 2020, 53, 7819-7826.	0.9	8
78	Elektronische Datenverarbeitung – Agentenbasiertes Steuern. , 2020, , 143-150.		0
79	Automatisierte Generierung von Sicherheitstests für variantenreiche Produktionssysteme mittels ECAD. Automatisierungstechnik, 2020, 68, 375-386.	0.8	2
80	Relational Test Tables. , 2020, , .		2
81	Machine-Learning Models on the Edge to reduce Data Volume in Wide-Area Networks between various Production Sites. , 2020, , .		4
82	Current Challenges in the Design of Drives for Robot-Like Systems. , 2020, , .		7
83	Variability Visualization of IEC 61131-3 Legacy Software for Planned Reuse. , 2020, , .		3
84	A Framework for Automatic Initialization of Multi-Agent Production Systems Using Semantic Web Technologies. IEEE Robotics and Automation Letters, 2019, 4, 4330-4337.	5.1	25
85	Cyber-physical production systems architecture based on multi-agent's design pattern—comparison of selected approaches mapping four agent patterns. International Journal of Advanced Manufacturing Technology, 2019, 105, 4005-4034.	3.0	74
86	Reverse Engineering on changed Functional Specification Documents for Model-Based Requirements Engineering. , 2019, , .		1
87	Key Directions for Industrial Agent Based Cyber-Physical Production Systems. , 2019, , .		29
88	Learning from Evolution for Evolution. , 2019, , 255-308.		1
89	Effective Innovation Implementation of Mechatronic Product-Service Systems Considering Socio-Technical Aspects. Proceedings of the Design Society International Conference on Engineering Design, 2019, 1, 3051-3060.	0.6	2
90	Applying knowledge bases to make factories smarter. Automatisierungstechnik, 2019, 67, 504-517.	0.8	10

#	Article	IF	CITATIONS
91	A Pragmatic Approach Towards Leveraging Employee Competences by Use of Semantic Web Technologies. Proceedings of the Design Society International Conference on Engineering Design, 2019, 1, 1045-1054.	0.6	1
92	Inconsistency Management in Heterogeneous Models - An Approach for the Identification of Model Dependencies and Potential Inconsistencies. Proceedings of the Design Society International Conference on Engineering Design, 2019, 1, 3661-3670.	0.6	8
93	Dynamic Resource Task Negotiation to Enable Product Agent Exploration in Multi-Agent Manufacturing Systems. IEEE Robotics and Automation Letters, 2019, 4, 2854-2861.	5.1	27
94	An Adaptive Virtual Training System Based on Universal Design. IFAC-PapersOnLine, 2019, 51, 335-340.	0.9	15
95	Analyzing Variability in Automation Software with the Variability Analysis Toolkit. , 2019, , .		13
96	Scientific fundamentals of Industry 4.0. Automatisierungstechnik, 2019, 67, 502-503.	0.8	2
97	Applying Semantic Web Technologies to Provide Feasibility Feedback in Early Design Phases. Journal of Computing and Information Science in Engineering, 2019, 19, .	2.7	8
98	Technical Debt as indicator for weaknesses in engineering of automated production systems. Production Engineering, 2019, 13, 273-282.	2.3	12
99	System architectures for Industrie 4.0 applications. Production Engineering, 2019, 13, 247-257.	2.3	64
100	Application of a multi-disciplinary design approach in a mechatronic engineering toolchain. Automatisierungstechnik, 2019, 67, 246-269.	0.8	7
101	Managing inter-model inconsistencies in model-based systems engineering: Application in automated production systems engineering. Journal of Systems and Software, 2019, 153, 105-134.	4.5	41
102	Leveraging inconsistency management in the multiâ€view collaborative modelling of cyberâ€physical production systems. IET Collaborative Intelligent Manufacturing, 2019, 1, 126-129.	3.3	3
103	Increasing Awareness for Potential Technical Debt in the Engineering of Production Systems. , 2019, , .		3
104	Data-Driven Condition Monitoring of Control Valves in Laboratory Test Runs. , 2019, , .		0
105	Concept and Evaluation of a Technology-independent Data Collection Architecture for Industrial Automation. , 2019, , .		5
106	Similarity Analysis of Control Software Using Graph Mining. , 2019, , .		4
107	On the Preservation of the Trust by Regression Verification of PLC software for Cyber-Physical Systems of Systems. , 2019, , .		2
108	Adapting Virtual Training Systems for Industrial Procedures to the Needs of Older People. , 2019, , .		1

#	Article	IF	CITATIONS
109	An Industrial Evaluation of Test Prioritisation Criteria and Metrics. , 2019, , .		3
110	A Qualitative Study of Industry 4.0 Use Cases and their Implementation in Electronics Manufacturing. , 2019, , .		1
111	Automatic Visual Leakage Inspection by Using Thermographic Video and Image Analysis. , 2019, , .		2
112	Exploring Docker Containers for Time-sensitive Applications in Networked Control Systems. , 2019, , .		5
113	Analyzing Students' Mental Models of Technical Systems. , 2019, , .		3
114	An Approach to Efficient Test Scheduling for Automated Production Systems. , 2019, , .		5
115	Investigating Mental Models of Mechanical Engineering Students. , 2019, , .		2
116	A Multi-Agent Approach for Hybrid Intrusion Detection in Industrial Networks: Design and Implementation. , 2019, , .		3
117	PPR Based Cost Estimation of Changes in Automated Production Systems. , 2019, , .		0
118	Effiziente Initialisierung von Steuerungsparametern für Cyber-Physische Produktionssysteme via Multi-Ebenen-Optimierung. Automatisierungstechnik, 2019, 67, 477-489.	0.8	0
119	Using Real-time Feedback in a Training System for Manual Procedures. IFAC-PapersOnLine, 2019, 52, 241-246.	0.9	6
120	Introduction and Evaluation of Complexity Metrics for Network-based, Graphical IEC 61131-3 Programming Languages. , 2019, , .		8
121	Herausforderungen in der interdisziplinÄ r en Entwicklung von Cyber-Physischen Produktionssystemen. Automatisierungstechnik, 2019, 67, 445-454.	0.8	3
122	Graphical Modeling of Communication Architectures in Network Control Systems with Traceability to Requirements. , 2019, , .		3
123	Automatic Synchronization of Mechanical CAD Models and a SysML-based Mechatronic Model using AutomationML. , 2019, , .		4
124	Visualization of Variability Analysis of Control Software From Industrial Automation Systems. , 2019, ,		1
125	The Nature of Software Evolution. , 2019, , 9-20.		3
126	Online parameter estimation for cyber-physical production systems based on mixed integer nonlinear programming, process mining and black-box optimization techniques. Automatisierungstechnik, 2018, 66, 331-343.	0.8	10

