
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8511698/publications.pdf Version: 2024-02-01

ILVA RINDEMAN

#	Article	IF	CITATIONS
1	The Mina Justa Iron Oxide Copper-Gold (IOCG) Deposit, Peru: Constraints on Metal and Ore Fluid Sources. Economic Geology, 2022, 117, 645-666.	3.8	7
2	Modeling of zircon nucleation and growth rates using crystal size distributions in a cooling magmatic intrusion. Earth and Planetary Science Letters, 2022, 577, 117254.	4.4	5
3	Hadean zircon formed due to hydrated ultramafic protocrust melting. Geology, 2022, 50, 300-304.	4.4	11
4	Geochemical, Isotopic and Petrological Constraints on the Origin and Evolution of the Recent Silicic Magmatism of the Greater Caucasus. Minerals (Basel, Switzerland), 2022, 12, 105.	2.0	2
5	Pleistocene-Holocene Monogenetic Volcanism at the Malko-Petropavlovsk Zone of Transverse Dislocations on Kamchatka: Geochemical Features and Genesis. Pure and Applied Geophysics, 2022, 179, 3989-4011.	1.9	6
6	lsotopic signatures of magmatic fluids and seawater within silicic submarine volcanic deposits. Geochimica Et Cosmochimica Acta, 2022, 326, 214-233.	3.9	3
7	Petrogenesis of Lava from Christmas Island, Northeast Indian Ocean: Implications for the Nature of Recycled Components in Non-Plume Intraplate Settings. Geosciences (Switzerland), 2022, 12, 118.	2.2	3
8	Long-term evolution of terrestrial weathering and its link to Earth's oxygenation. Earth and Planetary Science Letters, 2022, 584, 117490.	4.4	17
9	Earth's earliest hydrosphere recorded by the oldest hydrothermally-altered oceanic crust: Triple oxygen and hydrogen isotopes in the 4.3-3.8 Ga Nuvvuagittuq belt, Canada. Earth and Planetary Science Letters, 2022, 586, 117539.	4.4	7
10	A possibility of 18O-depleted oceans in the Precambrian inferred from triple oxygen isotope of shales and oceanic crust. Chemical Geology, 2022, 604, 120944.	3.3	4
11	Diverse mantle components with invariant oxygen isotopes in the 2021 Fagradalsfjall eruption, Iceland. Nature Communications, 2022, 13, .	12.8	15
12	Oxygen isotope (δ180, Δ′170) insights into continental mantle evolution since the Archean. Nature Communications, 2022, 13, .	12.8	6
13	Magma Source Evolution Following Subduction Initiation: Evidence From the Element Concentrations, Stable Isotope Ratios, and Water Contents of Volcanic Glasses From the Bonin Forearc (IODP Expedition 352). Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009054.	2.5	22
14	A global survey of radiogenic strontium isotopes in river sediments. Chemical Geology, 2021, 559, 119958.	3.3	17
15	Hekla Revisited: Fractionation of a Magma Body at Historical Timescales. Journal of Petrology, 2021, 62,	2.8	14
16	Triple Oxygen Isotope Trend Recorded by Precambrian Cherts: A Perspective from Combined Bulk and in situ Secondary Ion Probe Measurements. Reviews in Mineralogy and Geochemistry, 2021, 86, 323-365.	4.8	22
17	Triple Oxygen Isotopes in Evolving Continental Crust, Granites, and Clastic Sediments. Reviews in Mineralogy and Geochemistry, 2021, 86, 241-290.	4.8	31
18	Young Silicic Magmatism of the Greater Caucasus, Russia, with implication for its delamination origin based on zircon petrochronology and thermomechanical modeling. Journal of Volcanology and Geothermal Research, 2021, 412, 107173.	2.1	13

#	Article	IF	CITATIONS
19	Geochronology and geochemistry data for the Elbrus, Tyrnyauz, and Chegem magmatic centers, Greater Caucasus, Russia. Data in Brief, 2021, 35, 106896.	1.0	2
20	Hydrated Peridotite – Basaltic Melt Interaction Part I: Planetary Felsic Crust Formation at Shallow Depth. Frontiers in Earth Science, 2021, 9, .	1.8	7
21	A microanalytical oxygen isotopic and U-Th geochronologic investigation and modeling of rhyolite petrogenesis at the Krafla Central Volcano, Iceland. Journal of Volcanology and Geothermal Research, 2021, 414, 107229.	2.1	10
22	Influence of high marine Ca/SO4 ratio on alteration of submarine basalts at 2.41ÂGa documented by triple O and Sr isotopes of epidote. Precambrian Research, 2021, 358, 106164.	2.7	4
