Jeffrey M Peters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8513341/publications.pdf

Version: 2024-02-01

		15504	12946
165	17,943	65	131
papers	citations	h-index	g-index
166	166	166	14721
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Peroxisome proliferator–activated receptor α mediates the adaptive response to fasting. Journal of Clinical Investigation, 1999, 103, 1489-1498.	8.2	1,423
2	The PPARα–leukotriene B4 pathway to inflammation control. Nature, 1996, 384, 39-43.	27.8	1,329
3	Peroxisome Proliferator-activated Receptor α Negatively Regulates the Vascular Inflammatory Gene Response by Negative Cross-talk with Transcription Factors NF-ήB and AP-1. Journal of Biological Chemistry, 1999, 274, 32048-32054.	3.4	982
4	Altered Constitutive Expression of Fatty Acid-metabolizing Enzymes in Mice Lacking the Peroxisome Proliferator-activated Receptor $\hat{l}\pm$ (PPAR $\hat{l}\pm$). Journal of Biological Chemistry, 1998, 273, 5678-5684.	3.4	777
5	Growth, Adipose, Brain, and Skin Alterations Resulting from Targeted Disruption of the Mouse Peroxisome Proliferator-Activated Receptor $\hat{I}^2(\hat{I})$. Molecular and Cellular Biology, 2000, 20, 5119-5128.	2.3	615
6	PPARα Agonist-Induced Rodent Tumors: Modes of Action and Human Relevance. Critical Reviews in Toxicology, 2003, 33, 655-780.	3.9	549
7	Expression of Putative Fatty Acid Transporter Genes Are Regulated by Peroxisome Proliferator-activated Receptor $\hat{I}\pm$ and \hat{I}^3 Activators in a Tissue- and Inducer-specific Manner. Journal of Biological Chemistry, 1998, 273, 16710-16714.	3.4	475
8	PPARÂ regulates glucose metabolism and insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3444-3449.	7.1	451
9	Alterations in Lipoprotein Metabolism in Peroxisome Proliferator-activated Receptor α-deficient Mice. Journal of Biological Chemistry, 1997, 272, 27307-27312.	3.4	388
10	Impaired skin wound healing in peroxisome proliferator–activated receptor (PPAR)α and PPARβ mutant mice. Journal of Cell Biology, 2001, 154, 799-814.	5.2	388
11	The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nature Reviews Cancer, 2012, 12, 181-195.	28.4	379
12	Xenobiotic Metabolism, Disposition, and Regulation by Receptors: From Biochemical Phenomenon to Predictors of Major Toxicities. Toxicological Sciences, 2011, 120, S49-S75.	3.1	294
13	Mechanism of Action of the Nongenotoxic Peroxisome Proliferators: Role of the Peroxisome Proliferator-Activated Receptor A. Journal of the National Cancer Institute, 1998, 90, 1702-1709.	6.3	282
14	Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. Journal of Lipid Research, 2006, 47, 2028-2041.	4.2	279
15	Polyunsaturated Fatty Acid Suppression of Hepatic Fatty Acid Synthase and S14 Gene Expression Does Not Require Peroxisome Proliferator-activated Receptor α. Journal of Biological Chemistry, 1997, 272, 26827-26832.	3.4	244
16	Receptor and Nonreceptor-Mediated Organ-Specific Toxicity of Di(2-ethylhexyl)phthalate (DEHP) in Peroxisome Proliferator-Activated Receptorα-Null Mice. Toxicologic Pathology, 1998, 26, 240-246.	1.8	236
17	The Toxicology of Ligands for Peroxisome Proliferator-Activated Receptors (PPAR). Toxicological Sciences, 2006, 90, 269-295.	3.1	232
18	Peroxisome proliferator-activated receptor- \hat{l}_{\pm} and liver cancer: where do we stand?. Journal of Molecular Medicine, 2005, 83, 774-785.	3.9	229

#	Article	IF	Citations
19	Modes of Action and Species-Specific Effects of Di-(2-ethylhexyl)Phthalate in the Liver. Critical Reviews in Toxicology, 2006, 36, 459-479.	3.9	225
20	Peroxisome proliferator-activated receptor? protects against alcohol-induced liver damage. Hepatology, 2004, 40, 972-980.	7.3	214
