Yuvakkumar R

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/851443/publications.pdf

Version: 2024-02-01

246 papers 6,147 citations

76294 40 h-index 62 g-index

248 all docs 248 docs citations

times ranked

248

5483 citing authors

#	Article	IF	CITATIONS
1	Investigation of EG-Bi2S3 nanorods photocatalytic activity under visible light for dye degradation from aquatic system. Environmental Science and Pollution Research, 2023, 30, 71628-71636.	2.7	1
2	PVP-assisted grass-like NiSe@ZnSe composite for environmental energy applications. Journal of Materials Science: Materials in Electronics, 2022, 33, 8409-8416.	1.1	7
3	Hydrothermal Synthesis of Flower Like MnSe2@MoSe2 Electrode for Supercapacitor Applications. Topics in Catalysis, 2022, 65, 615-622.	1.3	14
4	Electrochemical energy storage and conversion applications of CoSn(OH)6 materials. International Journal of Hydrogen Energy, 2022, 47, 41948-41955.	3.8	3
5	Two-dimensional hybrid perovskite solar cells: a review. Environmental Chemistry Letters, 2022, 20, 189-210.	8.3	10
6	Enhanced visible light-driven photocatalytic performance of CdSe nanorods. Environmental Research, 2022, 203, 111855.	3.7	25
7	Facile single-step synthesis of MXene@CNTs hybrid nanocomposite by CVD method to remove hazardous pollutants. Chemosphere, 2022, 286, 131733.	4.2	46
8	Flower like strontium molybdate for efficient energy conversion applications. Fuel, 2022, 308, 122051.	3.4	12
9	In-situ deposition of amorphous Tungsten(VI) oxide thin-film for solid-state symmetric supercapacitor. Ceramics International, 2022, 48, 2510-2521.	2.3	9
10	Investigation of PEG directed Sb2WO6 for dyes removal from wastewater. Chemosphere, 2022, 291, 132677.	4.2	9
11	Synthesis of pure and lanthanum-doped barium ferrite nanoparticles for efficient removal of toxic pollutants. Journal of Hazardous Materials, 2022, 424, 127604.	6.5	17
12	Gadolinium doped CeO2 for efficient oxygen and hydrogen evolution reaction. Fuel, 2022, 310, 122319.	3.4	27
13	Characterization of activated biomass carbon from tea leaf for supercapacitor applications. Chemosphere, 2022, 291, 132931.	4.2	29
14	Recent Progression of Flower Like ZnSe@MoSe2 Designed as an Electrocatalyst for Enhanced Supercapacitor Performance. Topics in Catalysis, 2022, 65, 684-693.	1.3	9
15	Novel strontium vanadate nanostructures for hydrogen evolution reaction activity. Materials Letters, 2022, 309, 131426.	1.3	2
16	Polyvinylpyrrolidone-assisted novel copper antimony sulfide nanorods for highly efficient hydrogen evolution reaction. Fuel, 2022, 314, 123096.	3.4	8
17	Fabrication of Ce doped TiO2 for efficient organic pollutants removal from wastewater. Chemosphere, 2022, 293, 133540.	4.2	28
18	Exploration of a Bimetallic NiSe ₂ @CoSe ₂ Nanosphere as a Proficient Electrode for Electrochemical Activity. Energy & Electrode for Electrochemical Electrode for Electrode for Electrochemical Activity. Energy & Electrode for Electrochemical Activity. Energy & Electrode for Electrochemical Activity. Energy & Electrode for Electrochemical Electrode for Electrode for Electrochemical Activity. Energy & Electrode for Electrochemical Electrode for Electrochemical Activity. Energy & Electrode for Electrochemical Electrode for Electrode for Electrochemical Electrode for Electrode for Electrochemical Electrode for Electrochemical Electrode for Electrode for Electrochemical Electrode for El	2.5	6

#	Article	IF	CITATIONS
19	Electrochemical Enhancement of Binary CuSe2@MoSe2 Composite Nanorods for Supercapacitor Application. Topics in Catalysis, 2022, 65, 668-676.	1.3	7
20	The electrochemical energy storage and photocatalytic performances analysis of rare earth metal (Tb) Tj ETQq0 (0 0 rgBT /0	Overlock 10 T
21	Scheelite-type Fe substituted SrWO4 for hydrogen evolution reaction under alkaline conditions. Fuel, 2022, 316, 123309.	3.4	4
22	Si@MXene/graphene crumbled spherical nanocomposites. International Journal of Energy Research, 2022, 46, 21548-21557.	2.2	3
23	Heterostructured O _v â€Mn ₂ O ₃ @Cu ₂ SnS ₃ @SnS Composite as Batteryâ€Type Cathode Material for Extrinsic Selfâ€Charging Hybrid Supercapacitors. Advanced Materials Interfaces. 2022, 9	1.9	5
24	Facile hydrothermal synthesis of MXene@antimony nanoneedle composites for toxic pollutants removal. Environmental Research, 2022, 210, 112904.	3.7	11
25	Surfactant induced copper vanadate (\hat{l}^2 -Cu2V2O7, Cu3V2O8) for different textile dyes degradation. Environmental Research, 2022, 211, 112964.	3.7	6
26	Recent review on electron transport layers in perovskite solar cells. International Journal of Energy Research, 2022, 46, 21441-21451.	2,2	24
27	ZnCo2O4/CNT composite for efficient supercapacitor electrodes. Ceramics International, 2022, 48, 24745-24750.	2.3	11
28	Rare earth metal (Sm)-doped NiMnO ₃ nanostructures for highly competent alkaline oxygen evolution reaction. Nanoscale Advances, 2022, 4, 2501-2508.	2.2	13
29	Carbonization and optimization of biomass waste for HER application. Fuel, 2022, 324, 124466.	3.4	6
30	Rare Earth-Doped MoS ₂ for Supercapacitor Application. Energy & E	2.5	21
31	Preparation and characterization of antimony nanoparticles for hydrogen evolution activities. Fuel, 2022, 325, 124908.	3.4	5
32	Ag doped ZnSnO3 nanocubes: Promotion on the charge storage mechanism for supercapacitors. Journal of Physics and Chemistry of Solids, 2022, 169, 110894.	1.9	1
33	Mesoporous oxygen vacancy 3D-rhombohedral Ov-Mn2O3 mixed with rGO@CNTs as cathode material for self-charging pouch-type hybrid supercapacitor applications. Materials Today Chemistry, 2022, 26, 101017.	1.7	4
34	Morphological exploration of chemical vapor–deposited P-doped ZnO nanorods for efficient photoelectrochemical water splitting. Ceramics International, 2021, 47, 6521-6527.	2.3	20
35	Biomedical application of single anatase phase TiO2 nanoparticles with addition of Rambutan (Nephelium lappaceumÂL.) fruit peel extract. Applied Nanoscience (Switzerland), 2021, 11, 699-708.	1.6	6
36	Synthesis and characterization of various transition metals doped SnO2@MoS2 composites for supercapacitor and photocatalytic applications. Journal of Alloys and Compounds, 2021, 853, 157060.	2.8	71