23	Contamination of the Bushveld Complex (South Africa) magmas by basinal brines: Stable isotopes in phlogopite from the UG2 chromitite. Geology, 2021, 49, 1272-1276.	4.4	2
24	Variations of Oxygen Isotopic Composition in Magmas of Okhotsk–Chukotka Volcanic Belt. Doklady Earth Sciences, 2021, 499, 550-555.	0.7	2
25	Rhyolitic and basaltic reference materials for TC/EA analysis: Investigation of water extraction and D/H ratios. Chemical Geology, 2021, 583, 120486.	3.3	5
26	Ephemeral Magma Reservoirs During the Incremental Growth of the Neoproterozoic Jiuling Composite Batholith in South China. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022758.	3.4	5
27	Magma Chamber Formation by Dike Accretion and Crustal Melting: 2D Thermo ompositional Model With Emphasis on Eruptions and Implication for Zircon Records. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB023008.	3.4	4
28	Synâ€Eruptive Hydration of Volcanic Ash Records Pyroclastâ€Water Interaction in Explosive Eruptions. Geophysical Research Letters, 2021, 48, e2021GL094141.	4.0	6
29	D/H ratios and H2O contents record degassing and rehydration history of rhyolitic magma and pyroclasts. Earth and Planetary Science Letters, 2020, 530, 115909.	4.4	16
30	Standardizing the reporting of ΔÊ1170 data from high precision oxygen triple-isotope ratio measurements of silicate rocks and minerals. Chemical Geology, 2020, 532, 119332.	3.3	33
31	Pervasive Hydrothermal Events Associated with Large Igneous Provinces Documented by the Columbia River Basaltic Province. Scientific Reports, 2020, 10, 10206.	3.3	8
32	Low-δ18O silicic magmas on Earth: A review. Earth-Science Reviews, 2020, 208, 103299.	9.1	61
33	A Continuum from Iron Oxide Copper-Gold to Iron Oxide-Apatite Deposits: Evidence from Fe and O Stable Isotopes and Trace Element Chemistry of Magnetite. Economic Geology, 2020, 115, 1443-1459.	3.8	29
34	Triple Oxygen (δ180, Δ170), Hydrogen (δ2H), and Iron (δ56Fe) Stable Isotope Signatures Indicate a Silicate Magma Source and Magmatic-Hydrothermal Genesis for Magnetite Orebodies at El Laco, Chile. Economic Geology, 2020, 115, 1519-1536.	3.8	15
35	Zircon survival in shallow asthenosphere and deep lithosphere. American Mineralogist, 2020, 105, 1662-1671.	1.9	23
36	A Late Miocene to Late Pleistocene Reconstruction of Precipitation Isotopes and Climate From Hydrated Volcanic Glass Shards and Biomarkers in Central Alaska and Yukon. Paleoceanography and Paleoclimatology, 2020, 35, e2019PA003791.	2.9	4

#	Article	IF	CITATIONS
37	Solubility, diffusivity, and O isotope systematics of H2O in rhyolitic glass in hydrothermal temperature experiments. Geochimica Et Cosmochimica Acta, 2020, 283, 222-242.	3.9	14
38	Changing Mantle Sources and the Effects of Crustal Passage on the Steens Basalt, SE Oregon: Chemical and Isotopic Constraints. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC008910.	2.5	10
39	Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits. Mineralium Deposita, 2020, 55, 1489-1504.	4.1	28
40	A MICROANALYTICAL OXYGEN ISOTOPIC AND U-TH GEOCHRONOLOGIC INVESTIGATION OF RHYOLITE PETROGENESIS AT THE KRAFLA CENTRAL VOLCANO, ICELAND. , 2020, , .		1
41	Triple oxygen isotope systematics as a tracer of fluids in the crust: A study from modern geothermal systems of Iceland. Chemical Geology, 2019, 530, 119312.	3.3	23
42	Triple oxygen isotope investigation of fine-grained sediments from major world's rivers: Insights into weathering processes and global fluxes into the hydrosphere. Earth and Planetary Science Letters, 2019, 528, 115851.	4.4	21
43	Hot and Heterogenous Highâ€ ³ He/ ⁴ He Components: New Constraints From Protoâ€Iceland Plume Lavas From Baffin Island. Geochemistry, Geophysics, Geosystems, 2019, 20, 5939-5967.	2.5	15
44	Low δ18O rocks in the Belomorian belt, NW Russia, and Scourie dikes, NW Scotland: A record of ancient meteoric water captured by the early Paleoproterozoic global mafic magmatism. Precambrian Research, 2019, 333, 105431.	2.7	16