#	Article	IF	CITATIONS
127	Increasing system test coverage in production automation systems. Control Engineering Practice, 2018, 73, 171-185.	5.5	10
128	Analyzing the industrial scalability of backwards compatible intralogistics systems. Production Engineering, 2018, 12, 297-307.	2.3	1
129	Industrially Applicable System Regression Test Prioritization in Production Automation. IEEE Transactions on Automation Science and Engineering, 2018, 15, 1839-1851.	5.2	19
130	Automatic Parameter Estimation for Reusable Software Components of Modular and Reconfigurable Cyber-Physical Production Systems in the Domain of Discrete Manufacturing. IEEE Transactions on Industrial Informatics, 2018, 14, 275-282.	11.3	48
131	Change analysis on evolving PLC software in automated production systems. Automatisierungstechnik, 2018, 66, 806-818.	0.8	2
132	A Testbed for Evaluating QoS of Different Classes of Industrial Ethernet Protocols Based on Raspberry Pi. , 2018, , .		5
133	Towards verified continuous integration in the engineering of automated production systems. Automatisierungstechnik, 2018, 66, 784-794.	0.8	2
134	Identifying Design Pattern for Agent Based Production System Control. , 2018, , .		1
135	Bringing Automated Intelligence to Cyber-Physical Production Systems in Factory Automation. , 2018, , \cdot		10
136	Consistent Automated Production Systems Modeling in a Multi-disciplinary Engineering Workflow. , 2018, , .		8
137	Achieving delta description of the control software for an automated production system evolution. , 2018, , .		1
138	Data-Driven Approach to Support Experts in the Identification of Operational States in Industrial Process Plants. , 2018, , .		3
139	A Cross-Disciplinary Language for Change Propagation Rules. , 2018, , .		2
140	System evolution through semi-automatic elicitation of security requirements: A Position Paper âŽ âZResearch supported by the DFG (German Research Foundation) in Priority Programme SPP1593: Design for Future - Managed Software Evolution (VO 937/20-2 and JU 2734/2-2) IFAC-PapersOnLine, 2018, 51, 64-69.	0.9	2
141	Technical Debt indication in PLC Code for automated Production Systems: Introducing a Domain Specific Static Code Analysis Tool. IFAC-PapersOnLine, 2018, 51, 70-75.	0.9	2
142	Improving the software engineering of brew house plants by modularizing the control software. IFAC-PapersOnLine, 2018, 51, 241-248.	0.9	0
143	Integrating Haptic Interaction into a Virtual Training System for Manual Procedures in Industrial Environments. IFAC-PapersOnLine, 2018, 51, 60-65.	0.9	8
144	Key maturity indicators for module libraries for PLC-based control software in the domain of automated Production Systems. IFAC-PapersOnLine, 2018, 51, 1610-1617.	0.9	9

#	Article	IF	CITATIONS
145	Platform Independent Multi-Agent System for Robust Networks of Production Systems. IFAC-PapersOnLine, 2018, 51, 1261-1268.	0.9	16
146	Graph-based Grouping of Statistical Dependent Alarms in Automated Production Systems. IFAC-PapersOnLine, 2018, 51, 395-400.	0.9	3
147	Cross-disciplinary and cross-life-cycle-phase Technical Debt in automated Production Systems: two industrial case studies and a survey. IFAC-PapersOnLine, 2018, 51, 1192-1199.	0.9	12
148	Methodological Approach for the Evaluation of an Adaptive and Assistive Human-Machine System. , 2018, , .		1
149	Integrating Hierarchical Task Analysis into Model-Based System Design using Airbus XHTA and IBM Rational Rhapsody. , 2018, , .		2
150	Methods to support the evolution of Cyber Physical Production Systems. Automatisierungstechnik, 2018, 66, 781-783.	0.8	0
151	A Qualitative Study of Variability Management of Control Software for Industrial Automation Systems. , 2018, , .		25
152	Applicability of generalized test tables: a case study using the manufacturing system demonstrator xPPU. Automatisierungstechnik, 2018, 66, 834-848.	0.8	7
153	Towards Industrial Intrusion Prevention Systems: A Concept and Implementation for Reactive Protection. Applied Sciences (Switzerland), 2018, 8, 2460.	2.5	5
154	Resolving Inconsistencies Optimally in the Model-Based Development of Production Systems. , 2018, , .		7
155	Design Parameter Optimization of Automated Production Systems. , 2018, , .		4
156	Automated Generation of Modular PLC Control Software from P&ID Diagrams in Process Industry. , 2018, , .		6
157	Cyclic Management of Innovative PSS Changes: An Integrated and Interdisciplinary Engineering View. , 2018, , .		1
158	Alarm Flood Analysis by Hierarchical Clustering of the Probabilistic Dependency between Alarms. , 2018, , .		2
159	Preventing Technical Debt For Automated Production System Maintenance Using Systematic Change Effort Estimation With Considering Contingent Cost. , 2018, , .		3
160	Maintainability and evolvability of control software in machine and plant manufacturing —ÂAn industrial survey. Control Engineering Practice, 2018, 80, 157-173.	5.5	29
161	A model-based framework for increasing the interdisciplinary design of mechatronic production systems. Journal of Engineering Design, 2018, 29, 617-643.	2.3	26
162	Architecture-based change impact analysis in cross-disciplinary automated production systems. Journal of Systems and Software, 2018, 146, 167-185.	4.5	15

