List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8512683/publications.pdf Version: 2024-02-01

MARIA L POZO

#	Article	IF	CITATIONS
1	Priming: Getting Ready for Battle. Molecular Plant-Microbe Interactions, 2006, 19, 1062-1071.	2.6	1,241
2	Microbial co-operation in the rhizosphere. Journal of Experimental Botany, 2005, 56, 1761-1778.	4.8	935
3	Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 2007, 10, 393-398.	7.1	919
4	Signal Signature and Transcriptome Changes of Arabidopsis During Pathogen and Insect Attack. Molecular Plant-Microbe Interactions, 2005, 18, 923-937.	2.6	909
5	Mycorrhiza-Induced Resistance and Priming of Plant Defenses. Journal of Chemical Ecology, 2012, 38, 651-664.	1.8	757
6	Recognizing Plant Defense Priming. Trends in Plant Science, 2016, 21, 818-822.	8.8	549
7	Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. Journal of Experimental Botany, 2002, 53, 525-534.	4.8	383
8	Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist, 2015, 205, 1431-1436.	7.3	331
9	Cell Defense Responses Associated with Localized and Systemic Resistance to Phytophthora parasitica Induced in Tomato by an Arbuscular Mycorrhizal Fungus. Molecular Plant-Microbe Interactions, 1998, 11, 1017-1028.	2.6	319
10	Sm1, a Proteinaceous Elicitor Secreted by the Biocontrol Fungus Trichoderma virens Induces Plant Defense Responses and Systemic Resistance. Molecular Plant-Microbe Interactions, 2006, 19, 838-853.	2.6	310
11	Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology, 2013, 170, 47-55.	3.5	299
12	Shifting from priming of salicylic acid―to jasmonic acidâ€regulated defences by <i>Trichoderma</i> protects tomato against the root knot nematode <i>Meloidogyne incognita</i> . New Phytologist, 2017, 213, 1363-1377.	7.3	275
13	Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteriaâ€induced systemic resistance in <i>Arabidopsis thaliana</i> . New Phytologist, 2008, 180, 511-523.	7.3	264
14	The tomato <i><scp>CAROTENOID CLEAVAGE DIOXYGENASE</scp>8</i> (<i><scp>S</scp>l<scp>CCD</scp>8</i>) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytologist, 2012, 196, 535-547	7.3	250
15	Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. Journal of Experimental Botany, 2010, 61, 2589-2601.	4.8	238
16	Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Frontiers in Plant Science, 2013, 4, 206.	3.6	199
17	Jasmonates - Signals in Plant-Microbe Interactions. Journal of Plant Growth Regulation, 2004, 23, 211-222.	5.1	194
18	Priming of plant innate immunity by rhizobacteria and βâ€aminobutyric acid: differences and similarities in regulation. New Phytologist, 2009, 183, 419-431.	7.3	192

#	Article	IF	CITATIONS
19	Do strigolactones contribute to plant defence?. Molecular Plant Pathology, 2014, 15, 211-216.	4.2	173
20	Beneficial microbes in a changing environment: are they always helping plants to deal with insects?. Functional Ecology, 2013, 27, 574-586.	3.6	171
21	β-1,3-Glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Science, 1999, 141, 149-157.	3.6	145
22	Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnology Journal, 2003, 1, 321-336.	8.3	142
23	Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. Journal of Plant Physiology, 2011, 168, 294-297.	3.5	137
24	Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15965-15970.	7.1	128
25	Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genetics and Biology, 2004, 41, 336-348.	2.1	125
26	Metabolic transition in mycorrhizal tomato roots. Frontiers in Microbiology, 2015, 6, 598.	3.5	111
27	Root metabolic plasticity underlies functional diversity in mycorrhizaâ€enhanced stress tolerance in tomato. New Phytologist, 2018, 220, 1322-1336.	7.3	107
28	Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Frontiers in Microbiology, 2015, 6, 922.	3.5	101
29	Microbial priming of plant and animal immunity: symbionts as developmental signals. Trends in Microbiology, 2014, 22, 607-613.	7.7	100
30	Impact of Arbuscular Mycorrhizal Symbiosis on Plant Response to Biotic Stress: The Role of Plant Defence Mechanisms. , 2010, , 193-207.		89
31	Tvbgn3, a β-1,6-Glucanase from the Biocontrol Fungus Trichoderma virens, Is Involved in Mycoparasitism and Control of Pythium ultimum. Applied and Environmental Microbiology, 2006, 72, 7661-7670.	3.1	87
32	The Induced Resistance Lexicon: Do's and Don'ts. Trends in Plant Science, 2021, 26, 685-691.	8.8	84
33	Strigolactones: a cry for help in the rhizosphere. Botany, 2011, 89, 513-522.	1.0	78
34	Defense Related Phytohormones Regulation in Arbuscular Mycorrhizal Symbioses Depends on the Partner Genotypes. Journal of Chemical Ecology, 2014, 40, 791-803.	1.8	78
35	Chitosanase and chitinase activities in tomato roots during interactions with arbuscular mycorrhizal fungi or Phytophthora parasitica. Journal of Experimental Botany, 1998, 49, 1729-1739.	4.8	74
36	Elicitation of foliar resistance mechanisms transiently impairs root association with arbuscular mycorrhizal fungi. Journal of Ecology, 2011, 99, 36-45.	4.0	69