#	Article	IF	CITATIONS
37	Anti-cancer applications of Zr, Co, Ni-doped ZnO thin nanoplates. Materials Letters, 2021, 283, 128760.	1.3	25
38	Iron doped vanadium sulfide anemone like nanorod structure for electrochemical water oxidation. Current Applied Physics, 2021, 21, 192-198.	1.1	2
39	Superior supercapacitive performance of Cu ₂ MnSnS ₄ asymmetric devices. Nanoscale Advances, 2021, 3, 486-498.	2.2	31
40	High performance MnSn(OH)6 electrodes for energy conversion application. Materials Letters, 2021, 282, 128888.	1.3	4
41	$CuS@\hat{l}^2$ -SnS nanocomposite electrocatalysts for efficient electrochemical water oxidation. International Journal of Hydrogen Energy, 2021, 46, 3387-3400.	3.8	8
42	La–Mo binary metal oxides for oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 6197-6205.	3.8	3
43	Heterostructured SmCoO3/rGO composite for high-energy hybrid supercapacitors. Carbon, 2021, 172, 613-623.	5.4	59
44	Energy Storage Applications of CdMoO4 Microspheres. Jom, 2021, 73, 1546-1551.	0.9	6
45	Copper molybdate nanoparticles for electrochemical water splitting application. International Journal of Hydrogen Energy, 2021, 46, 7701-7711.	3.8	15
46	Solvothermal synthesis of CoMoO4 nanostructures for electrochemical applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 5989-6000.	1.1	8
47	Growth of ZnSe <i>_x</i> O _{1â€"<i>x</i>} Nanorods and Their Photoelectrochemical Properties. Energy &	2.5	2
48	Quaternary Cu ₂ FeSnS ₄ /PVP/rGO Composite for Supercapacitor Applications. ACS Omega, 2021, 6, 9471-9481.	1.6	40
49	Cobalt-based derivatives oxygen evolution reaction. Applied Nanoscience (Switzerland), 2021, 11, 1367-1378.	1.6	6
50	Effect of cationic, anionic, and mixed surfactant role on manganese oxide nanoparticles for energy storage applications. Applied Nanoscience (Switzerland), 2021, 11, 1769-1775.	1.6	5
51	Demonstration of 1.5ÂV asymmetric supercapacitor developed using MnSe2-CoSe2 metal composite. Ceramics International, 2021, 47, 11786-11792.	2.3	31
52	Preparation of Fe-SnO2@CeO2 nanocomposite electrode for asymmetric supercapacitor device performance analysis. Journal of Energy Storage, 2021, 36, 102402.	3.9	82
53	Hydrothermal synthesis of Cu2Se–CoSe nanograin for electrochemical supercapacitor applications. Applied Nanoscience (Switzerland), 2021, 11, 1881-1888.	1.6	5
54	Preparation of NiCo2O4 microspheres employing hydrothermal approach. International Journal of Hydrogen Energy, 2021, 46, 17060-17070.	3.8	8