#	Article	IF	CITATIONS
163	Information Retrieval from Redlined Circuit Diagrams and its Model-Based Representation for Automated Engineering. , 2018, , .		5
164	A Model-Based Approach to Calculate Maintainability Task Lists of PLC Programs for Factory Automation. , 2018, , .		0
165	Model-based development of a multi-agent system for controlling material flow systems. Automatisierungstechnik, 2018, 66, 438-448.	0.8	13
166	Supporting evolution of automated material flow systems as part of CPPS by using coupled meta models. , 2018, , .		6
167	Maturity variations of PLC-based control software within a company and among companies from the same industrial sector. , 2018, , .		7
168	Interaction in Virtual Environments - How to Control the Environment by Using VR-Glasses in the Most Immersive Way. Lecture Notes in Computer Science, 2018, , 183-201.	1.3	4
169	Modularity and architecture of PLC-based software for automated production systems: An analysis in industrial companies (journal-first abstract). , 2018, , .		1
170	Concept and Implementation of a Software Architecture for Unifying Data Transfer in Automated Production Systems. Technologien Fulr Die Intelligente Automation, 2018, , 1-17.	0.5	6
171	Improved alarm flood analysis by cluster identification and alarm assignment. Automatisierungstechnik, 2018, 66, 647-655.	0.8	1
172	Model-based training of manual procedures in automated production systems. Mechatronics, 2018, 55, 212-223.	3.3	8
173	Assessment of variance & distribution in data for effective use of statistical methods for product quality prediction. Automatisierungstechnik, 2018, 66, 344-355.	0.8	3
174	Elektronische Datenverarbeitung – Agentenbasiertes Steuern. , 2018, , 2029-2033.		0
175	1. Dynamische Anbindung und automatische Konfiguration modularer Intralogistiksysteme mittels Agenten. , 2018, , 1-20.		2
176	Softwareagenten in der Industrie 4.0. , 2018, , .		3
177	A flexible architecture for data mining from heterogeneous data sources in automated production systems. , 2017, , .		24
178	Model-document coupling in aPS engineering: Challenges and requirements engineering use case. , 2017, , .		5
179	Modularity and architecture of PLC-based software for automated production Systems: An analysis in industrial companies. Journal of Systems and Software, 2017, 131, 35-62.	4.5	49
180	Interdisciplinary product lines to support the engineering in the machine manufacturing domain. International Journal of Production Research, 2017, 55, 3701-3714.	7.5	7

#	Article	IF	CITATIONS
181	A configurable partial-order planning approach for field level operation strategies of PLC-based industry 4.0 automated manufacturing systems. Engineering Applications of Artificial Intelligence, 2017, 66, 128-144.	8.1	25
182	Specification, Verification and Design of Evolving Automotive Software. , 2017, , .		2
183	Generation of monitoring functions in production automation using test specifications. , 2017, , .		3
184	An agent-based approach for dependable planning of production sequences in automated production systems. Automatisierungstechnik, 2017, 65, 766-778.	0.8	14
185	A Light-Weight Fault Injection Approach to Test Automated Production System PLC Software in Industrial Practice. Control Engineering Practice, 2017, 58, 12-23.	5.5	20
186	Metrics for software quality in automated production systems as an indicator for technical debt. , 2017, , .		16
187	Metrics for the evaluation of data quality of signal data in industrial processes. , 2017, , .		14
188	Integration of safety aspects in modeling of Networked Control Systems. , 2017, , .		2
189	Scalable cloud based semantic code analysis to support continuous integration of industrial PLC code. , 2017, , .		5
190	Automatic generation of shop floor gateway configurations from systems modeling language. , 2017, , .		3
191	Modeling as the basis for innovation cycle management of PSS: Making use of interdisciplinary models. , 2017, , .		6
192	Adapting the concept of technical debt to software of automated Production Systems focusing on fault handling, mode of operation and safety aspects. IFAC-PapersOnLine, 2017, 50, 5887-5894.	0.9	6
193	Maintenance effort estimation with KAMP4aPS for cross-disciplinary automated PLC-based Production Systems - a collaborative approach. IFAC-PapersOnLine, 2017, 50, 4360-4367.	0.9	8
194	Agenten und ZuverlÃ s sigkeit – ein Widerspruch?. Automatisierungstechnik, 2017, 65, 719-720.	0.8	0
195	Data-driven model development for quality prediction in forming technology. , 2017, , .		8
196	Feature-based systematic approach development for inconsistency resolution in automated production system design. , 2017, , .		6
197	A priori test coverage estimation for automated production systems: Using generated behavior models for coverage calculation. , 2017, , .		1
198	Failure mode classification for control valves for supporting data-driven fault detection. , 2017, , .		9