45	Isotopic and Petrologic Investigation, and a Thermomechanical Model of Genesis of Large-Volume Rhyolites in Arc Environments: Karymshina Volcanic Complex, Kamchatka, Russia. Frontiers in Earth Science, 2019, 6, .	1.8	10
46	A model for the development of stable isotopic water signatures of tephra deposited on ice following subglacial caldera collapse. Journal of Volcanology and Geothermal Research, 2019, 377, 131-145.	2.1	4
47	Oxygen isotopic investigation of silicic magmatism in the Stillwater caldera complex, Nevada: Generation of large-volume, low-Ĩ´18O rhyolitic tuffs and assessment of their regional context in the Great Basin of the western United States. Bulletin of the Geological Society of America, 2019, 131, 1133-1156.	3.3	10
48	Understanding the isotopic and chemical evolution of Yellowstone hot spot magmatism using magmatic-thermomechanical modeling. Journal of Volcanology and Geothermal Research, 2019, 370, 13-30.	2.1	12
49	Hydrogen isotopes in high 3He/4He submarine basalts: Primordial vs. recycled water and the veil of mantle enrichment. Earth and Planetary Science Letters, 2019, 508, 62-73.	4.4	23
50	The δ18O of primary and secondary waters in hydrous volcanic glass. Journal of Volcanology and Geothermal Research, 2019, 371, 72-85.	2.1	7
51	Triple oxygen and hydrogen isotopic study of hydrothermally altered rocks from the 2.43–2.41â€ ⁻ Ga Vetreny belt, Russia: An insight into the early Paleoproterozoic seawater. Geochimica Et Cosmochimica Acta, 2019, 248, 185-209.	3.9	30
52	Thermomechanical Modeling of the Formation of a Multilevel, Crustalâ€Scale Magmatic System by the Yellowstone Plume. Geophysical Research Letters, 2018, 45, 3873-3879.	4.0	54
53	Origins and evolution of rhyolitic magmas in the central Snake River Plain: insights from coupled high-precision geochronology, oxygen isotope, and hafnium isotope analyses of zircon. Contributions To Mineralogy and Petrology, 2018, 173, 1.	3.1	26
54	lsotopic insights into the degassing and secondary hydration of volcanic glass from the 1980 eruptions of Mount St. Helens. Bulletin of Volcanology, 2018, 80, 1.	3.0	16

#	Article	IF	CITATIONS
55	The possibility of obtaining ultra-low-δ18O signature of precipitation near equatorial latitudes during the Snowball Earth glaciation episodes. Precambrian Research, 2018, 319, 211-219.	2.7	13
56	Modeling of trace elemental zoning patterns in accessory minerals with emphasis on the origin of micrometer-scale oscillatory zoning in zircon. American Mineralogist, 2018, 103, 355-368.	1.9	25
57	Origin and significance of Si and O isotope heterogeneities in Phanerozoic, Archean, and Hadean zircon. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10287-10292.	7.1	56
58	Large-magnitude Pauzhetka caldera-forming eruption in Kamchatka: Astrochronologic age, composition and tephra dispersal. Journal of Volcanology and Geothermal Research, 2018, 366, 1-12.	2.1	17
59	Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature, 2018, 557, 545-548.	27.8	153
60	Holocene eruptions of Mt. Popa, Myanmar: Volcanological evidence of the ongoing subduction of Indian Plate along Arakan Trench. Journal of Volcanology and Geothermal Research, 2018, 360, 126-138.	2.1	19
61	Petrology and geochemistry of the 2014–2015 Holuhraun eruption, central Iceland: compositional and mineralogical characteristics, temporal variability and magma storage. Contributions To Mineralogy and Petrology, 2018, 173, 1.	3.1	38
62	Opal-A in Glassy Pumice, Acid Alteration, and the 1817 Phreatomagmatic Eruption at Kawah Ijen (Java), Indonesia. Frontiers in Earth Science, 2018, 6, .	1.8	13
63	Stability of Zircon and Its Isotopic Ratios in High-Temperature Fluids: Long-Term (4 months) Isotope Exchange Experiment at 850°C and 50 MPa. Frontiers in Earth Science, 2018, 6, .	1.8	25
64	Conditions of pinnacle formation and glass hydration in cooling ignimbrite sheets from H and O isotope systematics at Crater Lake and the Valley of Ten Thousand Smokes. Earth and Planetary Science Letters, 2018, 500, 56-66.	4.4	27
65	Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz. Scientific Reports, 2017, 7, 40624.	3.3	36