#	Article	IF	CITATIONS
55	Bi2MoO6 hierarchical microflowers for electrochemical oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 18719-18728.	3.8	8
56	A strategy to enhance the photocatalytic efficiency of α-Fe2O3. Chemosphere, 2021, 270, 129498.	4.2	41
57	CTAB Cationic Surfactant Assisted NiCO3 Electrocatalyst for Electrochemical Water Splitting Applications. ECS Journal of Solid State Science and Technology, 2021, 10, 061006.	0.9	2
58	Rare earth metal (Sm) doped zinc ferrite (ZnFe2O4) for improved photocatalytic elimination of toxic dye from aquatic system. Environmental Research, 2021, 197, 111047.	3.7	49
59	NiMoO4 nanorods photocatalytic activity comparison under UV and visible light. Environmental Research, 2021, 197, 111073.	3.7	9
60	Cobalt Vanadium Oxide Nanoclusters for Oxygen Evolution Reaction. ECS Journal of Solid State Science and Technology, 2021, 10, 071003.	0.9	5
61	The bifunctional performance analysis of synthesized Ce doped SnO2/g-C3N4 composites for asymmetric supercapacitor and visible light photocatalytic applications. Journal of Alloys and Compounds, 2021, 866, 158807.	2.8	68
62	Influence of the concentration of capping agent on synthesizing and analyses of Ceria nanoâ€filler using modified coâ€precipitation technique. International Journal of Applied Ceramic Technology, 2021, 18, 1533-1541.	1.1	3
63	An approach to enhance the photocatalytic activity of ZnTiO3. Ceramics International, 2021, 47, 18122-18131.	2.3	10
64	Investigation on (Zn) doping and anionic surfactant (SDS) effect on SnO2 nanostructures for enhanced photocatalytic RhB dye degradation. Environmental Research, 2021, 199, 111312.	3.7	22
65	Anionic surfactant assisted copper hydroxide for toxic dye removal from wastewater. Environmental Research, 2021, 199, 111310.	3.7	4
66	Visible light induced photocatalytic performance of Mn-SnO2@ZnO nanocomposite for high efficient cationic dye degradation. Journal of Materials Science: Materials in Electronics, 2021, 32, 22168-22186.	1.1	7
67	PVP influence on Mn–CdS for efficient photocatalytic activity. Chemosphere, 2021, 277, 130346.	4.2	7
68	CuCoO2 electrodes for supercapacitor applications. Materials Letters, 2021, 296, 129930.	1.3	19
69	Influence of tin (Sn) doping on Co3O4 for enhanced photocatalytic dye degradation. Chemosphere, 2021, 277, 130325.	4.2	51
70	Nickel and cobalt co-doped MnCO3 nanostructures for water oxidation reaction. International Journal of Hydrogen Energy, 2021, , .	3.8	1
71	Hydrogen free direct growth carbon nanorod as a promising electrode in symmetric supercapacitor applications. Progress in Organic Coatings, 2021, 158, 106379.	1.9	6
72	Pure and Ce-doped spinel CuFe2O4 photocatalysts for efficient rhodamine B degradation. Environmental Research, 2021, 200, 111528.	3.7	29

#	Article	IF	CITATIONS
73	Efficient photocatalytic degradation of hazardous pollutants by homemade kitchen blender novel technique via 2D-material of few-layer MXene nanosheets. Chemosphere, 2021, 281, 130984.	4.2	34
74	Ethylene glycol assisted MnCO3 electrocatalyst for water oxidation and hydrogen production application. Fuel, 2021, 302, 121151.	3.4	5
75	Annealing temperature effect on cobalt ferrite nanoparticles for photocatalytic degradation. Chemosphere, 2021, 281, 130903.	4.2	54
76	Investigation of electrochemical performance of an efficient Ti2O3–CeO2 nanocomposite for enhanced pollution-free energy conversion applications. Journal of Environmental Management, 2021, 295, 113138.	3.8	3
77	Hydrothermally synthesized \hat{i}_{\pm} -MnS nanostructures for electrochemical water oxidation and photocatalytic hydrogen production. Fuel, 2021, 303, 121293.	3.4	18
78	Upshot of Concentration of Zirconium (IV) Oxynitrate Hexa Hydrate on Preparation and Analyses of Zirconium Oxide (ZrO ₂) Nanoparticles by Modified Co-Precipitation Method. Journal of Nanoscience and Nanotechnology, 2021, 21, 5707-5713.	0.9	3
79	Cleaner production of tamarind fruit shell into bio-mass derived porous 3D-activated carbon nanosheets by CVD technique for supercapacitor applications. Chemosphere, 2021, 282, 131033.	4.2	36
80	Effect of Nd3+ doping on CdO nanoparticles for supercapacitor applications. Ceramics International, 2021, 47, 30790-30796.	2.3	17
81	Fluorine-implanted indium-gallium-zinc oxide (IGZO) chemiresistor sensor for high-response NO2 detection. Chemosphere, 2021, 284, 131287.	4.2	14
82	Asymmetric polyhedron structured NiSe ₂ @MoSe ₂ device for use as a supercapacitor. Nanoscale Advances, 2021, 3, 4207-4215.	2.2	24
83	Defect Induced in 3D-Rhombohedral MnCO ₃ Microcrystals by Substitution of Transition Metals for Aqueous and Solid-State Hybrid Supercapacitors. ACS Sustainable Chemistry and Engineering, 2021, 9, 1656-1668.	3.2	21
84	Nickel iron oxide electrocatalysts for electrochemical OER activity. Applied Nanoscience (Switzerland), 2021, 11, 2669-2677.	1.6	2
85	Free-Standing Bi-Induced ZrO2 Nanoflake Array Photoanodes Fabrication for Photoelectrochemical (PEC) Water Splitting Applications. , 2021, , 65-71.		0
86	Investigation of pure and g-C3N4 loaded CdWO4 photocatalytic activity on reducing toxic pollutants. Chemosphere, 2021, , 133090.	4.2	10
87	Facile synthesis of a heterostructured lanthanum-doped SnO ₂ anchored with rGO for asymmetric supercapacitors and photocatalytic dye degradation. New Journal of Chemistry, 2021, 45, 22497-22513.	1.4	9
88	Binder free, robust and scalable CuO@GCE modified electrodes for efficient electrochemical water oxidation. Materials Chemistry and Physics, 2020, 239, 122321.	2.0	14
89	Supercapacitor and OER activity of transition metal (Mo, Co, Cu) sulphides. Journal of Physics and Chemistry of Solids, 2020, 138, 109240.	1.9	26
90	Synthesis and characterization of Mn3O4/MnSnO3 nanocomposites for supercapacitor applications. International Journal of Plastics Technology, 2020, 24, 9-17.	2.9	4