#	Article	IF	CITATIONS
199	Hidden Markov model-based predictive maintenance in semiconductor manufacturing: A genetic algorithm approach. , 2017, , .		7
200	A virtual training system for aging employees in machine operation. , 2017, , .		8
201	A tiered security analysis of Industrial Control System Devices. , 2017, , .		3
202	Current status of software development in industrial practice: Key results of a large-scale questionnaire. , 2017, , .		6
203	Towards modern inclusive factories: A methodology for the development of smart adaptive human-machine interfaces. , 2017, , .		39
204	Generalized test tables: A powerful and intuitive specification language for reactive systems. , 2017, , .		8
205	Towards the co-evolution of industrial products and its production systems by combining models from development and hardware/software deployment in cyber-physical systems. Production Engineering, 2017, 11, 687-694.	2.3	13
206	Increasing adaptability of automation control software for automated material flow systems via software modularization. , 2017, , .		0
207	Management of Inconsistencies in Domain-Spanning Models – An Interactive Visualization Approach. Lecture Notes in Computer Science, 2017, , 71-87.	1.3	2
208	Making Implicit Knowledge Explicit – Acquisition of Plant Staff's Mental Models as a Basis for Developing a Decision Support System. Communications in Computer and Information Science, 2017, , 358-365.	0.5	6
209	Modellbasierte Softwareagenten als Konnektoren zur Kopplung von heterogenen Cyber-Physischen Produktionssystemen. , 2017, , 407-416.		0
210	Agentenbasierte dynamische Rekonfiguration von vernetzten intelligenten Produktionsanlagen. , 2017, , 31-44.		4
211	Agentenorientierte Verknüpfung existierender heterogener automatisierter Produktionsanlagen durch mobile Roboter zu einem Industrie-4.0-System. , 2017, , 93-118.		1
212	Diagnose von Inkonsistenzen in heterogenen Engineeringdaten. , 2017, , 315-334.		0
213	Agentenbasierte Steuerung von Logistiksystemen. Atp Magazin, 2017, 59, 16-26.	0.5	1
214	Improving Transferability Between Different Engineering Stages in the Development of Automated Material Flow Modules. IEEE Transactions on Automation Science and Engineering, 2016, 13, 1422-1432.	5.2	11
215	Towards a common classification of changes for information and automated production systems as precondition for maintenance effort estimation. , 2016, , .		1
216	Automated test suite generation to test modular designed packaging machines using Fault Injection and a simulink-based simulation approach. , 2016, , .		1

#	Article	IF	CITATIONS
217	Semantic integration of multi-agent systems using an OPC UA information modeling approach. , 2016, , .		14
218	An agent approach to flexible automated production systems based on discrete and continuous reasoning. , 2016, , .		12
219	Variability management for automated production systems using product lines and feature models. , 2016, , .		6
220	Data-driven valve diagnosis to increase the overall equipment effectiveness in process industry. , 2016, , .		9
221	System regression test prioritization in factory automation: Relating functional system tests to the tested code using field data. , 2016, , .		5
222	A multivariate process capability index that complies with industry requirements. , 2016, , .		3
223	A model-based failure recovery approach for automated production systems combining SysML and industrial standards. , 2016, , .		11
224	Supporting Operators in Process Control Tasks—Benefits of Interactive 3-D Visualization. IEEE Transactions on Human-Machine Systems, 2016, 46, 895-907.	3.5	9
225	Challenges in integrating requirements in model based development processes in the machinery and plant building industry. , 2016, , .		2
226	Modularized control algorithm for automated material handling systems. , 2016, , .		6
227	Konzept eines wissensbasierten Frameworks zur Spezifikation und Diagnose von Inkonsistenzen in mechatronischen Modellen. Automatisierungstechnik, 2016, 64, .	0.8	2
228	A comprehensive approach for managing inter-model inconsistencies in automated production systems engineering. , 2016, , .		46
229	Optimizing modular and reconfigurable cyber-physical production systems by determining parameters automatically. , 2016, , .		7
230	Summer school on intelligent agents in automation: Hands-on educational experience on deploying industrial agents. , 2016, , .		6
231	Guided semi-automatic system testing in factory automation. , 2016, , .		8
232	Increasing Dependability by Agent-Based Model-Checking During Run-Time. Studies in Computational Intelligence, 2016, , 159-167.	0.9	0
233	A verification-supported evolution approach to assist software application engineers in industrial factory automation. , 2016, , .		7
234	Interdisciplinary Communication and Comprehension in Factory Automation Engineering - A Concept for an Immersive Virtual Environment. IFAC-PapersOnLine, 2016, 49, 227-232.	0.9	8

#	Article	IF	CITATIONS
235	Model based design of knowledge bases in multi agent systems for enabling automatic reconfiguration capabilities of material flow modules. , 2016, , .		20
236	Analysis framework for evaluating PLC software: An application of Semantic Web technologies. , 2016, , .		9
237	Design, modelling, simulation and integration of cyber physical systems: Methods and applications. Computers in Industry, 2016, 82, 273-289.	9.9	205
238	Increasing flexibility of modular automated material flow systems: A meta model architecture. IFAC-PapersOnLine, 2016, 49, 1543-1548.	0.9	21
239	Modellability of System Characteristics - Using Formal Mark-up Languages for Change Capability by Design. Procedia CIRP, 2016, 52, 118-123.	1.9	1
240	Guest Editorial Industry 4.0–Prerequisites and Visions. IEEE Transactions on Automation Science and Engineering, 2016, 13, 411-413.	5.2	247
241	Cross-discipline modeling and its contribution to automation. Automatisierungstechnik, 2016, 64, .	0.8	3
242	Fault Handling in PLC-Based Industry 4.0 Automated Production Systems as a Basis for Restart and Self-Configuration and Its Evaluation. Journal of Software Engineering and Applications, 2016, 09, 1-43.	1.1	41
243	Applications of Semantic Web Technologies for the Engineering of Automated ProductionÂSystems—Three Use Cases. , 2016, , 353-382.		2
244	From Selling Products to Providing User Oriented Product-Service Systems – Exploring Service Orientation in the German Machine and Plant Manufacturing Industry. IFIP Advances in Information and Communication Technology, 2016, , 280-290.	0.7	0
245	Selected challenges of software evolution for automated production systems. , 2015, , .		21
246	Engineering Support in the Machine Manufacturing Domain through Interdisciplinary Product Lines: An Applicability Analysis. IFAC-PapersOnLine, 2015, 48, 211-218.	0.9	12
247	Towards Effective Management of Inconsistencies in Model-Based Engineering of Automated Production Systems. IFAC-PapersOnLine, 2015, 48, 916-923.	0.9	56
248	Integrating Lab-size Automation Plants into a Web-based E-learning Environment for Teaching C Programming in Teams. IFAC-PapersOnLine, 2015, 48, 295-300.	0.9	2
249	Towards interdisciplinary variability modeling for automated production systems: Opportunities and challenges when applying delta modeling: A case study. , 2015, , .		10
250	An Assessment of the Potentials and Challenges in Future Approaches for Automation Software. , 2015, , 137-152.		3
251	InterdisziplinÄ r er Produktlinienansatz zur Steigerung der Wiederverwendung. Automatisierungstechnik, 2015, 63, .	0.8	6
252	Applicability of Technical Debt as a Concept to Understand Obstacles for Evolution of Automated Production Systems. , 2015, , .		16