66	Dating the Paleoproterozoic snowball Earth glaciations using contemporaneous subglacial hydrothermal systems. Geology, 2017, 45, 667-670.	4.4	33
67	Post-caldera Volcanism at the Heise Volcanic Field: Implications for Petrogenetic Models. Journal of Petrology, 2017, 58, 115-136.	2.8	22
68	Hydrogen isotope determination by TC/EA technique in application to volcanic glass as a window into secondary hydration. Journal of Volcanology and Geothermal Research, 2017, 348, 49-61.	2.1	35
69	Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science, 2017, 357, 1271-1274.	12.6	166
70	Light Stable Isotopic Compositions of Enriched Mantle Sources: Resolving the Dehydration Paradox. Geochemistry, Geophysics, Geosystems, 2017, 18, 3801-3839.	2.5	70
71	New biotite and muscovite isotopic reference materials, USGS57 and USGS58, for Î′2H measurements–A replacement for NBS 30. Chemical Geology, 2017, 467, 89-99.	3.3	41
72	Sr and O isotopes in western Aleutian seafloor lavas: Implications for the source of fluids and trace element character of arc volcanic rocks. Earth and Planetary Science Letters, 2017, 475, 169-180.	4.4	28

#	Article	IF	CITATIONS
73	Eruption mechanisms and short duration of large rhyolitic lava flows of Yellowstone. Earth and Planetary Science Letters, 2017, 458, 80-91.	4.4	24
74	Multiple mantle sources of continental magmatism: Insights from "high-Ti―picrites of Karoo and other large igneous provinces. Chemical Geology, 2017, 455, 22-31.	3.3	41
75	Geochronological and isotopic records of crustal storage and assimilation in the Wolverine Creek–Conant Creek system, Heise eruptive centre, Snake River Plain. Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	11
76	Low-ÎƊ hydration rinds in Yellowstone perlites record rapid syneruptive hydration during glacial and interglacial conditions. Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	25
77	Oxygen isotope thermometry reveals high magmatic temperatures and short residence times in Yellowstone and other hot-dry rhyolites compared to cold-wet systems. American Mineralogist, 2016, 101, 1222-1227.	1.9	28
78	Zircon Survival, Rebirth and Recycling during Crustal Melting, Magma Crystallization, and Mixing Based on Numerical Modelling. Journal of Petrology, 2016, 57, 437-460.	2.8	80
79	Water in volcanic glass: From volcanic degassing to secondary hydration. Geochimica Et Cosmochimica Acta, 2016, 191, 216-238.	3.9	62
80	Iron and Oxygen Isotope Signatures of the Pea Ridge and Pilot Knob Magnetite-Apatite Deposits, Southeast Missouri, USA. Economic Geology, 2016, 111, 2033-2044.	3.8	51
81	Archean Xenocrysts in Modern Volcanic Rocks from Kamchatka: Insight into the Basement and Paleodrainage. Journal of Geology, 2016, 124, 247-253.	1.4	7
82	Probing the Volcanic–Plutonic Connection and the Genesis of Crystal-rich Rhyolite in a Deeply Dissected Supervolcano in the Nevada Great Basin: Source of the Late Eocene Caetano Tuff. Journal of Petrology, 2016, 57, 1599-1644.	2.8	44
83	Initiation of large-volume silicic centers in the Yellowstone hotspot track: insights from H2O- and F-rich quartz-hosted rhyolitic melt inclusions in the Arbon Valley Tuff of the Snake River Plain. Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	10
84	Multiple water isotope proxy reconstruction of extremely low last glacial temperatures in Eastern Beringia (Western Arctic). Quaternary Science Reviews, 2016, 137, 113-125.	3.0	41
85	Fe–O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits. Geochimica Et Cosmochimica Acta, 2016, 177, 94-104.	3.9	82
86	Oxygen isotope perspective on crustal evolution on early Earth: A record of Precambrian shales with emphasis on Paleoproterozoic glaciations and Great Oxygenation Event. Earth and Planetary Science Letters, 2016, 437, 101-113.	4.4	62
87	Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions. Scientific Reports, 2015, 5, 14026.	3.3	100
88	Isotopically diverse rhyolites coeval with the Columbia River Flood Basalts: evidence for mantle plume interaction with the continental crust. Terra Nova, 2015, 27, 270-276.	2.1	14