21	Peroxisomal and Mitochondrial Fatty Acid \hat{l}^2 -Oxidation in Mice Nullizygous for Both Peroxisome Proliferator-activated Receptor $\hat{l}\pm$ and Peroxisomal Fatty Acyl-CoA Oxidase. Journal of Biological Chemistry, 1999, 274, 19228-19236.	3.4	210
22	Peroxisome proliferator–activated receptor-δattenuates colon carcinogenesis. Nature Medicine, 2004, 10, 481-483.	30.7	198
23	Transcriptional network governing the angiogenic switch in human pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12890-12895.	7.1	198
24	Mode of action framework analysis for receptor-mediated toxicity: The peroxisome proliferator-activated receptor alpha (PPAR $<$ b $>$ Î \pm $<$ /b $>$) as a case study. Critical Reviews in Toxicology, 2014, 44, 1-49.	3.9	191
25	Adaptive Increase in Pyruvate Dehydrogenase Kinase 4 during Starvation Is Mediated by Peroxisome Proliferator-Activated Receptor \hat{l}_{\pm} . Biochemical and Biophysical Research Communications, 2001, 287, 391-396.	2.1	186
26	Activation of Mouse and Human Peroxisome Proliferator-Activated Receptors (PPARs) by Phthalate Monoesters. Toxicological Sciences, 2004, 82, 170-182.	3.1	185
27	Lipid metabolism and lipophagy in cancer. Biochemical and Biophysical Research Communications, 2018, 504, 582-589.	2.1	175
28	Etomoxir-induced PPARα-modulated enzymes protect during acute renal failure. American Journal of Physiology - Renal Physiology, 2000, 278, F667-F675.	2.7	144
29	The role of peroxisome proliferator-activated receptor- \hat{I}^2/\hat{I} in epithelial cell growth and differentiation. Cellular Signalling, 2006, 18, 9-20.	3.6	140
30	Quantitative expression patterns of peroxisome proliferator-activated receptor- \hat{l}^2/\hat{l} (PPAR \hat{l}^2/\hat{l}) protein in mice. Biochemical and Biophysical Research Communications, 2008, 371, 456-461.	2.1	132
31	Influence of conjugated linoleic acid on body composition and target gene expression in peroxisome proliferator-activated receptor \hat{I} ±-null mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1533, 233-242.	2.4	131
32	The human peroxisome proliferator-activated receptor ?? gene: identification and functional characterization of two natural allelic variants. Pharmacogenetics and Genomics, 2000, 10, 321-333.	5.7	128
33	Fibrates Suppress Fibrinogen Gene Expression in Rodents Via Activation of the Peroxisome Proliferator-Activated Receptor-. Blood, 1999, 93, 2991-2998.	1.4	127
34	Ligand Activation of Peroxisome Proliferator–Activated Receptor β Inhibits Colon Carcinogenesis. Cancer Research, 2006, 66, 4394-4401.	0.9	125
35	Peroxisome proliferator-activated receptor \hat{A} is restricted to hepatic parenchymal cells, not Kupffer cells: implications for the mechanism of action of peroxisome proliferators in hepatocarcinogenesis. Carcinogenesis, 2000, 21, 823-826.	2.8	122
36	Peroxisome Proliferator-activated Receptor- \hat{l} ± Regulates Lipid Homeostasis, but Is Not Associated with Obesity. Journal of Biological Chemistry, 2001, 276, 39088-39093.	3.4	119

#	Article	IF	CITATIONS
37	Role of peroxisome proliferator-activated receptor-Â (PPARÂ) in bezafibrate-induced hepatocarcinogenesis and cholestasis. Carcinogenesis, 2004, 26, 219-227.	2.8	119
38	Regulation of Human ApoA-I by Gemfibrozil and Fenofibrate Through Selective Peroxisome Proliferator-Activated Receptor α Modulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 585-591.	2.4	116
39	Protective effects of a peroxisome proliferator-activated receptor- $\hat{l}^2\hat{l}$ agonist in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2005, 168, 65-75.	2.3	114
40	The PPARα-dependent rodent liver tumor response is not relevant to humans: addressing misconceptions. Archives of Toxicology, 2018, 92, 83-119.	4.2	112