#	Article	IF	CITATIONS
253	Towards finding the appropriate level of abstraction to model and verify automated production systems in discrete event simulation. , 2015, , .		1
254	Evaluating reconfiguration abilities of automated production systems in Industrie 4.0 with metrics. , 2015, , .		7
255	Enabling flexible automation system hardware: Dynamic reconfiguration of a real-time capable field-bus. , 2015, , .		8
256	Bridging the gap between discrete and continuous simulation of logistic systems in production based on the Modelica modeling language. , 2015, , .		0
257	Challenges for maintenance of PLC-software and its related hardware for automated production systems: Selected industrial Case Studies. , 2015, , .		30
258	Contribution of personal factors for a better understanding of the gender effects of freshmen in mechanical engineering. , 2015, , .		2
259	Reconfiguration architecture for updates of automation systems during operation. , 2015, , .		8
260	Model driven engineering of manufacturing execution systems using a formal specification. , 2015, , .		10
261	Configuration of PLC software for automated warehouses based on reusable components- an industrial case study. , 2015, , .		7
262	Agents enabling cyber-physical production systems. Automatisierungstechnik, 2015, 63, 777-789.	0.8	64
263	Agentenbasierte dynamische Rekonfiguration von vernetzten intelligenten Produktionsanlagen. , 2015, , 1-14.		1
264	A Hybrid Traffic Simulation Framework for Evaluating Predictive ICT Approaches in Modern Vehicles. , 2015, , .		0
265	Architecture-Based Assessment and Planning of Software Changes in Information and Automated Production Systems State of the Art and Open Issues. , 2015, , .		5
266	Technical debt in Automated Production Systems. , 2015, , .		18
267	An Analysis of Challenges and State of the Art for Modular Engineering in the Machine and Plant Manufacturing Domain. IFAC-PapersOnLine, 2015, 48, 87-92.	0.9	7
268	Proving equivalence between control software variants for Programmable Logic Controllers. , 2015, ,		5
269	Model-based quality assurance in machine and plant automation using sequence diagrams — A comparison of two research approaches. , 2015, , .		3
270	Enhancing a model-based engineering approach for distributed manufacturing automation systems with characteristics and design patterns. Journal of Systems and Software, 2015, 101, 221-235.	4.5	52

#	Article	IF	CITATIONS
271	Design for future: managed software evolution. Computer Science - Research and Development, 2015, 30, 321-331.	2.7	15
272	Towards a taxonomy of errors in PLC programming. Cognition, Technology and Work, 2015, 17, 417-430.	3.0	11
273	Criteria-based alarm flood pattern recognition using historical data from automated production systems (aPS). Mechatronics, 2015, 31, 89-100.	3.3	51
274	Agent-Based Control of Production Systems—and Its Architectural Challenges. , 2015, , 153-170.		7
275	Evolution of software in automated production systems: Challenges and research directions. Journal of Systems and Software, 2015, 110, 54-84.	4.5	274
276	Coupling simulation and model checking to examine selected mechanical constraints of automated production systems. , 2015, , .		4
277	A cybernetic multi-agent approach for a micro grid in rural areas. , 2015, , .		1
278	Data integration in manufacturing industry: Model-based integration of data distributed from ERP to PLC. , 2015, , .		8
279	Changeability of Manufacturing Automation Systems using an Orchestration Engine for Programmable Logic Controllers. IFAC-PapersOnLine, 2015, 48, 1573-1579.	0.9	10
280	A comparison of inconsistency management approaches using a mechatronic manufacturing system design case study. , 2015, , .		39
281	A Model-Driven Approach on Object-Oriented PLC Programming for Manufacturing Systems with Regard to Usability. IEEE Transactions on Industrial Informatics, 2015, 11, 790-800.	11.3	38
282	Review of Model-Based Testing Approaches in Production Automation and Adjacent Domains—Current Challenges and Research Gaps. Journal of Software Engineering and Applications, 2015, 08, 499-519.	1.1	36
283	An Orchestration Engine for Services-Oriented Field Level Automation Software. Studies in Computational Intelligence, 2015, , 71-80.	0.9	5
284	Diagnose von Inkonsistenzen in heterogenen Engineeringdaten. , 2015, , 1-21.		0
285	Automatic Generation of Integrated Process Data Visualizations Using Human Knowledge. Lecture Notes in Computer Science, 2015, , 488-498.	1.3	2
286	Agentenorientierte Verknüpfung existierender heterogener automatisierter Produktionsanlagen durch mobile Roboter zu einem Industrie-4.0-System. , 2015, , 1-25.		2
287	Modellbasierte Softwareagenten als Konnektoren zur Kopplung von heterogenen Cyber-Physischen Produktionssystemen. , 2015, , 1-10.		Ο
288	Benefit of an e-learning environment including real and simulated plants for teaching mechanical engineering freshman in programming C. , 2014, , .		3