#	Article	IF	CITATIONS
91	MnFe ₂ O ₄ Nanoparticles as an Efficient Electrode for Energy Storage Applications. Journal of Nanoscience and Nanotechnology, 2020, 20, 96-105.	0.9	6
92	Morphology-Dependent Photoelectrochemical and Photocatalytic Performance of $\langle i \rangle^{\hat{3}} \langle i \rangle$ -Bi $\langle sub \rangle$ 2 $\langle sub \rangle$ 0 $\langle sub \rangle$ 3 $\langle sub \rangle$ 1 Nanostructures. Journal of Nanoscience and Nanotechnology, 2020, 20, 143-154.	0.9	12
93	Synthesis of $\langle i \rangle X \langle i \rangle \langle sub \rangle 3 \langle sub \rangle \langle PO \langle sub \rangle 4 \langle sub \rangle \rangle \langle sub \rangle 2 \langle sub \rangle [\langle i \rangle X \langle i \rangle = Ni, Cu, Mn]$ Nanomaterials as an Efficient Electrode for Energy Storage Applications. Journal of Nanoscience and Nanotechnology, 2020, 20, 2813-2822.	0.9	10
94	Synthesis of self-assembled micro/nano structured manganese carbonate for high performance, long lifespan asymmetric supercapacitors and investigation of atomic-level intercalation properties of OHâ^' ions via first principle calculation. Journal of Energy Storage, 2020, 27, 101138.	3.9	53
95	Fabrication and electrochemical OER activity of Ag doped MoO3 nanorods. Materials Science in Semiconductor Processing, 2020, 107, 104818.	1.9	19
96	Improved optoelectronic properties of Gd doped cadmium oxide thin films through optimized film thickness for alternative TCO applications. Journal of Alloys and Compounds, 2020, 820, 153188.	2.8	24
97	Elevated energy density and cycle stability of î±-Mn2O3 3D-microspheres with addition of neodymium dopant for pouch-type hybrid supercapacitors. Electrochimica Acta, 2020, 362, 137169.	2.6	21
98	Electrochemical Oxygen Evolution Reaction Activity of Tin Sulfide Nanostructures. ChemistrySelect, 2020, 5, 11703-11707.	0.7	0
99	Electrochemical water splitting exploration of MnCo ₂ O ₄ , NiCo ₂ O ₄ cobaltites. New Journal of Chemistry, 2020, 44, 17679-17692.	1.4	12
100	Synthesis of highly active biocompatible ZrO2 nanorods using a bioextract. Ceramics International, 2020, 46, 25915-25920.	2.3	74
101	Physical and electrochemical chattels of phosphonium ionic liquid-based solid and gel-polymer electrolyte for lithium secondary batteries. Journal of Materials Science: Materials in Electronics, 2020, 31, 22933-22944.	1.1	3
102	Marigold flower like structured Cu2NiSnS4 electrode for high energy asymmetric solid state supercapacitors. Scientific Reports, 2020, 10, 19198.	1.6	61
103	Investigation on copper based oxide, sulfide and selenide derivatives oxygen evolution reaction activity. Applied Nanoscience (Switzerland), 2020, 10, 4299-4306.	1.6	8
104	Energy storage performance of CoNiSe2 nanostructures. Materials Letters, 2020, 279, 128485.	1.3	2
105	Nickel, bismuth, and cobalt vanadium oxides for supercapacitor applications. Ceramics International, 2020, 46, 28206-28210.	2.3	27
106	Silver-doped cadmium sulfide for electrochemical water oxidation. Applied Nanoscience (Switzerland), 2020, 10, 4351-4358.	1.6	7
107	Cu2S electrochemical energy storage applications. AIP Conference Proceedings, 2020, , .	0.3	2
108	Cerium doped NiO nanoparticles by hydrothermal method. AIP Conference Proceedings, 2020, , .	0.3	1

7

#	Article	IF	CITATIONS
109	Nickel–cobalt hydroxide: a positive electrode for supercapacitor applications. RSC Advances, 2020, 10, 19410-19418.	1.7	75
110	Fluorescence microscopyâ€based analysis of apoptosis induced by platinum nanoparticles against breast cancer cells. Applied Organometallic Chemistry, 2020, 34, e5740.	1.7	13
111	Designing rational and cheapest SeO2 electrocatalyst for long stable water splitting process. Journal of Physics and Chemistry of Solids, 2020, 145, 109544.	1.9	10
112	In situ hydrothermal growth of SnS/Ni foam for electrochemical energy storage and conversion. Materials Letters, 2020, 273, 127958.	1.3	5
113	Single-phase Cr2O3 nanoparticles for biomedical applications. Ceramics International, 2020, 46, 19890-19895.	2.3	49
114	Ni doped Bi2WO6 for electrochemical OER activity. International Journal of Hydrogen Energy, 2020, 45, 18859-18866.	3.8	27
115	CoNiSe ₂ Nanostructures for Clean Energy Production. ACS Omega, 2020, 5, 14702-14710.	1.6	27
116	Ni supported anorthic phase FeVO4 nanorods for electrochemical water oxidation. Materials Letters, 2020, 275, 128091.	1.3	4
117	Investigation of electrochemical properties of various transition metals doped SnO2 spherical nanostructures for supercapacitor applications. Journal of Energy Storage, 2020, 31, 101530.	3.9	73
118	Neutral and alkaline chemical environment dependent synthesis of Mn3O4 for oxygen evolution reaction (OER). Materials Chemistry and Physics, 2020, 247, 122864.	2.0	16
119	Water-splitting application of orthorhombic molybdite α-MoO3 nanorods. Ceramics International, 2020, 46, 23218-23222.	2.3	13
120	Hydrothermal Method–Derived MnMoO ₄ Crystals: Effect of Cationic Surfactant on Microstructures and Electrochemical Properties. ChemistrySelect, 2020, 5, 7728-7733.	0.7	7
121	Selective antibacterial and apoptosis-inducing effects of hybrid gold nanoparticles – A green approach. Journal of Drug Delivery Science and Technology, 2020, 59, 101890.	1.4	11
122	Facile hydrothermal synthesis of CuCo2O4/AC/PANI nanocomposites. Journal of Sol-Gel Science and Technology, 2020, 94, 241-250.	1.1	4
123	Urchin like NiCo2O4/rGO nanocomposite for high energy asymmetric storage applications. Ceramics International, 2020, 46, 16291-16297.	2.3	40
124	Y2O3 nanorods for cytotoxicity evaluation. Ceramics International, 2020, 46, 20553-20557.	2.3	21
125	Electrochemical Performance of NiS@CuS for water oxidation. AIP Conference Proceedings, 2020, , .	0.3	0
126	NiWO4@Ni(OH)2 for electrochemical water splitting. AIP Conference Proceedings, 2020, , .	0.3	0