41	Reduced Adiposity and Liver Steatosis by Stearoyl-CoA Desaturase Deficiency Are Independent of Peroxisome Proliferator-activated Receptor-α. Journal of Biological Chemistry, 2004, 279, 35017-35024.	3.4	108
42	Metabolism of Chloroform by Cytochrome P450 2E1 Is Required for Induction of Toxicity in the Liver, Kidney, and Nose of Male Mice. Toxicology and Applied Pharmacology, 1999, 160, 120-126.	2.8	107
43	PPARÂ influences susceptibility to DMBA-induced mammary, ovarian and skin carcinogenesis. Carcinogenesis, 2004, 25, 1747-1755.	2.8	105
44	PPARδ status and Apc-mediated tumourigenesis in the mouse intestine. Oncogene, 2004, 23, 8992-8996.	5.9	105
45	Role of peroxisome-proliferator-activated receptor $\hat{I}^2\hat{I}'$ (PPAR $\hat{I}^2\hat{I}'$) in gastrointestinal tract function and disease. Clinical Science, 2008, 115, 107-127.	4.3	102
46	Bezafibrate is a dual ligand for PPARÎ \pm and PPARÎ 2 : studies using null mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2003, 1632, 80-89.	2.4	99
47	The oxidative stress mediator 4-hydroxynonenal is an intracellular agonist of the nuclear receptor peroxisome proliferator-activated receptor- $\hat{l}^2\hat{l}'$ (PPAR $\hat{l}^2\hat{l}'$). Free Radical Biology and Medicine, 2007, 42, 1155-1164.	2.9	99
48	Nrf2- and PPARα-Mediated Regulation of Hepatic Mrp Transporters after Exposure to Perfluorooctanoic Acid and Perfluorodecanoic Acid. Toxicological Sciences, 2008, 106, 319-328.	3.1	96
49	Deregulation of tumor angiogenesis and blockade of tumor growth in PPARβ-deficient mice. EMBO Journal, 2007, 26, 3686-3698.	7.8	94
50	PPARβĴδ potentiates PPARγâ€stimulated adipocyte differentiation. FASEB Journal, 2004, 18, 1477-1479.	0.5	93
51	CYP2E1 is not involved in early alcohol-induced liver injury. American Journal of Physiology - Renal Physiology, 1999, 277, G1259-G1267.	3.4	89
52	Expression of Base Excision DNA Repair Genes Is a Sensitive Biomarker for in Vivo Detection of Chemical-induced Chronic Oxidative Stress. Cancer Research, 2004, 64, 1050-1057.	0.9	89
53	Phthalates Rapidly Increase Production of Reactive Oxygen Species in Vivo: Role of Kupffer Cells. Molecular Pharmacology, 2001, 59, 744-750.	2.3	86
54	Peroxisome Proliferator-activated Receptor \hat{l}^2 (\hat{l})-dependent Regulation of Ubiquitin C Expression Contributes to Attenuation of Skin Carcinogenesis. Journal of Biological Chemistry, 2004, 279, 23719-23727.	3.4	85

#	Article	IF	Citations
55	Peroxisome Proliferator-activated Receptor βſſ Regulates Very Low Density Lipoprotein Production and Catabolism in Mice on a Western Diet. Journal of Biological Chemistry, 2004, 279, 20874-20881.	3.4	85
56	Peroxisome Proliferator–Activated Receptor-δAgonist Enhances Vasculogenesis by Regulating Endothelial Progenitor Cells Through Genomic and Nongenomic Activations of the Phosphatidylinositol 3-Kinase/Akt Pathway. Circulation, 2008, 118, 1021-1033.	1.6	85
57	Peroxisome Proliferator-activated Receptor-β/l´ Inhibits Epidermal Cell Proliferation by Down-regulation of Kinase Activity. Journal of Biological Chemistry, 2005, 280, 9519-9527.	3.4	81
58	NTP ERHR expert panel report on the developmental toxicity of soy infant formula. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2011, 92, 421-468.	1.4	81
59	Sorting out the functional role(s) of peroxisome proliferator-activated receptor- \hat{l}^2/\hat{l} (PPAR \hat{l}^2/\hat{l}) in cell proliferation and cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2009, 1796, 230-241.	7.4	80
60	Di(2-Ethylhexyl) phthalate induces a functional zinc deficiency during pregnancy and teratogenesis that is independent of peroxisome proliferator-activated receptor- \hat{l}_{\pm} , 1997, 56, 311-316.		79
61	Peroxisome proliferator-activated receptor-l²/l´ protects against chemically induced liver toxicity in mice. Hepatology, 2007, 47, 225-235.	7.3	79