89	In-situ oxygen isotope and trace element geothermometry of rutilated quartz from Alpine fissures. American Mineralogist, 2015, 100, 915-925.	1.9	16
90	Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology, 2015, 43, 591-594.	4.4	177

#	Article	IF	CITATIONS
91	Crustal recycling by subduction erosion in the central Mexican Volcanic Belt. Geochimica Et Cosmochimica Acta, 2015, 166, 29-52.	3.9	65
92	Hydrothermal alteration and melting of the crust during the Columbia River Basalt–Snake River Plain transition and the origin of low-δ 18 O rhyolites of the central Snake River Plain. Lithos, 2015, 224-225, 310-323.	1.4	30
93	To the origin of Icelandic rhyolites: insights from partially melted leucocratic xenoliths. Contributions To Mineralogy and Petrology, 2015, 169, 1.	3.1	10
94	Oxygen isotope and trace element evidence for three-stage petrogenesis of the youngest episode (260–79Âka) of Yellowstone rhyolitic volcanism. Contributions To Mineralogy and Petrology, 2015, 170, 1.	3.1	40
95	Geochemistry of the late Holocene rocks from the Tolbachik volcanic field, Kamchatka: Quantitative modelling of subduction-related open magmatic systems. Journal of Volcanology and Geothermal Research, 2015, 307, 133-155.	2.1	53
96	The earliest low and high δ18O caldera-forming eruptions of the Yellowstone plume: implications for the 30ââ,¬â€œ40 Ma Oregon calderas and speculations on plume-triggered delaminations. Frontiers in Earth Science, 2014, 2, .	1.8	11
97	Rhyolites—Hard to produce, but easy to recycle and sequester: Integrating microgeochemical observations and numerical models. , 2014, 10, 930-957.		83
98	Revised Wonoka isotopic anomaly in South Australia and Late Ediacaran mass extinction. Journal of the Geological Society, 2014, 171, 709-722.	2.1	28
99	Geochemical variations in the Central Southern Volcanic Zone, Chile (38–43°S): The role of fluids in generating arc magmas. Chemical Geology, 2014, 371, 27-45.	3.3	57
100	Field and microanalytical isotopic investigation of ultradepleted in 180 Paleoproterozoic "Slushball Earth―rocks from Karelia, Russia. , 2014, 10, 308-339.		43
101	Iceland is not a magmatic analog for the Hadean: Evidence from the zircon record. Earth and Planetary Science Letters, 2014, 405, 85-97.	4.4	101
102	Linking rapid magma reservoir assembly and eruption trigger mechanisms at evolved Yellowstone-type supervolcanoes. Geology, 2014, 42, 807-810.	4.4	97
103	Multi-Cyclic and Isotopically Diverse Silicic Magma Generation in an Arc Volcano: Gorely Eruptive Center, Kamchatka, Russia. Journal of Petrology, 2014, 55, 1561-1594.	2.8	24
104	Explosive origin of silicic lava: Textural and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>î</mml:mi><mml:mi mathvariant="normal">D</mml:mi>â€"H 2 O evidence for pyroclastic degassing during rhyolite effusion. Earth and Planetary Science Letters, 2014,</mml:math 	4.4	107
105	405, 52-61. Alteration of volcaniclastic deposits at Minna Bluff: Geochemical insights on mineralizing environment and climate during the Late Miocene in Antarctica. Geochemistry, Geophysics, Geosystems, 2014, 15, 3258-3280.	2.5	14
106	Contrasting conditions of rift and offâ€rift silicic magma origin on Iceland. Geophysical Research Letters, 2014, 41, 5813-5820.	4.0	22
107	Volcanic sulfate aerosol formation in the troposphere. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,660.	3.3	17
108	Stable isotope fractionation by thermal diffusion through partially molten wet and dry silicate rocks. Earth and Planetary Science Letters, 2013, 365, 51-62.	4.4	29

#	Article	IF	CITATIONS
109	Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5–38.0°S): Constraints on mantle wedge and slab input compositions. Geochimica Et Cosmochimica Acta, 2013, 123, 218-243.	3.9	105
110	Magmatic Differentiation in the Teide–Pico Viejo Succession: Isotope Analysis as a Key to Deciphering the Origin of Phonolite Magma. Active Volcanoes of the World, 2013, , 173-190.	1.4	0
