Richard D Oleschuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8514034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trapping of Bead-Based Reagents within Microfluidic Systems:Â On-Chip Solid-Phase Extraction and Electrochromatography. Analytical Chemistry, 2000, 72, 585-590.	6.5	382
2	Nanoelectrospray emitters: Trends and perspective. Mass Spectrometry Reviews, 2009, 28, 918-936.	5.4	131
3	Analytical microdevices for mass spectrometry. TrAC - Trends in Analytical Chemistry, 2000, 19, 379-388.	11.4	126
4	Advances in Microchip Liquid Chromatography. Analytical Chemistry, 2018, 90, 283-301.	6.5	69
5	Microchip-based capillary electrochromatography using packed beds. Electrophoresis, 2003, 24, 3018-3025.	2.4	55
6	Digital Microfluidic Platform for Human Plasma Protein Depletion. Analytical Chemistry, 2014, 86, 8466-8472.	6.5	46
7	Aging Effects on Oxidized and Amine-Modified Poly(dimethylsiloxane) Surfaces Studied with Chemical Force Titrations:  Effects on Electroosmotic Flow Rate in Microfluidic Channels. Langmuir, 2003, 19, 9792-9798.	3.5	44
8	Magnetic droplet actuation on natural (Colocasia leaf) and fluorinated silica nanoparticle superhydrophobic surfaces. Sensors and Actuators B: Chemical, 2015, 220, 5-12.	7.8	41
9	Reliable identification of prostate cancer using mass spectrometry metabolomic imaging in needle core biopsies. Laboratory Investigation, 2019, 99, 1561-1571.	3.7	35
10	Fabrication of Patterned Superhydrophobic/Hydrophilic Substrates by Laser Micromachining for Small Volume Deposition and Droplet-Based Fluorescence. ACS Applied Materials & Interfaces, 2017, 9, 7629-7636.	8.0	34
11	lce recrystallization inhibition activity varies with ice-binding protein type and does not correlate with thermal hysteresis. Cryobiology, 2021, 99, 28-39.	0.7	29
12	Characterization of microstructured fibre emitters: in pursuit of improved nano electrospray ionization performance. Analyst, The, 2012, 137, 4150.	3.5	26
13	3D-Printed Paper Spray Ionization Cartridge with Integrated Desolvation Feature and Ion Optics. Analytical Chemistry, 2017, 89, 11419-11426.	6.5	25
14	High-capacity ice-recrystallization endpoint assay employing superhydrophobic coatings that is equivalent to the â€ ⁻ splat' assay. Cryobiology, 2018, 81, 138-144.	0.7	21
15	Magnetically manipulated droplet splitting on a 3D-printed device to carry out a complexometric assay. Lab on A Chip, 2017, 17, 2640-2649.	6.0	20
16	The power of fluorescence excitation–emission matrix (EEM) spectroscopy in the identification and characterization of complex mixtures of fluorescent silver clusters. RSC Advances, 2018, 8, 42080-42086.	3.6	20
17	Organic-free, versatile sessile droplet microfluidic device for chemical separation using an aqueous two-phase system. Lab on A Chip, 2019, 19, 654-664.	6.0	20
18	Electrowetting on superhydrophobic natural (Colocasia) and synthetic surfaces based upon fluorinated silica nanoparticles. Microelectronic Engineering, 2015, 148, 91-97.	2.4	19