62	Ligand activation of peroxisome proliferator-activated receptor- \hat{l}^2/\hat{l}' (PPAR \hat{l}^2/\hat{l}') inhibits cell growth of human N/TERT-1 keratinocytes. Cellular Signalling, 2007, 19, 1163-1171.	3.6	77
63	Effect of Peroxisome Proliferator-Activated Receptor Alpha Activators on Tumor Necrosis Factor Expression in Mice during Endotoxemia. Infection and Immunity, 1999, 67, 3488-3493.	2.2	77
64	Ligand Activation of Peroxisome Proliferator–Activated Receptor β/δ (PPARβ/δ) Attenuates Carbon Tetrachloride Hepatotoxicity by Downregulating Proinflammatory Gene Expression. Toxicological Sciences, 2008, 105, 418-428.	3.1	76
65	M-CSF from Cancer Cells Induces Fatty Acid Synthase and PPARβ/δ Activation in Tumor Myeloid Cells, Leading to Tumor Progression. Cell Reports, 2015, 10, 1614-1625.	6.4	72
66	Peroxisome Proliferator-activated Receptor \hat{l}_{\pm} Is Not Rate-limiting for the Lipoprotein-lowering Action of Fish Oil. Journal of Biological Chemistry, 2001, 276, 4634-4639.	3.4	70
67	Establishing the Role of PPARβ/δ in Carcinogenesis. Trends in Endocrinology and Metabolism, 2015, 26, 595-607.	7.1	69
68	The Aryl Hydrocarbon Receptor Directly Regulates Expression of the Potent Mitogen Epiregulin. Toxicological Sciences, 2006, 89, 75-82.	3.1	68
69	Peroxisome proliferator-activated receptor- \hat{l}^2/\hat{l} (PPAR \hat{l}^2/\hat{l}) ligands do not potentiate growth of human cancer cell lines. Carcinogenesis, 2007, 28, 2641-2649.	2.8	65
70	COX-2 suppresses tissue factor expression via endocannabinoid-directed PPARÎ activation. Journal of Experimental Medicine, 2007, 204, 2053-2061.	8.5	64
71	Peroxisome proliferator-activated receptor- $\hat{l}^2\hat{l}$ (PPAR $\hat{l}^2\hat{l}$) ligands inhibit growth of UACC903 and MCF7 human cancer cell lines. Toxicology, 2008, 243, 236-243.	4.2	63
72	Ligand activation of peroxisome proliferator-activated receptor \hat{l}^2/\hat{l} (PPAR \hat{l}^2/\hat{l}) and inhibition of cyclooxygenase 2 (COX2) attenuate colon carcinogenesis through independent signaling mechanisms. Carcinogenesis, 2008, 29, 169-176.	2.8	61

#	Article	lF	Citations
73	Suppression of mouse hepatocyte apoptosis by peroxisome proliferators: role of PPARα and TNFα. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 448, 193-200.	1.0	59
74	Activation of Peroxisome Proliferator-Activated Receptor- \hat{l}^2/\hat{l}' (PPAR- \hat{l}^2/\hat{l}') Inhibits Human Breast Cancer Cell Line Tumorigenicity. Molecular Cancer Therapeutics, 2014, 13, 1008-1017.	4.1	56
75	Evidence for Peroxisome Proliferator-Activated Receptor (PPAR)α-Independent Peroxisome Proliferation: Effects of PPARγ/δ-Specific Agonists in PPARα-Null Mice. Molecular Pharmacology, 2000, 58, 470-476.	2.3	55
76	Ligand Activation of Peroxisome Proliferator-Activated Receptor- \hat{l}^2/\hat{l}' Inhibits Cell Proliferation in Human HaCaT Keratinocytes. Molecular Pharmacology, 2008, 74, 1429-1442.	2.3	55
77	PPARÎ 2 δ Activation Induces Enteroendocrine L Cell GLP-1 Production. Gastroenterology, 2011, 140, 1564-1574.	1.3	55
78	Interplay Between the Host, the Human Microbiome, and Drug Metabolism. Human Genomics, 2019, 13, 27.	2.9	52
79	Evidence against the peroxisome proliferator-activated receptor $\hat{l}\pm$ (PPAR $\hat{l}\pm$) as the mediator for polyunsaturated fatty acid suppression of hepatic L-pyruvate kinase gene transcription. Journal of Lipid Research, 2000, 41, 742-751.	4.2	52
80	Cellular and Pharmacological Selectivity of the Peroxisome Proliferator-Activated Receptor-β/δ Antagonist GSK3787. Molecular Pharmacology, 2010, 78, 419-430.	2.3	51