#	Article	IF	Citations
127	Vanadium oxide nanostructures for electrochemical supercapacitor applications. AIP Conference Proceedings, 2020, , .	0.3	0
128	Electrochemical water splitting of Ag-WO3 nanostructures. AIP Conference Proceedings, 2020, , .	0.3	1
129	Multi-phase CuBi2O4@CuO@ $\hat{l}\pm$ -Bi2O3 nanocomposite electrocatalyst for electrochemical water splitting application. AIP Conference Proceedings, 2019, , .	0.3	1
130	Highly dispersed SmMn ₂ O ₅ nanorods for electrochemical water oxidation reaction kinetics. Materials Research Express, 2019, 6, 095090.	0.8	11
131	Synthesis of MnNiO3/Mn3O4 nanocomposites for the water electrolysis process. Journal of Sol-Gel Science and Technology, 2019, 92, 1-11.	1.1	3
132	Electrochemical performances of monodispersed spherical CuFe2O4 nanoparticles for pseudocapacitive applications. Vacuum, 2019, 168, 108798.	1.6	44
133	Electrochemical Water Oxidation of NiCo ₂ O ₄ and CoNi ₂ S ₄ Nanospheres Supported on Ni Foam Substrate. ChemistrySelect, 2019, 4, 10122-10132.	0.7	14
134	Dopant influence on phase and electrochemical performance of molybdenum sulfide nanostructures. AIP Conference Proceedings, 2019, , .	0.3	4
135	Novel SmMn2O5 hollow long nano-cuboids for electrochemical supercapacitor and water splitting applications. Vacuum, 2019, 166, 279-285.	1.6	32
136	Electrochemical Performance of \hat{l}^2 -Nis@Ni(OH) ₂ Nanocomposite for Water Splitting Applications. ACS Omega, 2019, 4, 10302-10310.	1.6	36
137	Perovskite BiFeO3 nanocatalysts for electrochemical water oxidation. Journal of Sol-Gel Science and Technology, 2019, 91, 247-254.	1.1	9
138	WO3 nanocubes for photoelectrochemical water-splitting applications. Journal of Physics and Chemistry of Solids, 2019, 134, 149-156.	1.9	24
139	xmins:mmi="http://www.w3.org/1998/Math/MathWL" display="inline" id="d1e638" altimg="si6.svg"> <mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>9</mml:mn></mml:mrow></mml:msub> O <mml:math <="" display="inline" id="d1e646" td="" xmins:mml="http://www.w3.org/1998/Math/MathML"><td>1.9</td><td>9</td></mml:math>	1.9	9
140	Superior electrochemical water oxidation of novel NiS@FeS2 nanocomposites. Materials Science in Semiconductor Processing, 2019, 101, 174-182.	1.9	24
141	Different rare earth (Sm, La, Nd) doped magnetron sputtered CdO thin films for optoelectronic applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 9999-10012.	1.1	32
142	BiVO4 Nanostructures for Photoelectrochemical (PEC) Solar Water Splitting Applications. Journal of Nanoscience and Nanotechnology, 2019, 19, 7427-7435.	0.9	13
143	Ultrafine M-doped TiO2 (M = Fe, Ce, La) nanosphere photoanodes for photoelectrochemical water-splitting applications. Materials Characterization, 2019, 152, 188-203.	1.9	18
144	Organic Datura metel Leaf Extract Mediated Inorganic Rare Earth La2O3 Nanocrystals Formation. Journal of Nanoscience and Nanotechnology, 2019, 19, 4033-4038.	0.9	3