RICHARD D OLESCHUK

#	Article	IF	CITATIONS
19	Facile Actuation of Organic and Aqueous Droplets on Slippery Liquid-Infused Porous Surfaces for the Application of On-Chip Polymer Synthesis and Liquid–Liquid Extraction. ACS Applied Materials & Interfaces, 2019, 11, 28327-28335.	8.0	19
20	Leveraging 3D printing to enhance mass spectrometry: A review. Analytica Chimica Acta, 2021, 1166, 338332.	5.4	17
21	"Particle-Free―Magnetic Actuation of Droplets on Superhydrophobic Surfaces Using Dissolved Paramagnetic Salts. Analytical Chemistry, 2016, 88, 9486-9494.	6.5	16
22	Plastic LC/MS microchip with an embedded microstructured fibre having the dual role of a frit and a nanoelectrospray emitter. Microfluidics and Nanofluidics, 2014, 16, 73-81.	2.2	14
23	A study of the methylene/perfluormethylene selectivity of porous polymer monolithic stationary phases exhibiting different fluorous/hydrophobic content. Journal of Chromatography A, 2014, 1329, 61-70.	3.7	13
24	Multiple electrosprays generated from a single polycarbonate microstructured fibre. Journal of Mass Spectrometry, 2012, 47, 271-276.	1.6	12
25	Controlled, synchronized actuation of microdroplets by gravity in a superhydrophobic, 3D-printed device. Analytica Chimica Acta, 2017, 988, 50-57.	5.4	11
26	Light activated synthesis of the atomically precise fluorescent silver cluster Ag18(Capt)14. Nanoscale, 2019, 11, 20522-20526.	5.6	11
27	Polymer microstructures with high aspect ratio and low polydispersity using photonic fibres as templates. Journal of Materials Chemistry, 2012, 22, 8208.	6.7	10
28	Facile actuation of aqueous droplets on a superhydrophobic surface using magnetotactic bacteria for digital microfluidic applications. Analytica Chimica Acta, 2019, 1085, 107-116.	5.4	10
29	Detection of Opioids on Mail/Packages Using Open Port Interface Mass Spectrometry (OPI-MS). Journal of the American Society for Mass Spectrometry, 2020, 31, 2370-2378.	2.8	10
30	CO ₂ -modified solvents for chromatographic separation. Green Chemistry, 2017, 19, 1757-1765.	9.0	8
31	Carbonated water for the separation of carboxylic compounds: a chromatography approach. Green Chemistry, 2018, 20, 440-448.	9.0	7
32	Fabrication of axicon microlenses on capillaries and microstructured fibers by wet etching. Optics Express, 2016, 24, 20346.	3.4	6
33	Hydrophobic/hydrophilic patterned surfaces for directed evaporative preconcentration. Analyst, The, 2020, 145, 643-650.	3.5	6
34	The liquid micro junction-surface sampling probe (LMJ-SSP); a versatile ambient mass spectrometry interface. Analyst, The, 2021, 146, 6365-6378.	3.5	6
35	A Microstructured Fiber with Defined Borosilicate Regions to Produce a Radial Micronozzle Array for Nanoelectrospray Ionization. Scientific Reports, 2016, 6, 21279.	3.3	5
36	An investigation into the kinematics of magnetically driven droplets on various (super)hydrophobic surfaces and their application to an automated multi-droplet platform. Analytical and Bioanalytical Chemistry, 2019, 411, 5393-5403.	3.7	5

RICHARD D OLESCHUK

#	Article	IF	CITATIONS
37	Open sessile droplet viscometer with low sample consumption. Lab on A Chip, 2020, 20, 1869-1876.	6.0	5
38	Portable microfluidic platform employing Young–Laplace pumping enabling flowrate controlled applications. Microfluidics and Nanofluidics, 2021, 25, 1.	2.2	5
39	Fabrication and characterization of laser-heated, multiplexed electrospray emitter. Analyst, The, 2021, 146, 2834-2841.	3.5	3
40	Discontinuously Dewetting Solvent Arrays: Droplet Formation and Poly-Synchronous Surface Extraction for Mass Spectrometry Imaging Applications. Analytical Chemistry, 2022, 94, 7219-7228.	6.5	2
41	Rapid Mass Spectrometric Calibration and Standard Addition Using Hydrophobic/Hydrophilic Patterned Surfaces and Discontinuous Dewetting. Journal of the American Society for Mass Spectrometry, 2022, 33, 660-670.	2.8	0
42	Biochemical Signal Detection in Miniaturized Fluidic Systems by Integrated Microresonator. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0