81	Dissecting the role of peroxisome proliferator-activated receptor- \hat{l}^2/\hat{l}' (PPAR \hat{l}^2/\hat{l}') in colon, breast, and lung carcinogenesis. Cancer and Metastasis Reviews, 2011, 30, 619-640.	5.9	51
82	In Vivo Regulation of Hepatitis B Virus Replication by Peroxisome Proliferators. Journal of Virology, 1999, 73, 10377-10386.	3.4	51
83	The Effect of Valproic Acid on 65Zn Distribution in the Pregnant Rat. Journal of Nutrition, 1989, 119, 607-611.	2.9	49
84	Involvement of the peroxisome proliferator-activated receptor \hat{l}_{\pm} in regulating long-chain acyl-CoA thioesterases. Journal of Lipid Research, 2000, 41, 814-823.	4.2	46
85	PPARÎ 2 $^{\hat{l}}$ Protects Against Experimental Colitis Through a Ligand-Independent Mechanism. Digestive Diseases and Sciences, 2007, 52, 2912-2919.	2.3	45
86	Why Toxic Equivalency Factors Are Not Suitable for Perfluoroalkyl Chemicals. Chemical Research in Toxicology, 2011, 24, 1601-1609.	3.3	44
87	Perfluorooctane sulfonate alters gut microbiota-host metabolic homeostasis in mice. Toxicology, 2020, 431, 152365.	4.2	43
88	Influence of peroxisome proliferator-activated receptor \hat{l}_{\pm} on ubiquinone biosynthesis. Journal of Molecular Biology, 2000, 297, 607-614.	4.2	42
89	Ligand activation of peroxisome proliferator-activated receptor \hat{l}^2/\hat{l}^2 (PPAR \hat{l}^2/\hat{l}^2) inhibits chemically induced skin tumorigenesis. Carcinogenesis, 2008, 29, 2406-2414.	2.8	40
90	Analysis of the peroxisome proliferator-activated receptor- \hat{l}^2/\hat{l} (PPAR \hat{l}^2/\hat{l}) cistrome reveals novel co-regulatory role of ATF4. BMC Genomics, 2012, 13, 665.	2.8	40

#	Article	IF	CITATIONS
91	Aryl Hydrocarbon Receptor Antagonism Attenuates Growth Factor Expression, Proliferation, and Migration in Fibroblast-Like Synoviocytes from Patients with Rheumatoid Arthritis. Journal of Pharmacology and Experimental Therapeutics, 2014, 348, 236-245.	2.5	40
92	Evidence that ligand binding is a key determinant of Ah receptor-mediated transcriptional activity. Archives of Biochemistry and Biophysics, 2005, 442, 59-71.	3.0	39
93	The Nuclear Receptor Peroxisome Proliferator-activated Receptor- \hat{l}^2/\hat{l}^2 (PPAR \hat{l}^2/\hat{l}^2) Promotes Oncogene-induced Cellular Senescence through Repression of Endoplasmic Reticulum Stress. Journal of Biological Chemistry, 2014, 289, 20102-20119.	3.4	39
94	Fibrates Suppress Fibrinogen Gene Expression in Rodents Via Activation of the Peroxisome Proliferator-Activated Receptor-. Blood, 1999, 93, 2991-2998.	1.4	39
95	Hepatic regeneration in peroxisome proliferator-activated receptor α-null mice after partial hepatectomy. Hepatology Research, 2002, 22, 52-57.	3.4	38
96	A Species Difference in the Peroxisome Proliferator-Activated Receptor α-Dependent Response to the Developmental Effects of Perfluorooctanoic Acid. Toxicological Sciences, 2013, 131, 568-582.	3.1	37
97	PPARα Mediates Peroxisome Proliferator-Induced Transcriptional Repression of Nonperoxisomal Gene Expression in Mouse. Biochemical and Biophysical Research Communications, 1997, 230, 155-158.	2.1	35
98	The Evolution of Carcinogenesis. Toxicological Sciences, 2018, 165, 272-276.	3.1	35
99	Differential Hepatic Effects of Perfluorobutyrate Mediated by Mouse and Human PPAR-α. Toxicological Sciences, 2009, 110, 204-211.	3.1	34
100	Functional characterization of peroxisome proliferatorâ€activated receptorâ€Î²∫δ expression in colon cancer. Molecular Carcinogenesis, 2011, 50, 884-900.	2.7	34
101	Molecular Regulation of Carcinogenesis: Friend and Foe. Toxicological Sciences, 2018, 165, 277-283.	3.1	34
102	Regulation of peroxisome proliferatorâ€activated receptorâ€Î²Ĵſ by the APCĴβ ATENIN pathway and nonsteroidal antiinflammatory drugs. Molecular Carcinogenesis, 2009, 48, 942-952.	2.7	33