#	Article	IF	Citations
145	Bi ₂ WO ₆ and FeWO ₄ Nanocatalysts for the Electrochemical Water Oxidation Process. ACS Omega, 2019, 4, 5241-5253.	1.6	43
146	Formation of one dimensional nanorods with microsphere of MnCO3 using Ag as dopant to enhance the performance of pseudocapacitors. Materials Chemistry and Physics, 2019, 228, 1-8.	2.0	42
147	Preparation of SnO2 Nanoparticles with Addition of Co lons for Photocatalytic Activity of Brilliant Green Dye Degradation. Journal of Electronic Materials, 2019, 48, 2183-2194.	1.0	35
148	Low Surface Energy and pH Effect on SnO ₂ Nanoparticles Formation for Supercapacitor Applications. Journal of Nanoscience and Nanotechnology, 2019, 19, 3429-3436.	0.9	7
149	Ag implanted ZnO hierarchical nanoflowers for photoelectrochemical water-splitting applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 731-745.	1.1	22
150	Solvent dependent morphological modification of micro-nano assembled Mn2O3/NiO composites for high performance supercapacitor applications. Ceramics International, 2019, 45, 4298-4307.	2.3	68
151	Efficient, highly stable Zn-doped NiO nanocluster electrocatalysts for electrochemical water splitting applications. Journal of Sol-Gel Science and Technology, 2019, 89, 500-510.	1.1	51
152	Synthesis of polyoxometalates, copper molybdate (Cu3Mo2O9) nanopowders, for energy storage applications. Materials Science in Semiconductor Processing, 2019, 93, 164-172.	1.9	38
153	Transition-Metal Element (Ni, Co)-Doped MgO Microflowers for Electrochemical Biosensor Applications. Jom, 2019, 71, 279-284.	0.9	6
154	Sn doped α-Fe2O3 (Sn=0,10,20,30†wt%) photoanodes for photoelectrochemical water splitting applications. Renewable Energy, 2019, 133, 566-574.	4.3	57
155	Hydrothermal synthesis and electrochemical properties of ZnCo2O4 microspheres. Ionics, 2019, 25, 353-360.	1.2	6
156	MnCo2O4 nanosphere synthesis for electrochemical applications. Materials Science for Energy Technologies, 2019, 2, 130-138.	1.0	25
157	Transition mixed-metal molybdates (MnMoO4) as an electrode for energy storage applications. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	38
158	Electrochemical and photoelectrochemical water oxidation of solvothermally synthesized Zr-doped α-Fe2O3 nanostructures. Applied Surface Science, 2019, 471, 733-744.	3.1	40
159	Ferrimagnetism in cobalt ferrite (CoFe 2 O 4) nanoparticles. Nano Structures Nano Objects, 2018, 14, 84-91.	1.9	127
160	Novel NiWO 4 nanoberries morphology effect on photoelectrochemical properties. Materials Letters, 2018, 220, 209-212.	1.3	19
161	Synthesis and characterization of hausmannite (Mn 3 O 4) nanostructures. Surfaces and Interfaces, 2018, 11, 28-36.	1.5	62
162	Synthesis and characterization of NiO/Ni3V2O8 nanocomposite for supercapacitor applications. Materials Letters, 2018, 219, 114-118.	1.3	42

#	Article	IF	Citations
163	Zinc oxide nanotips growth by controlling vapor deposition on substrates. Journal of Materials Science: Materials in Electronics, 2018, 29, 6149-6156.	1.1	7
164	Electrochemical characterization of FeMnO ₃ microspheres as potential material for energy storage applications. Materials Research Express, 2018, 5, 015504.	0.8	19
165	Selective and sensitive fluorescent sensor for Pd 2+ using coumarin 460 for real-time and biological applications. Journal of Photochemistry and Photobiology B: Biology, 2018, 183, 302-308.	1.7	18
166	Electrochemically active XWO4 (X = Co, Cu, Mn, Zn) nanostructure for water splitting applications. Applied Nanoscience (Switzerland), 2018, 8, 1241-1258.	1.6	43
167	Vertically aligned Cu-ZnO nanorod arrays for water splitting applications. Materials Letters, 2018, 222, 58-61.	1.3	17
168	Temperature-dependent physicochemical properties of magnesium ferrites (MgFe2O4). Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	24
169	Structural, optical and magnetic properties of CuFe2O4 nanoparticles. Journal of Materials Science: Materials in Electronics, 2018, 29, 1975-1984.	1.1	52
170	Pseudocapacitive NiO/NiSnO3 Electrode for Supercapacitor Applications. Journal of Electronic Materials, 2018, 47, 6390-6395.	1.0	9
171	Enhanced pseudocapacitive performance of SnO2, Zn-SnO2, and Ag-SnO2 nanoparticles. Ionics, 2018, 24, 4081-4092.	1.2	16
172	Facile synthesis of SnO2 \hat{l}_{\pm} -Fe2O3 nanocomposite for supercapacitor capacitor applications. AIP Conference Proceedings, 2018, , .	0.3	1
173	Surfactant assisted zinc doped tin oxide nanoparticles for supercapacitor applications. Journal of Sol-Gel Science and Technology, 2018, 86, 521-535.	1.1	33
174	Pure and cobalt-substituted zinc-ferrite magnetic ceramics for supercapacitor applications. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	42
175	Surfactant free SnO2 nanoplate array synthesis for supercapacitor applications. AIP Conference Proceedings, 2018, , .	0.3	2
176	Role of different chelating agent in synthesis of copper doped tin oxide (Cu-SnO2) nanoparticles. AIP Conference Proceedings, 2018, , .	0.3	0
177	Effect of CTAB concentration on synthesis of nickel doped manganese oxide nanoparticles. AIP Conference Proceedings, 2018, , .	0.3	1
178	Size dependent magnetic and antibacterial properties of solvothermally synthesized cuprous oxide (Cu2O) nanocubes. Journal of Materials Science: Materials in Electronics, 2018, 29, 17622-17629.	1.1	24
179	Cytotoxicity of phloroglucinol engineered silver (Ag) nanoparticles against MCF-7 breast cancer cell lines. Materials Chemistry and Physics, 2018, 220, 402-408.	2.0	29
180	Structural, morphological, optical and antibacterial properties of pentagon CuO nanoplatelets. Journal of Sol-Gel Science and Technology, 2018, 87, 515-527.	1.1	11