111	Crustal-scale recycling in caldera complexes and rift zones along the Yellowstone hotspot track: O and Hf isotopic evidence in diverse zircons from voluminous rhyolites of the Picabo volcanic field, Idaho. Earth and Planetary Science Letters, 2013, 381, 63-77.	4.4	63
112	Highly explosive 2010 Merapi eruption: Evidence for shallow-level crustal assimilation and hybrid fluid. Journal of Volcanology and Geothermal Research, 2013, 261, 193-208.	2.1	49
113	Magmatic differentiation processes at Merapi Volcano: inclusion petrology and oxygen isotopes. Journal of Volcanology and Geothermal Research, 2013, 261, 38-49.	2.1	49
114	Tectonic and climate history influence the geochemistry of large-volume silicic magmas: New δ18O data from the Central Andes with comparison to N America and Kamchatka. Journal of Volcanology and Geothermal Research, 2013, 262, 90-103.	2.1	20
115	Experimental investigation of rates and mechanisms of isotope exchange (O, H) between volcanic ash and isotopically-labeled water. Geochimica Et Cosmochimica Acta, 2013, 111, 5-27.	3.9	34
116	Insights on lava–ice/snow interactions from large-scale basaltic melt experiments. Geology, 2013, 41, 851-854.	4.4	39
117	Title is missing!. , 2012, 8, 292.		57
118	A New View on the Petrogenesis of the Oman Ophiolite Chromitites from Microanalyses of Chromite-hosted Inclusions. Journal of Petrology, 2012, 53, 2411-2440.	2.8	100
119	Bimodality of Lavas in the Teide-Pico Viejo Succession in Tenerifethe Role of Crustal Melting in the Origin of Recent Phonolites. Journal of Petrology, 2012, 53, 2465-2495.	2.8	33
120	Remelting in caldera and rift environments and the genesis of hot, "recycled―rhyolites. Earth and Planetary Science Letters, 2012, 337-338, 224-235.	4.4	54
121	Hydrogen and oxygen isotope behaviors during variable degrees of upper mantle melting: Example from the basaltic glasses from Macquarie Island. Chemical Geology, 2012, 310-311, 126-136.	3.3	53
122	Along and across arc geochemical variations in NW Central America: Evidence for involvement of lithospheric pyroxenite. Geochimica Et Cosmochimica Acta, 2012, 84, 459-491.	3.9	39
123	High-resolution insights into episodes of crystallization, hydrothermal alteration and remelting in the Skaergaard intrusive complex. Earth and Planetary Science Letters, 2012, 355-356, 199-212.	4.4	65
124	Crystal scale anatomy of a dying supervolcano: an isotope and geochronology study of individual phenocrysts from voluminous rhyolites of the Yellowstone caldera. Contributions To Mineralogy and Petrology, 2012, 164, 45-67.	3.1	67
125	Reply to "Oxygen isotope heterogeneity of the mantle beneath the Canary Islands: a discussion of the paper of Gurenko et al.― Contributions To Mineralogy and Petrology, 2012, 164, 185-189.	3.1	2
126	Silicic magma petrogenesis in Iceland by remelting of hydrothermally altered crust based on oxygen isotope diversity and disequilibria between zircon and magma with implications for MORB. Terra Nova, 2012, 24, 227-232.	2.1	92

#	Article	IF	CITATIONS
127	Geochemical correlation of three large-volume ignimbrites from the Yellowstone hotspot track, Idaho, USA. Bulletin of Volcanology, 2012, 74, 261-277.	3.0	29
128	Cumulate xenoliths from St. Vincent, Lesser Antilles Island Arc: a window into upper crustal differentiation of mantle-derived basalts. Contributions To Mineralogy and Petrology, 2012, 163, 189-208.	3.1	41
129	When do we need pan-global freeze to explain 180-depleted zircons and rocks?. Geology, 2011, 39, 799-800.	4.4	23
130	Geology, Petrology and O and H isotope geochemistry of remarkably 18O depleted Paleoproterozoic rocks of the Belomorian Belt, Karelia, Russia, attributed to global glaciation 2.4Ga. Earth and Planetary Science Letters, 2011, 306, 163-174.	4.4	55
131	Plio-Pleistocene climate change and timing of Peninsular Ranges uplift in southern California: Evidence from paleosols and stable isotopes in the Fish Creek–Vallecito basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 305, 65-74.	2.3	25
132	Clacial influence on caldera-forming eruptions. Journal of Volcanology and Geothermal Research, 2011, 202, 127-142.	2.1	33