#	Article	IF	CITATIONS
37	Plant hydrolytic enzymes (chitinases and \hat{l}^2 -1,3-glucanases) in root reactions to pathogenic and symbiotic microorganisms. Plant and Soil, 1996, 185, 211-221.	3.7	66
38	Mycorrhizal tomato plants fine tunes the growthâ€defence balance upon N depleted root environments. Plant, Cell and Environment, 2018, 41, 406-420.	5.7	66
39	Glucanases and Chitinases as Causal Agents in the Protection of Acacia Extrafloral Nectar from Infestation by Phytopathogens. Plant Physiology, 2010, 152, 1705-1715.	4.8	59
40	Priming Plant Defence Against Pathogens by Arbuscular Mycorrhizal Fungi. , 2009, , 123-135.		58
41	Role and mechanisms of callose priming in mycorrhiza-induced resistance. Journal of Experimental Botany, 2020, 71, 2769-2781.	4.8	56
42	Untapping the potential of plant mycobiomes for applications in agriculture. Current Opinion in Plant Biology, 2021, 60, 102034.	7.1	56
43	Induction of new chitinase isoforms in tomato roots during interactions with Glomus mosseae and/or Phytophthora nicotianae var parasitica. Agronomy for Sustainable Development, 1996, 16, 689-697.	0.8	53
44	Growing Research Networks on Mycorrhizae for Mutual Benefits. Trends in Plant Science, 2018, 23, 975-984.	8.8	51
45	Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis. Plant Science, 2015, 230, 59-69.	3.6	49
46	The Nitrogen Availability Interferes with Mycorrhiza-Induced Resistance against Botrytis cinerea in Tomato. Frontiers in Microbiology, 2016, 7, 1598.	3.5	49
47	Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant <i>Arabidopsis thaliana</i> switches from initial detection to antagonism. New Phytologist, 2019, 223, 867-881.	7.3	49
48	Arbuscular mycorrhizal symbiosis regulates plasma membrane H+-ATPase gene expression in tomato plants. Journal of Experimental Botany, 2002, 53, 1683-1687.	4.8	48
49	Microbial Community Composition in Take-All Suppressive Soils. Frontiers in Microbiology, 2018, 9, 2198.	3.5	46
50	AM symbiosis alters phenolic acid content in tomato roots. Plant Signaling and Behavior, 2010, 5, 1138-1140.	2.4	44
51	Editorial: Above-belowground interactions involving plants, microbes and insects. Frontiers in Plant Science, 2015, 6, 318.	3.6	44
52	Nitric oxide in plant–fungal interactions. Journal of Experimental Botany, 2019, 70, 4489-4503.	4.8	42
53	Microbial Consortia for Effective Biocontrol of Root and Foliar Diseases in Tomato. Frontiers in Plant Science, 2021, 12, 756368.	3.6	42
54	Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities. Frontiers in Microbiology, 2017, 8, 1552.	3.5	41