#	Article	IF	CITATIONS
181	Role of NaOH concentration on synthesis and characterization of \hat{l}^2 -V2O5 nanorods by solvothermal method. AIP Conference Proceedings, 2018, , .	0.3	0
182	Hexamine Role on Pseudocapacitive Behaviour of Cobalt Oxide (Co3O4) Nanopowders. Journal of Nanoscience and Nanotechnology, 2018, 18, 4093-4099.	0.9	11
183	Structural, Optical and Magnetic Properties of NiO Nanopowders. Journal of Nanoscience and Nanotechnology, 2018, 18, 4658-4666.	0.9	19
184	Enviroment-Friendly Synthesis of Nanocrystalline Nickel Oxide and Its Antibacterial Properties. Korean Journal of Materials Research, 2018, 28, 24-31.	0.1	2
185	Pure and Co doped CeO2 nanostructure electrodes with enhanced electrochemical performance for energy storage applications. Ceramics International, 2017, 43, 10494-10501.	2.3	39
186	Hexamine, PEG-400 effect on $\hat{l}\pm$ -MoO3 nanoparticle synthesis for pseudo capacitance applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 13780-13786.	1.1	3
187	Influence of reducing agent concentration on the structure, morphology and ferromagnetic properties of hematite (l±-Fe2O3) nanoparticles. Journal of Materials Science: Materials in Electronics, 2017, 28, 8093-8100.	1.1	11
188	Reducing agent (NaBH4) dependent structure, morphology and magnetic properties of nickel ferrite (NiFe2O4) nanorods. Journal of Magnetism and Magnetic Materials, 2017, 428, 78-85.	1.0	28
189	Controlled synthesis and electrochemical properties of Ag-doped Co3O4 nanorods. International Journal of Hydrogen Energy, 2017, 42, 29666-29671.	3.8	52
190	Design, Fabrication, and Characterization of Hematite (α-Fe2O3) Nanostructures. Jom, 2017, 69, 2508-2514.	0.9	11
191	Surfactant effect on synthesis and electrochemical properties of nickel-doped magnesium oxide (Ni–MgO) for supercapacitor applications. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	20
192	Hydrothermal synthesis of spherical NiCO2O4 nanoparticles as a positive electrode for pseudocapacitor applications. Journal of Sol-Gel Science and Technology, 2017, 84, 297-305.	1.1	36
193	Physico-chemical properties of pure and zinc incorporated cobalt nickel mixed ferrite (ZnxCo0.005â°xNi0.005Fe2O4, where x = 0, 0.002, 0.004ÂM) nanoparticles. Journal of Materials Science Materials in Electronics, 2017, 28, 16450-16458.	e 1 .1	13
194	Morphology dependent electrochemical capacitor performance of NiMoO4 nanoparticles. Materials Letters, 2017, 209, 1-4.	1.3	30
195	Electrochemical properties of rice-like copper manganese oxide (CuMn2O4) nanoparticles for pseudocapacitor applications. Journal of Alloys and Compounds, 2017, 723, 115-122.	2.8	75
196	Synthesis of Geikielite (MgTiO ₃) Nanoparticles via Sol–Gel Method and Studies on Their Structural and Optical Properties. Journal of Nanoscience and Nanotechnology, 2016, 16, 7635-7641.	0.9	15
197	Structural and toxic effect investigation of vanadium pentoxide. Materials Science and Engineering C, 2016, 65, 419-424.	3.8	11
198	Enviroment-Friendly Synthesis of Nanocrystalline Zinc Oxide Particles Using Fruit Peel Extract. Korean Journal of Materials Research, 2016, 26, 311-319.	0.1	2

#	Article	IF	Citations
199	Structural phase transitions in niobium oxide nanocrystals. Phase Transitions, 2015, 88, 897-906.	0.6	4
200	Biomimetic hierarchical growth and self-assembly of hydroxyapatite/titania nanocomposite coatings and their biomedical applications. Applied Surface Science, 2015, 332, 368-378.	3.1	13
201	Incubation and aging effect on cassiterite type tetragonal rutile SnO2 nanocrystals. Journal of Materials Science: Materials in Electronics, 2015, 26, 2305-2310.	1.1	4
202	Nd2O3: novel synthesis and characterization. Journal of Sol-Gel Science and Technology, 2015, 73, 511-517.	1.1	54
203	An environment benign biomimetic synthesis of mesoporous NiO concentric stacked doughnuts architecture. Microporous and Mesoporous Materials, 2015, 207, 185-194.	2.2	4
204	Structural, compositional and textural properties of monoclinic α-Bi2O3 nanocrystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 144, 281-286.	2.0	21
205	Macroparticles Reduction Using Filter Free Cathodic Vacuum Arc Deposition Method in ZnO Thin Films. Journal of Nanoscience and Nanotechnology, 2015, 15, 2523-2530.	0.9	4
206	Facile and novel synthetic method to prepare nano molybdenum and its catalytic activity. IET Nanobiotechnology, 2015, 9, 201-208.	1.9	2
207	Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 250-258.	2.0	138
208	High Aspect Ratio Hydroxyapatite Nanorods Formed by Polymer Assisted Synthesis. Applied Mechanics and Materials, 2014, 508, 52-55.	0.2	0
209	Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnology, 2014, 8, 133-137.	1.9	138
210	Electrical measurement of PVA/graphene nanofibers for transparent electrode applications. Synthetic Metals, 2014, 191, 113-119.	2.1	35
211	Chitosan-incorporated different nanocomposite HPMC films for food preservation. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	40
212	Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Materials Science and Engineering C, 2014, 41, 17-27.	3.8	261
213	Effect of silica nanoparticles on microbial biomass and silica availability in maize rhizosphere. Biotechnology and Applied Biochemistry, 2014, 61, 668-675.	1.4	48
214	Enhancement of UV Property on Cotton Fabric by TiO ₂ Nanorods. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 748-758.	0.6	5
215	Novel Zirconium Nitride and Hydroxyapatite Nanocomposite Coating: Detailed Analysis and Functional Properties. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9850-9857.	4.0	42
216	Augmented biocontrol action of silica nanoparticles and Pseudomonas fluorescens bioformulant in maize (Zea mays L.). RSC Advances, 2014, 4, 8461.	1.7	37