103	Peroxisome proliferator-activated receptor α protects against alcohol-induced liver damage. Hepatology, 2004, 40, 972-980.	7.3	32
104	Induction of Nuclear Translocation of Constitutive Androstane Receptor by Peroxisome Proliferator-activated Receptor α Synthetic Ligands in Mouse Liver. Journal of Biological Chemistry, 2007, 282, 36766-36776.	3.4	32
105	Stable over-expression of PPARÎ 2 Î $^\prime$ and PPARÎ 3 to examine receptor signaling in human HaCaT keratinocytes. Cellular Signalling, 2011, 23, 2039-2050.	3.6	32
106	PPARÎ 2 / $^\circ$ selectively regulates phenotypic features of age-related macular degeneration. Aging, 2016, 8, 1952-1978.	3.1	32
107	Ligand Activation of Peroxisome Proliferator $\hat{\mathbf{a}}$ \in "Activated Receptor- $\hat{\mathbf{l}}^2/\hat{\mathbf{l}}$ " and Inhibition of Cyclooxygenase-2 Enhances Inhibition of Skin Tumorigenesis. Toxicological Sciences, 2010, 113, 27-36.	3.1	31
108	Modulation of gastrointestinal inflammation and colorectal tumorigenesis by peroxisome proliferator-activated receptor- \hat{l}^2/\hat{l} (PPAR \hat{l}^2/\hat{l}). Drug Discovery Today Disease Mechanisms, 2011, 8, e85-e93.	0.8	29

#	Article	IF	Citations
109	Effect of ligand activation of peroxisome proliferator-activated receptor-l²/lˆ (PPARl̂²/lˆ) in human lung cancer cell lines. Toxicology, 2008, 254, 112-117.	4.2	28
110	PPARδ is pro-tumorigenic in a mouse model of COX-2-induced mammary cancer. Prostaglandins and Other Lipid Mediators, 2009, 88, 97-100.	1.9	28
111	Comprehensive gene expression analysis of peroxisome proliferator-treated immortalized hepatocytes: identification of peroxisome proliferator-activated receptor alpha-dependent growth regulatory genes. Cancer Research, 2003, 63, 5767-80.	0.9	27
112	Inhibition of chemically induced skin carcinogenesis by sulindac is independent of peroxisome proliferator-activated receptor- $\hat{l}^2\hat{l}'$ (PPAR $\hat{l}^2\hat{l}$). Carcinogenesis, 2006, 27, 1105-1112.	2.8	25
113	Modulation of aryl hydrocarbon receptor (AHR)-dependent signaling by peroxisome proliferator-activated receptor \hat{l}^2/\hat{l} (PPAR \hat{l}^2/\hat{l}) in keratinocytes. Carcinogenesis, 2014, 35, 1602-1612.	2.8	24
114	Editor's Highlight: Perfluorooctane Sulfonate-Choline Ion Pair Formation: A Potential Mechanism Modulating Hepatic Steatosis and Oxidative Stress in Mice. Toxicological Sciences, 2016, 153, 186-197.	3.1	24
115	Alterations in Skin and Stratified Epithelia by Constitutively Activated PPARα. Journal of Investigative Dermatology, 2006, 126, 374-385.	0.7	23
116	Regulation of Peroxisome Proliferator–Activated Receptor-α by MDM2. Toxicological Sciences, 2009, 108, 48-58.	3.1	23
117	Chemoprevention of Chemically Induced Skin Tumorigenesis by Ligand Activation of Peroxisome Proliferatorâ \in "Activated Receptor- \hat{l}^2/\hat{l}^2 and Inhibition of Cyclooxygenase 2. Molecular Cancer Therapeutics, 2010, 9, 3267-3277.	4.1	23
118	Immunomodulatory action of dietary fish oil and targeted deletion of intestinal epithelial cell PPAR $\hat{\Gamma}$ in inflammation-induced colon carcinogenesis. American Journal of Physiology - Renal Physiology, 2012, 302, G153-G167.	3.4	22
119	Peroxisome proliferatorâ€activated receptorâ€Î²Ĵˆinhibits human neuroblastoma cell tumorigenesis by inducing p53†and SOX2â€mediated cell differentiation. Molecular Carcinogenesis, 2017, 56, 1472-1483.	2.7	22
120	Targeted disruption of peroxisomal proliferator-activated receptor \hat{l}^2 (\hat{l}) results in distinct gender differences in mouse brain phospholipid and esterified FA levels. Lipids, 2002, 37, 495-500.	1.7	21
121	Ligand activation of peroxisome proliferator-activated receptor-l²/l̂′ (PPARl̂²/l̂′) inhibits cell growth in a mouse mammary gland cancer cell line. Cancer Letters, 2010, 288, 219-225.	7.2	20
