Olawale G Raimi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8513545/publications.pdf

Version: 2024-02-01

759233 940533 16 605 12 16 citations h-index g-index papers 20 20 20 937 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature, 2010, 464, 728-732.	27.8	272
2	Structure of PINK1 and mechanisms of Parkinson's disease-associated mutations. ELife, 2017, 6, .	6.0	71
3	<i>N</i> -Myristoyltransferase Is a Cell Wall Target in <i>Aspergillus fumigatus</i> . ACS Chemical Biology, 2015, 10, 1425-1434.	3.4	38
4	Dual functionality of O -GlcNAc transferase is required for Drosophila development. Open Biology, 2015, 5, 150234.	3.6	32
5	Genetic and structural validation of <i><scp>A</scp>spergillus fumigatus</i> â€ <scp>UDP</scp> â€ <i><scp>N</scp></i> âecetylglucosamine pyrophosphorylase as an antifungal target. Molecular Microbiology, 2013, 89, 479-493.	2.5	29
6	Structural and kinetic differences between human and <i>Aspergillus fumigatus</i> <scp>D</scp> -glucosamine-6-phosphate <i>N</i> -acetyltransferase. Biochemical Journal, 2008, 415, 217-223.	3.7	26
7	A Novel Allosteric Inhibitor of the Uridine Diphosphate <i>N</i> -Acetylglucosamine Pyrophosphorylase from <i>Trypanosoma brucei</i> . ACS Chemical Biology, 2013, 8, 1981-1987.	3.4	23
8	Genetic and structural validation of <i>Aspergillus fumigatus N</i> -acetylphosphoglucosamine mutase as an antifungal target. Bioscience Reports, 2013, 33, .	2.4	22
9	Mapping of a N-terminal α-helix domain required for human PINK1 stabilization, Serine228 autophosphorylation and activation in cells. Open Biology, 2022, 12, 210264.	3.6	21
10	A mechanism-inspired UDP- <i>N</i> -acetylglucosamine pyrophosphorylase inhibitor. RSC Chemical Biology, 2020, 1, 13-25.	4.1	20
11	Targeting a critical step in fungal hexosamine biosynthesis. Journal of Biological Chemistry, 2020, 295, 8678-8691.	3.4	16
12	Glucoseâ€6â€phosphate as a probe for the glucosamineâ€6â€phosphate <i>N</i> à€acetyltransferase Michaelis complex. FEBS Letters, 2007, 581, 5597-5600.	2.8	15
13	Evidence for substrate-assisted catalysis in <i>N</i> -acetylphosphoglucosamine mutase. Biochemical Journal, 2018, 475, 2547-2557.	3.7	7
14	Genetic and structural validation of phosphomannomutase as a cell wall target in <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2021, 116, 245-259.	2.5	7
15	A missense mutation in a patient with developmental delay affects the activity and structure of the hexosamine biosynthetic pathway enzyme AGX1. FEBS Letters, 2021, 595, 110-122.	2.8	3
16	Genetic validation of Aspergillus fumigatus phosphoglucomutase as a viable therapeutic target in invasive aspergillosis. Journal of Biological Chemistry, 2022, 298, 102003.	3.4	3