133	Oxygen isotope heterogeneity of the mantle beneath the Canary Islands: insights from olivine phenocrysts. Contributions To Mineralogy and Petrology, 2011, 162, 349-363.	3.1	47
134	The origin of high-Mg magmas in Mt Shasta and Medicine Lake volcanoes, Cascade Arc (California): higher and lower than mantle oxygen isotope signatures attributed to current and past subduction. Contributions To Mineralogy and Petrology, 2011, 162, 945-960.	3.1	31
135	Zircon from historic eruptions in Iceland: reconstructing storage and evolution of silicic magmas. Mineralogy and Petrology, 2011, 102, 135-161.	1.1	57
136	Remobilization of silicic intrusion by mafic magmas during the 2010 Eyjafjallajökull eruption. Solid Earth, 2011, 2, 271-281.	2.8	85
137	Large-volume Rhyolite Genesis in Caldera Complexes of the Snake River Plain: Insights from the Kilgore Tuff of the Heise Volcanic Field, Idaho, with Comparison to Yellowstone and Bruneau–Jarbidge Rhyolites. Journal of Petrology, 2011, 52, 857-890.	2.8	91
138	Large-volume silicic volcanism in Kamchatka: Ar–Ar and U–Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions. Journal of Volcanology and Geothermal Research, 2010, 189, 57-80.	2.1	91
139	Petrologic constraints on the development of a large-volume, high temperature, silicic magma system: The Twin Falls eruptive centre, central Snake River Plain. Lithos, 2010, 120, 475-489.	1.4	62
140	Limits of hydrosphere-lithosphere interaction: Origin of the lowest-known δ180 silicate rock on Earth in the Paleoproterozoic Karelian rift. Geology, 2010, 38, 631-634.	4.4	55
141	Supereruptions of the Snake River Plain: Two-stage derivation of low-δ180 rhyolites from normal-δ180 crust as constrained by Archean xenoliths. Geology, 2010, 38, 503-506.	4.4	31
142	Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: Implications for magma formation and mantle conditions in a hot arc. Earth and Planetary Science Letters, 2010, 298, 153-161.	4.4	77
143	Geochemical Evolution of Intraplate Volcanism at Banks Peninsula, New Zealand: Interaction Between Asthenospheric and Lithospheric Melts. Journal of Petrology, 2009, 50, 989-1023.	2.8	74
144	The origin of hydrous, high-δ18O voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia. Contributions To Mineralogy and Petrology, 2009, 157, 209-230.	3.1	104

#	Article	IF	CITATIONS
145	Mass-independent isotopic signatures of volcanic sulfate from three supereruption ash deposits in Lake Tecopa, California. Earth and Planetary Science Letters, 2009, 282, 102-114.	4.4	31
146	New insights into the origin of O–Hf–Os isotope signatures in arc lavas from Tonga–Kermadec. Chemical Geology, 2009, 266, 187-193.	3.3	51
147	Experimental calibration of oxygen isotope fractionation between quartz and zircon. Geochimica Et Cosmochimica Acta, 2009, 73, 7110-7126.	3.9	98
148	Subduction-related Volatile Recycling and Magma Generation beneath Central Mexico: Insights from Melt Inclusions, Oxygen Isotopes and Geodynamic Models. Journal of Petrology, 2009, 50, 1729-1764.	2.8	128
149	Penrose Conference Scheduled: Low l´18O rhyolites and crustal melting: Growth and redistribution of the continental crust. GSA Today, 2009, 19, 15.	2.0	0
150	Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis. Reviews in Mineralogy and Geochemistry, 2008, 69, 445-478.	4.8	386
151	Evolution of crystal sizes in the series of dissolution and precipitation events in open magma systems. Journal of Volcanology and Geothermal Research, 2008, 177, 997-1010.	2.1	56
152	Geochemistry of a new enriched mantle type locality in the northern hemisphere: Implications for the origin of the EM-I source. Earth and Planetary Science Letters, 2008, 265, 167-182.	4.4	73
153	Oxygen isotope heterogeneity and disequilibria of olivine crystals in large volume Holocene basalts from Iceland: Evidence for magmatic digestion and erosion of Pleistocene hyaloclastites. Geochimica Et Cosmochimica Acta, 2008, 72, 4397-4420.	3.9	103
154	Origin and Evolution of Silicic Magmatism at Yellowstone Based on Ion Microprobe Analysis of Isotopically Zoned Zircons. Journal of Petrology, 2008, 49, 163-193.	2.8	166