122	Targeting Peroxisome Proliferator-Activated Receptor- \hat{l}^2/\hat{l} (PPAR \hat{l}^2/\hat{l}) for Cancer Chemoprevention. Current Pharmacology Reports, 2015, 1, 121-128.	3.0	20
123	Regulation of Oligodendrocyte Progenitor Cell Maturation by PPARÎ: Effects on Bone Morphogenetic Proteins. ASN Neuro, 2010, 2, AN20090033.	2.7	19
124	Peroxisome Proliferator-Activated Receptors (PPAR) and the Mitochondrial Aldehyde Dehydrogenase (ALDH2) Promoter In Vitro and In Vivo. Alcoholism: Clinical and Experimental Research, 2001, 25, 945-952.	2.4	18
125	Comparative in vivo and in vitro analysis of possible estrogenic effects of perfluorooctanoic acid. Toxicology, 2014, 326, 62-73.	4.2	18
126	The Ron Receptor Tyrosine Kinase Regulates Macrophage Heterogeneity and Plays a Protective Role in Diet-Induced Obesity, Atherosclerosis, and Hepatosteatosis. Journal of Immunology, 2016, 197, 256-265.	0.8	18

#	Article	IF	Citations
127	Peroxisome Proliferator-activated Receptor-D (PPARD) Coordinates Mouse Spermatogenesis by Modulating Extracellular Signal-regulated Kinase (ERK)-dependent Signaling. Journal of Biological Chemistry, 2015, 290, 23416-23431.	3.4	17
128	Synthesis of isosteric selenium analog of the PPARÎ 2 \hat{l} ′ agonist GW501516 and comparison of biological activity. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4050-4052.	2.2	16
129	Peroxisome Proliferator-Activated Receptor \hat{I}^2/\hat{I} Cross Talks with E2F and Attenuates Mitosis in HRAS-Expressing Cells. Molecular and Cellular Biology, 2012, 32, 2065-2082.	2.3	16
130	Ligand activation of peroxisome proliferator-activated receptor- \hat{l}^2/\hat{l} suppresses liver tumorigenesis in hepatitis B transgenic mice. Toxicology, 2016, 363-364, 1-9.	4.2	16
131	A natural propenoic acid derivative activates peroxisome proliferator-activated receptor- \hat{l}^2/\hat{l} (PPAR \hat{l}^2/\hat{l}). Life Sciences, 2010, 86, 493-498.	4.3	15
132	Regulation of Cytochrome P450 2B10 (CYP2B10) Expression in Liver by Peroxisome Proliferator-activated Receptor- $\hat{l}^2(\hat{l}')$ Modulation of SP1 Promoter Occupancy. Journal of Biological Chemistry, 2016, 291, 25255-25263.	3.4	15
133	Perfluorooctane Sulfonate-Induced Hepatic Steatosis in Male Sprague Dawley Rats Is Not Attenuated by Dietary Choline Supplementation. Toxicological Sciences, 2017, 160, 284-298.	3.1	15
134	Inhibition of tumorigenesis by peroxisome proliferator-activated receptor (PPAR)-dependent cell cycle blocks in human skin carcinoma cells. Toxicology, 2018, 404-405, 25-32.	4.2	15
135	Effect of prenatal peroxisome proliferator-activated receptor α (PPARα) agonism on postnatal development. Toxicology, 2010, 276, 79-84.	4.2	14
136	Metabolomics. Toxicologic Pathology, 2013, 41, 410-418.	1.8	14
137	Editor's Highlight: PPARβ/l̃′ and PPARγ Inhibit Melanoma Tumorigenicity by Modulating Inflammation and Apoptosis. Toxicological Sciences, 2017, 159, 436-448.	3.1	14
138	Pretreatment with troglitazone decreases lethality during endotoxemia in mice. Journal of Endotoxin Research, 2002, 8, 307-314.	2.5	14
139	Mechanistic Evaluation of PPARα-Mediated Hepatocarcinogenesis: Are We There Yet?. Toxicological Sciences, 2008, 101, 1-3.	3.1	13
140	Growth of transgenic RAF-induced lung adenomas is increased in mice with a disrupted PPARbeta/delta gene. International Journal of Oncology, 2007, 31, 607-11.	3.3	13
141	PPARα-Dependent Induction of Liver Microsomal Esterification of Estradiol and Testosterone by a Prototypical Peroxisome Proliferator. Endocrinology, 2001, 142, 3554-3557.	2.8	12
142	PPARÎ 2 /δ modulates ethanol-induced hepatic effects by decreasing pyridoxal kinase activity. Toxicology, 2013, 311, 87-98.	4.2	12