#	Article	IF	CITATIONS
55	Mycorrhizal symbiosis primes the accumulation of antiherbivore compounds and enhances herbivore mortality in tomato. Journal of Experimental Botany, 2021, 72, 5038-5050.	4.8	40
56	Nitric oxide and phytoglobin PHYTOGB1 are regulatory elements in the <i>Solanum lycopersicum</i> – <i>Rhizophagus irregularis</i> mycorrhizal symbiosis. New Phytologist, 2019, 223, 1560-1574.	7.3	39
57	Exogenous strigolactones impact metabolic profiles and phosphate starvation signalling in roots. Plant, Cell and Environment, 2020, 43, 1655-1668.	5.7	35
58	Roots drive oligogalacturonideâ€induced systemic immunity in tomato. Plant, Cell and Environment, 2021, 44, 275-289.	5.7	35
59	Expression of a tomato sugar transporter is increased in leaves of mycorrhizal or Phytophthora parasitica-infected plants. Mycorrhiza, 2005, 15, 489-496.	2.8	33
60	Ménage à Trois: Unraveling the Mechanisms Regulating Plant–Microbe–Arthropod Interactions. Trends in Plant Science, 2020, 25, 1215-1226.	8.8	31
61	Transcriptional Changes in Mycorrhizal and Nonmycorrhizal Soybean Plants upon Infection with the Fungal Pathogen <i>Macrophomina phaseolina</i> . Molecular Plant-Microbe Interactions, 2018, 31, 842-855.	2.6	30
62	Presence of yeasts in floral nectar is consistent with the hypothesis of microbial-mediated signaling in plant-pollinator interactions. Plant Signaling and Behavior, 2009, 4, 1102-1104.	2.4	29
63	Root Allies: Arbuscular Mycorrhizal Fungi Help Plants to Cope with Biotic Stresses. Soil Biology, 2013, , 289-307.	0.8	28
64	Root-to-shoot signalling in mycorrhizal tomato plants upon Botrytis cinerea infection. Plant Science, 2020, 298, 110595.	3.6	27
65	Accurate and easy method for systemin quantification and examining metabolic changes under different endogenous levels. Plant Methods, 2018, 14, 33.	4.3	25
66	Strigolactones: New players in the nitrogen–phosphorus signalling interplay. Plant, Cell and Environment, 2022, 45, 512-527.	5.7	25
67	Expression of molecular markers associated to defense signaling pathways and strigolactone biosynthesis during the early interaction tomato-Phelipanche ramosa. Physiological and Molecular Plant Pathology, 2016, 94, 100-107.	2.5	24
68	Intra and Inter-Spore Variability in Rhizophagus irregularis AOX Gene. PLoS ONE, 2015, 10, e0142339.	2.5	23
69	Mycorrhiza-Induced Resistance against Foliar Pathogens Is Uncoupled of Nutritional Effects under Different Light Intensities. Journal of Fungi (Basel, Switzerland), 2021, 7, 402.	3.5	21
70	Nitric oxide signalling in roots is required for MYB72-dependent systemic resistance induced by <i>Trichoderma</i> volatile compounds in Arabidopsis. Journal of Experimental Botany, 2022, 73, 584-595.	4.8	21
71	Belowground Defence Strategies in Plants: The Plant–Trichoderma Dialogue. Signaling and Communication in Plants, 2016, , 301-327.	0.7	19
72	An Updated Review on the Modulation of Carbon Partitioning and Allocation in Arbuscular Mycorrhizal Plants. Microorganisms, 2022, 10, 75.	3.6	19

#	Article	IF	CITATIONS
73	Communication in the Rhizosphere, a Target for Pest Management. , 2012, , 109-133.		15
74	Jasmonates—Signals in plant-microbe interactions. Journal of Plant Growth Regulation, 2004, 23, 211-222.	5.1	12
75	Chemical Signalling in the Arbuscular Mycorrhizal Symbiosis: Biotechnological Applications. Soil Biology, 2013, , 215-232.	0.8	12
76	Tomato Domestication Affects Potential Functional Molecular Pathways of Root-Associated Soil Bacteria. Plants, 2021, 10, 1942.	3.5	10
77	<i>Trichoderma harzianum</i> triggers an early and transient burst of nitric oxide and the upregulation of <i>PHYTOGB1</i> in tomato roots. Plant Signaling and Behavior, 2019, 14, 1640564.	2.4	6
78	Histochemical and Molecular Quantification of Arbuscular Mycorrhiza Symbiosis. Methods in Molecular Biology, 2020, 2083, 293-299.	0.9	3
79	Resistance and Not Plant Fruit Traits Determine Root-Associated Bacterial Community Composition along a Domestication Gradient in Tomato. Plants, 2022, 11, 43.	3.5	1
80	Compatibility of mycorrhizaâ€induced resistance with viral and bacterial entomopathogens in the control of <i>Spodoptera exigua</i> in tomato. Pest Management Science, 0, , .	3.4	0