#	Article	IF	CITATIONS
289	Coupling heterogeneous production systems by a multi-agent based cyber-physical production system. , 2014, , .		74
290	Extension of Electronic Device Description Language for analysing change impacts in modular automation in manufacturing plants. Journal of Engineering Design, 2014, 25, 125-149.	2.3	4
291	Consistent engineering information model for mechatronic components in production automation engineering. , 2014, , .		6
292	Challenges of Parallel Evolution in Production Automation Focusing on Requirements Specification and Fault Handling. Automatisierungstechnik, 2014, 62, 758-770.	0.8	25
293	Interface Behavior Modeling for Automatic Verification of Industrial Automation Systems' Functional Conformance. Automatisierungstechnik, 2014, 62, 815-825.	0.8	23
294	Co-evolution and reuse of automation control and simulation software: Identification and definition of modification actions and strategies. , 2014, , .		2
295	Interaction of model-driven engineering and signal-based online monitoring of production systems: Towards Requirement-aware evolution. , 2014, , .		3
296	Female characteristics and requirements in software engineering in mechanical engineering. , 2014, , .		8
297	Supporting the cross-disciplinary development of product-service systems through model transformations. , 2014, , .		4
298	An approach for discovering and analyzing implicit architectural designs in field level automation software. , 2014, , .		0
299	Redeployment of control software during runtime for modular automation systems taking real-time and distributed I/O into consideration. , 2014, , .		4
300	Softwaredesign für die Zukunft – geplante und gemanagte Softwareevolution. Automatisierungstechnik, 2014, 62, 755-757.	0.8	1
301	Delta modeling for variant-rich and evolving manufacturing systems. , 2014, , .		18
302	Towards industrial application of model-driven platform-independent PLC programming using UML. , 2014, , .		8
303	Integration of distributed hybrid multi-agent systems into an industrial IT environment: Improving interconnectivity of industrial IT systems to the shop floor. , 2014, , .		4
304	Quality despite quantity — Teaching large heterogenous classes in C programming and fundamentals in computer science. , 2014, , .		4
305	MDE of manufacturing automation software $\hat{a} \in$ " Integrating SysML and standard development tools. , 2014, , .		9
306	Compatibility and coalition formation: Towards the vision of an automatic synthesis of manufacturing system designs. , 2014, , .		3

#	Article	IF	CITATIONS
307	Software changes in factory automation: Towards automatic change based regression testing. , 2014, ,		10
308	Anforderungen an die Softwareevolution in der Automatisierung des Maschinen- und Anlagenbaus. Automatisierungstechnik, 2014, 62, .	0.8	9
309	Automatic generation of field control strategies for supporting (re-)engineering of manufacturing systems. Journal of Intelligent Manufacturing, 2014, 25, 1101-1111.	7.3	38
310	Modeling of power consumption in manufacturing: Gross and detailed planning in consideration of all forms of energy as planning resources including load management during runtime. , 2014, , .		2
311	Keeping requirements and test cases consistent: Towards an ontology-based approach. , 2014, , .		15
312	An experimental study on UML Modeling errors and their causes in the education of model driven PLC programming. , 2014, , .		3
313	Combining a SysML-based Modeling Approach and Semantic Technologies for Analyzing Change Influences in Manufacturing Plant Models. Procedia CIRP, 2014, 17, 451-456.	1.9	37
314	An Integrated Approach to Analyze Change-situations in the Development of Production Systems. Procedia CIRP, 2014, 17, 148-153.	1.9	9
315	Sparse representation and its applications in micro-milling condition monitoring: noise separation and tool condition monitoring. International Journal of Advanced Manufacturing Technology, 2014, 70, 185-199.	3.0	49
316	Model-driven engineering of Manufacturing Automation Software Projects – A SysML-based approach. Mechatronics, 2014, 24, 883-897.	3.3	87
317	Family model mining for function block diagrams in automation software. , 2014, , .		33
318	Detection of Temporal Dependencies in Alarm Time Series of Industrial Plants. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 1802-1807.	0.4	20
319	Model-based testing of PLC software: test of plants' reliability by using fault injection on component level. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 3509-3515.	0.4	16
320	Automated model generation in the field of electrical automotive driveline components. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 4499-4504.	0.4	0
321	A Multi-Agent Architecture for Compensating Unforeseen Failures on Field Control Level. Studies in Computational Intelligence, 2014, , 195-208.	0.9	11
322	Formal Technical Process Specification and Verification for Automated Production Systems. Lecture Notes in Computer Science, 2014, , 287-303.	1.3	8
323	Agentenbasierte dynamische Rekonfiguration von vernetzten intelligenten Produktionsanlagen – Evolution statt Revolution. , 2014, , 145-158.		13
324	Enabling Industrie 4.0 – Chancen und Nutzen für die Prozessindustrie. , 2014, , 159-171.		7

5

#	Article	IF	CITATIONS
325	Industrie 4.0 am Beispiel einer Verbundanlage. Atp Magazin, 2014, 56, 52.	0.5	8
326	Usability Experiments to Evaluate UML/SysML-Based Model Driven Software Engineering Notations for Logic Control in Manufacturing Automation. Journal of Software Engineering and Applications, 2014, 07, 943-973.	1.1	29
327	Challenges for Software Engineering in Automation. Journal of Software Engineering and Applications, 2014, 07, 440-451.	1.1	104
328	Zyklenmanagement in der Planung und Entwicklung. , 2014, , 90-154.		0
329	Kollaborative Fertigung mittels eines Multiagentensystems zur Vernetzung anlagenspezifischer Echtzeitsysteme. Informatik Aktuell, 2014, , 91-100.	0.6	0
330	Integrated Modeling of Complex Production Automation Systems to Increase Dependability. , 2014, , 363-385.		2
331	Prozessgrundlagen. , 2014, , 14-89.		0
332	Development of PLC-Based Software for Increasing the Dependability of Production Automation Systems. IEEE Transactions on Industrial Informatics, 2013, 9, 2397-2406.	11.3	50
333	Analysis of user interests in context of Web 2.0 technologies. , 2013, , .		0
334	Funktionaler Anwendungsentwurf für agentenbasierte, verteilte Automatisierungssysteme. Xpert Press, 2013, , 3-19.	0.1	6
335	Werkzeugunterstützung für die Entwicklung von SPS-basierten Softwareagenten zur Erhöhung der Verfügbarkeit. Xpert Press, 2013, , 291-303.	0.1	4
336	Concept for an integration-framework to enable the crossdisciplinary development of product-service systems. , 2013, , .		3
337	Using DSM and MDM methodologies to analyze structural SysML models. , 2013, , .		3
338	Anforderungen an CPS aus Sicht der Automatisierungstechnik / Requirements on CPS from the Viewpoint of Automation. Automatisierungstechnik, 2013, 61, 669-676.	0.8	21
339	Cyber-physische Systeme. Automatisierungstechnik, 2013, 61, 667-668.	0.8	3
340	Evaluation of a UML-Based Versus an IEC 61131-3-Based Software Engineering Approach for Teaching PLC Programming. IEEE Transactions on Education, 2013, 56, 329-335.	2.4	26
341	Framework for a model-based, cross-domain system interconnection in automation technology. , 2013, , .		2

Modeling Multicore Programmable Logic Controllers in Networked Automation Systems. , 2013, , .