143	Species Differences between Mouse and Human PPARÎ \pm in Modulating the Hepatocarcinogenic Effects of Perinatal Exposure to a High-Affinity Human PPARÎ \pm Agonist in Mice. Toxicological Sciences, 2021, 183, 81-92.	3.1	12
144	Sustained formation of \hat{l}_{\pm} -(4-pyridyl-1-oxide)-N-tert-butylnitrone radical adducts in mouse liver by peroxisome proliferators is dependent upon peroxisome proliferator-activated receptor- \hat{l}_{\pm} , but not NADPH oxidase. Free Radical Biology and Medicine, 2007, 42, 335-342.	2.9	10

#	Article	IF	Citations
145	A Role for PPARβ/Îîn Tumor Stroma and Tumorigenesis. PPAR Research, 2008, 2008, 1-5.	2.4	10
146	Isolation, Characterization, and Purification of Macrophages from Tissues Affected by Obesity-related Inflammation. Journal of Visualized Experiments, 2017, , .	0.3	10
147	Flipping a citrate switch on liver cancer cells. Journal of Biological Chemistry, 2017, 292, 13902-13903.	3.4	10
148	Inhibition of testicular embryonal carcinoma cell tumorigenicity by peroxisome proliferator-activated receptor- \hat{l}^2/\hat{l} - and retinoic acid receptor-dependent mechanisms. Oncotarget, 2015, 6, 36319-36337.	1.8	9
149	Differences in cell proliferation in rodent and human hepatic derived cell lines exposed to ciprofibrate. Cancer Letters, 2005, 222, 217-226.	7.2	8
150	PPARδ status and mismatch repair mediated neoplasia in the mouse intestine. BMC Cancer, 2006, 6, 113.	2.6	8
151	Unraveling the role of peroxisome proliferator-activated receptor- \hat{l}^2/\hat{l} (PPAR \hat{l}^2/\hat{l}) expression in colon carcinogenesis. Npj Precision Oncology, 2019, 3, 26.	5.4	8
152	Diminished Hepatocarcinogenesis by a Potent, High-Affinity Human PPARα Agonist in <i>PPARA</i> -Humanized Mice. Toxicological Sciences, 2021, 183, 70-80.	3.1	8
153	Omics Approaches To Probe Microbiota and Drug Metabolism Interactions. Chemical Research in Toxicology, 2016, 29, 1987-1997.	3.3	7
154	Peroxisome proliferatorâ€activated receptorâ€ <i>β</i> /(i>/(i>)Î′ modulates mast cell phenotype. Immunology, 2017, 150, 456-467.	4.4	7
155	Growth of transgenic RAF-induced lung adenomas is increased in mice with a disrupted PPARβ/δ gene. International Journal of Oncology, 2007, , .	3.3	6
156	Targeting Estrogen Receptor- \hat{l}^2 for the Prevention of Nonmelanoma Skin Cancer. Cancer Prevention Research, 2014, 7, 182-185.	1.5	6
157	The role of mouse and human peroxisome proliferator-activated receptor- $\hat{l}\pm$ in modulating the hepatic effects of perfluorooctane sulfonate in mice. Toxicology, 2022, 465, 153056.	4.2	6
158	Regulatory mechanisms mediated by peroxisome proliferatorâ€activated receptorâ€Î²/δin skin cancer. Molecular Carcinogenesis, 2019, 58, 1612-1622.	2.7	5
159	Cholestasis induces reversible accumulation of periplakin in mouse liver. BMC Gastroenterology, 2013, 13, 116.	2.0	4
160	Four-week dietary supplementation with 10- and/or 15-fold basal choline caused decreased body weight in Sprague Dawley rats. Toxicology and Industrial Health, 2017, 33, 792-801.	1.4	4
161	Targeting Peroxisome Proliferator-Activated Receptor-βʃl´ (PPARβʃl´) for the Treatment or Prevention of Alcoholic Liver Disease. Biological and Pharmaceutical Bulletin, 2021, 44, 1598-1606.	1.4	4
162	Regulation of Peroxisome Proliferator-Activated Receptors by E6-Associated Protein. PPAR Research, 2008, 2008, 1-8.	2.4	3

#	Article	IF	CITATIONS
163	PPAR action in insulin resistance unraveled by metabolomics: potential clinical implications. Genome Medicine, 2011, 3, 54.	8.2	1
164	PPARÎ \pm and Effects of TCE. Environmental Health Perspectives, 2007, 115, A14-5; authohr reply A15-6.	6.0	0
165	Regulation of Squamous Cell Carcinoma Carcinogenesis by Peroxisome Proliferator-Activated Receptors., 2011,, 223-240.		0