#	Article	IF	Citations
217	Inorganic complex intermediate Co ₃ O ₄ nanostructures using green ligation from natural waste resources. RSC Advances, 2014, 4, 44495-44499.	1.7	8
218	Rice husk ash nanosilica to inhibit human breast cancer cell line (3T3). Journal of Sol-Gel Science and Technology, 2014, 72, 198-205.	1.1	5
219	Foliar Application of Silica Nanoparticles on the Phytochemical Responses of Maize (<i>Zea mays</i>) Tj ETQq1 1 Metal Chemistry, 2014, 44, 1128-1131.	0.784314 0.6	1 rgBT /Over 73
220	Rambutan (Nephelium lappaceum L.) peel extract assisted biomimetic synthesis of nickel oxide nanocrystals. Materials Letters, 2014, 128, 170-174.	1.3	78
221	High-purity nano silica powder from rice husk using a simple chemical method. Journal of Experimental Nanoscience, 2014, 9, 272-281.	1.3	151
222	Production of Al ₂ O ₃ â€6tabilized Tetragonal ZrO ₂ Nanoparticles for Thermal Barrier Coating. International Journal of Applied Ceramic Technology, 2013, 10, 887-899.	1.1	21
223	Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnology, 2013, 7, 70-77.	1.9	139
224	Nano Silicon from Nano Silica Using Natural Resource (Rha) for Solar Cell Fabrication. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 1178-1193.	0.8	51
225	Screening of in vitro cytotoxicity, antioxidant potential and bioactivity of nano- and micro-ZrO2 and -TiO2 particles. Ecotoxicology and Environmental Safety, 2013, 93, 191-197.	2.9	62
226	Effect of thermal treatment on hydrophobicity of methyl-functionalised hybrid nano-silica particles. Materials Letters, 2013, 90, 68-71.	1.3	14
227	Impact of Nano and Bulk ZrO ₂ , TiO ₂ Particles on Soil Nutrient Contents and PGPR. Journal of Nanoscience and Nanotechnology, 2013, 13, 678-685.	0.9	38
228	Preparation and Characterization of Nano-Hydroxyapatite Nanomaterials for Liver Cancer Cell Treatment. Journal of Nanoscience and Nanotechnology, 2013, 13, 1631-1638.	0.9	19
229	Enhanced Functional Properties of ZrO2/SiO2 Hybrid Nanosol Coated Cotton Fabrics. Journal of Nanoscience and Nanotechnology, 2013, 13, 4017-4024.	0.9	18
230	Application of silica nanoparticles for increased silica availability in maize., 2013,,.		10
231	Enhancement of Discharge Capacity of Mg/MnO ₂ Primary Cell with Nano-MnO ₂ as Cathode. Science of Advanced Materials, 2013, 5, 1372-1376.	0.1	8
232	Catalytic Effect of Iron Nanoparticles on Heterocyst, Protein and Chlorophyll Content of Anabaena sp International Journal of Green Nanotechnology, 2012, 4, 326-338.	0.3	9
233	Silica Nanoparticles for Increased Silica Availability in Maize (Zea mays. L) Seeds Under Hydroponic Conditions. Current Nanoscience, 2012, 8, 902-908.	0.7	173
234	Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	171

#	Article	IF	Citations
235	Influence of sintering temperature and pH on the phase transformation, particle size and anti-reflective properties of RHA nano silica powders. Phase Transitions, 2012, 85, 1109-1124.	0.6	14
236	Influence of Nano Nutrients on Heterocyst-Forming Cyanobacterium (i) Anabaena ambigua Rao (i). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 1234-1239.	0.6	10
237	Influence of Nanosilica Powder on the Growth of Maize Crop (<i>Zea Mays</i> L.). International Journal of Green Nanotechnology, 2011, 3, 180-190.	0.3	92
238	A New Approach to Preparing Crystalline Nano Molybdenum Particles. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 309-314.	0.6	3
239	Anomalies of ultrasonic velocities, attenuation and elastic moduli in Nd $1\hat{a}^2$ x Sr x MnO 3 perovskite manganite materials. Journal of Magnetism and Magnetic Materials, 2009, 321, 3611-3620.	1.0	30
240	Green Synthesis of Zinc Oxide Nanoparticles. Advanced Materials Research, 0, 952, 137-140.	0.3	15
241	Green Synthesis of Magnesium Oxide Nanoparticles. Advanced Materials Research, 0, 952, 141-144.	0.3	71
242	Green Synthesis of Spinel Magnetite Iron Oxide Nanoparticles. Advanced Materials Research, 0, 1051, 39-42.	0.3	60
243	Antibacterial and Wash Durability Properties of Untreated and Treated Cotton Fabric Using MgO and NiO Nanoparticles. Applied Mechanics and Materials, 0, 508, 48-51.	0.2	7
244	A Comparative Study on Antibacterial and Wash Durability Behaviour of ZnO and CuO Nanoparticles Treated Cotton Fabric Using Sodium Alginate as Cross Linker. Applied Mechanics and Materials, 0, 508, 44-47.	0.2	3
245	Baddeleyite Type Monoclinic Zirconium Oxide Nanocrystals Formation. Advanced Materials Research, 0, 1102, 79-82.	0.3	0
246	Mapping and Scientometric Measures on Research Publications of Energy Storage and Conversion. Topics in Catalysis, 0, , 1.	1.3	0