#	Article	IF	CITATIONS
343	An interdisciplinary SysML based modeling approach for analyzing change influences in production plants to support the engineering. , 2013, , .		54
344	Benefit of e-learning teaching C-programming and software engineering in a very large mechanical engineering beginners class. , 2013, , .		8
345	Efficient modeling of mechatronic systems regarding variety and complexity in the field of automotive. , 2013, , .		1
346	Evolution in industrial plant automation: A case study. , 2013, , .		43
347	Increasing agility in engineering and runtime of automated manufacturing systems. , 2013, , .		15
348	Agent based control of production systems. , 2013, , .		7
349	Model-Driven Engineering and Semantic Technologies for the Design of Cyber-Physical Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 210-215.	0.4	4
350	Design and implementation of an integrated, platform independent 3D visualization of complex process data. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 317-323.	0.4	1
351	Energy Management based on a Hybrid Modeling Approach. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 158-161.	0.4	2
352	Combining Knowledge Modeling and Machine Learning for Alarm Root Cause Analysis. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 1843-1848.	0.4	38
353	Possibilities and challenges of an integrated development using a combined SysML-model and corresponding domain specific models. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 1465-1470.	0.4	3
354	Erweiterung des V-Modells [®] für den Entwurf von verteilten Automatisierungssystemen. Automatisierungstechnik, 2013, 61, 79-91.	0.8	6
355	Knowledge-Based Technologies for Future Factory Engineering and Control. Studies in Computational Intelligence, 2013, , 355-374.	0.9	20
356	SysML-Based Approach for Automation Software Development – Explorative Usability Evaluation of the Provided Notation. Lecture Notes in Computer Science, 2013, , 568-574.	1.3	6
357	Improving Common Model Understanding Within Collaborative Engineering Design Research Projects. Lecture Notes in Mechanical Engineering, 2013, , 643-654.	0.4	7
358	Anforderungen an CPS aus Sicht der Automatisierungstechnik / Requirements on CPS from the Viewpoint of Automation. Automatisierungstechnik, 2013, 61, .	0.8	1
359	Automated Test Case Generation for Industrial Control Applications. Studies in Computational Intelligence, 2013, , 263-273.	0.9	6
360	Realisierung eines Konzeptes zur Diagnose ethernetbasierter Echtzeitkommunikationssysteme. Informatik Aktuell, 2013, , 99-108.	0.6	0

#	Article	IF	CITATIONS
361	Evaluation of a newly developed model-driven PLC programming approach for machine and plant automation. , 2012, , .		4
362	Usability evaluation on teaching and applying model-driven object oriented approaches for PLC software. , 2012, , .		7
363	Usability challenges in the design workflow of reusable PLC software for machine and plant automation. , 2012, , .		6
364	Automatic Generation of Field Control Strategies for Supporting (Re-)Engineering of Manufacturing Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 1574-1579.	0.4	6
365	Specification of the Requirements to Support Information Technology-Cycles in the Machine and Plant Manufacturing Industry. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 1077-1082.	0.4	16
366	Model-based Approach to Generate Training Sequences for Discrete Event Anomaly Detection in Manufacturing. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 151-156.	0.4	3
367	On Modelling the State-Space of Manufacturing Systems using UML. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 469-474.	0.4	13
368	Automated PLC Software Testing using adapted UML Sequence Diagrams. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 1615-1621.	0.4	9
369	Dynamic redeployment of control software in distributed industrial automation systems during runtime. , 2012, , .		12
370	Time as non-functional requirement in distributed control systems. , 2012, , .		10
371	Computing dependent industrial alarms for alarm flood reduction. , 2012, , .		31
372	Modeling of Networked Automation Systems for simulation and model checking of time behavior. , 2012, , .		8
373	Workflow and decision support for the design of distributed automation systems. , 2012, , .		5
374	Evaluation of a graphical modeling language for the specification of manufacturing execution systems. , 2012, , .		1
375	Using contact points to integrate discipline spanning real-time requirements in modeling Networked Automation Systems for manufacturing systems. , 2012, , .		6
376	Design, implementation and evaluation of a hybrid approach for software agents in automation. , 2012, , , .		12
377	Fault-centric system modeling using SysML for reliability testing. , 2012, , .		5
378	Design patterns for distributed automation systems with consideration of non-functional requirements. , 2012, , .		19

#	Article	IF	CITATIONS
379	Diagnosis of automation devices based on engineering and historical data. , 2012, , .		6
380	A web-based e-learning and exam tool with an automated evaluation process for teaching software engineering. , 2012, , .		6
381	Efficient 3D voxel reconstruction of human shape within robotic work cells. , 2012, , .		6
382	Towards a Formal Specification Framework for Manufacturing Execution Systems. IEEE Transactions on Industrial Informatics, 2012, 8, 311-320.	11.3	61
383	Supporting integrated development of closed-loop PLC control software for production systems. , 2012, , .		6
384	Comparison of a transformed Matlab/Simulink model into the programming language CFC on different IEC 61131-3 PLC environments. , 2012, , .		6
385	Konzept zur Erhöhung der Flexibilitävon Produktionsanlagen durch Einsatz von rekonfigurierbaren Anlagenkomponenten und echtzeitfäigen Softwareagenten. Informatik Aktuell, 2012, , 121-130.	0.6	6
386	Lifecycle Oriented Planning of Mechatronic Products and Corresponding Services. International Federation for Information Processing, 2012, , 349-358.	0.4	5
387	Test case generation approach for industrial automation systems. , 2011, , .		36
388	A methodological approach to evaluate the benefit and usability of different modeling notations for open loop control in automation systems. , 2011, , .		3
389	Highly reconfigurable production systems controlled by real-time agents. , 2011, , .		17
390	Automated test case generation approach for PLC control software exception handling using fault injection. , 2011, , .		28
391	Integration of control loops in an UML based engineering environment for PLC. , 2011, , .		2
392	Unified sensor data provisioning with semantic technologies. , 2011, , .		8
393	Typical automation functions and their distribution in automation systems. , 2011, , .		12
394	Dealing with non-functional requirements in distributed control systems engineering. , 2011, , .		7
395	PLC-Statecharts: An Approach to Integrate UML-Statecharts in Open-Loop Control Engineering – Aspects on Behavioral Semantics and Model-Checking. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 7866-7872.	0.4	35
396	Implementation and evaluation of UML as modeling notation in object oriented software engineering for machine and plant automation. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 9151-9157.	0.4	15

#	Article	IF	CITATIONS
397	Intelligent Probabilistic Recurrent Fuzzy Control of Human-Machine Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 4857-4862.	0.4	2
398	Formal MES Modeling Framework –Integration of Different Views. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 14109-14114.	0.4	7
399	Modeling network architecture and time behavior of Distributed Control Systems in industrial plant automation. , 2011, , .		26
400	Engineering process for an online testing process of control software in production systems. , 2011, ,		1
401	Towards management of Information Technology-cycles in transdisciplinary innovation processes. , 2011, , .		1
402	Modeling order effects on errors in object oriented modeling for machine and plant automation from an educational point of view. , 2011, , .		4
403	Common communication model for distributed automation systems. , 2011, , .		14
404	Modellintegration von Verhaltens- und energetischen Aspekten für mechatronische Module. Automatisierungstechnik, 2011, 59, 33-41.	0.8	6
405	An Analytical Alarm Flood Reduction to Reduce Operator's Workload. Lecture Notes in Computer Science, 2011, , 297-306.	1.3	8
406	Fundamental Aspects Concerning the Usability Evaluation of Model-Driven Object Oriented Programming Approaches in Machine and Plant Automation. Lecture Notes in Computer Science, 2011, , 497-506.	1.3	8
407	Consideration of Human Factors for Prioritizing Test Cases for the Software System Test. Lecture Notes in Computer Science, 2011, , 303-312.	1.3	1
408	Modeling of Manufacturing Execution Systems: An interdisciplinary challenge. , 2010, , .		19
409	Reviews and findings on implementing active learning in a large class environment for Mechatronics and Computer Science students. , 2010, , .		4
410	Multi-objective optimization of hybrid electric vehicles considering fuel consumption and dynamic performance. , 2010, , .		27
411	PLC-statecharts: An approach to integrate umlstatecharts in open-loop control engineering. , 2010, , .		13
412	Usability evaluation of modeling notations for software engineering in machine and plant automation. , 2010, , .		3
413	Automatic program verification of continuous function chart based on model checking. , 2009, , .		15
414	Close integration between UML and IEC 61131-3: New possibilities through object-oriented extensions. , 2009, , .		38

#	Article	IF	CITATIONS
415	Vergleich der Anwendbarkeit von UML und UML-PA in der anlagennahen Softwareentwicklung der AutomatisierungstechnikEvaluation of UML and UML-PA for Software Engineering in Plant Automation. Automatisierungstechnik, 2009, 57, 332-340.	0.8	4
416	Benefit and evaluation of interactive 3D process data visualization in operator training of plant manufacturing industry. , 2009, , .		7
417	Benefits of an Interdisciplinary Modular Concept in Automation of Machine and Plant Manufacturing. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 894-899.	0.4	4
418	Automation in the Wood and Paper Industry. , 2009, , 1015-1026.		16
419	Benefit and Evaluation of Interactive 3D Process Data Visualization for the Presentation of Complex Problems. Lecture Notes in Computer Science, 2009, , 869-878.	1.3	8
420	Mental Models in Process Visualization - Could They Indicate the Effectiveness of an Operator's Training?. Lecture Notes in Computer Science, 2009, , 297-306.	1.3	3
421	Modules, version and variability management in automation engineering of machine and plant manufacturing. , 2008, , .		3
422	Benefit of system modeling in automation and control education. Proceedings of the American Control Conference, 2007, , .	0.0	6
423	COMBINING UML WITH IEC 61131-3 LANGUAGES TO PRESERVE THE USABILITY OF GRAPHICAL NOTATIONS IN THE SOFTWARE DEVELOPMENT OF COMPLEX AUTOMATION SYSTEMS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 90-94.	0.4	14
424	PERFORMANCE ANALYSIS OF INDUSTRIAL ETHERNET NETWORKS BY MEANS OF TIMED MODEL-CHECKING. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 101-106.	0.4	18
425	Performance analysis of industrial ethernet networks by means of timed model-checking. , 2006, 39, 99-104.		13
426	UML-PA AS AN ENGINEERING MODEL FOR DISTRIBUTED PROCESS AUTOMATION. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 129-134.	0.4	15
427	Design and evaluation of a product model for Web Based Training in engineering sciences. , 2002, , .		1
428	Integrated automation engineering along the life-cycle. , 0, , .		3
429	Requirements of a process control description language for distributed control systems (DCS) in process industry. , 0, , .		1
430	Evaluation of modeling notations for basic software engineering in process control. , 0, , .		1
431	Specification of hard real-time industrial automation systems with UML-PA. , 0, , .		4
432	Tableâ€based formal specification approaches for control engineers—empirical studies of usability. IET Cyber-Physical Systems: Theory and Applications, 0, , .	3.3	1

#	Article	IF	CITATIONS
433	Flexible scheduling of diagnostic tests in automotive manufacturing. Flexible Services and Manufacturing Journal, 0, , 1.	3.4	1
434	Cyber-Physical Systems in the Context of Industry 4.0: A Review, Categorization and Outlook. Information Systems Frontiers, 0, , 1.	6.4	13