155	Magmatic Differentiation at an Island-arc Caldera: Okmok Volcano, Aleutian Islands, Alaska. Journal of Petrology, 2008, 49, 857-884.	2.8	50
156	The Low-δ18O Late-Stage Ferrodiorite Magmas in the Skaergaard Intrusion: Result of Liquid Immiscibility, Thermal Metamorphism, or Meteoric Water Incorporation into Magma?. Journal of Geology, 2008, 116, 571-586.	1.4	21
157	12. Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis. , 2008, , 445-478.		11
158	Rare sulfur and triple oxygen isotope geochemistry of volcanogenic sulfate aerosols. Geochimica Et Cosmochimica Acta, 2007, 71, 2326-2343.	3.9	41
159	Voluminous low δ180 magmas in the late Miocene Heise volcanic field, Idaho: Implications for the fate of Yellowstone hotspot calderas. Geology, 2007, 35, 1019.	4.4	73
160	Geochemistry of primitive lavas of the Central Kamchatka Depression: Magma generation at the edge of the Pacific Plate. Geophysical Monograph Series, 2007, , 199-239.	0.1	36
161	Boron and oxygen isotope evidence for recycling of subducted components over the past 2.5 Gyr. Nature, 2007, 447, 702-705.	27.8	60
162	Time constraints on the origin of large volume basalts derived from O-isotope and trace element mineral zoning and U-series disequilibria in the Laki and GrĀmsv¶tn volcanic system. Earth and Planetary Science Letters, 2006, 245, 245-259.	4.4	53

#	Article	IF	CITATIONS
163	The Secrets of Supervolcanoes. Scientific American, 2006, 294, 36-43.	1.0	11
164	U–Pb zircon geochronology of silicic tuffs from the Timber Mountain/Oasis Valley caldera complex, Nevada: rapid generation of large volume magmas by shallow-level remelting. Contributions To Mineralogy and Petrology, 2006, 152, 649-665.	3.1	58
165	4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contributions To Mineralogy and Petrology, 2005, 150, 561-580.	3.1	970
166	Fragmentation phenomena in populations of magmatic crystals. American Mineralogist, 2005, 90, 1801-1815.	1.9	56
167	Transition from arc to oceanic magmatism at the Kamchatka-Aleutian junction. Geology, 2005, 33, 25.	4.4	81
168	Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth and Planetary Science Letters, 2005, 235, 480-496.	4.4	217
169	Volcanic arc of Kamchatka: a province with high-δ180 magma sources and large-scale 180/160 depletion of the upper crust. Geochimica Et Cosmochimica Acta, 2004, 68, 841-865.	3.9	167
170	Empirical calibration of oxygen isotope fractionation in zircon. Geochimica Et Cosmochimica Acta, 2003, 67, 3257-3266.	3.9	154
171	Crystal sizes in evolving silicic magma chambers. Geology, 2003, 31, 367.	4.4	77
172	Rapid generation of both high- and low-δ18O, large-volume silicic magmas at the Timber Mountain/Oasis Valley caldera complex, Nevada. Bulletin of the Geological Society of America, 2003, 115, 581-595.	3.3	66
173	Archean Protolith and Accretion of Crust in Kamchatka: SHRIMP Dating of Zircons from Sredinny and Ganal Massifs. Journal of Geology, 2002, 110, 271-289.	1.4	58
174	Oxygen isotope study of the Long Valley magma system, California: isotope thermometry and convection in large silicic magma bodies. Contributions To Mineralogy and Petrology, 2002, 144, 185-205.	3.1	102
175	Post-caldera volcanism: in situ measurement of U–Pb age and oxygen isotope ratio in Pleistocene zircons from Yellowstone caldera. Earth and Planetary Science Letters, 2001, 189, 197-206.	4.4	93
176	Low- δ 18 O tephra from a compositionally zoned magma body: Fisher Caldera, Unimak Island, Aleutians. Journal of Volcanology and Geothermal Research, 2001, 111, 35-53.	2.1	24
177	Low-δ180 Rhyolites from Yellowstone: Magmatic Evolution Based on Analyses of Zircons and Individual Phenocrysts. Journal of Petrology, 2001, 42, 1491-1517.	2.8	252
178	Formation of low-δ180 rhyolites after caldera collapse at Yellowstone, Wyoming, USA. Geology, 2000, 28, 719.	4.4	86
179	Trace element partitioning between plagioclase and melt: investigation of dopant influence on partition behavior. Geochimica Et Cosmochimica Acta, 2000, 64, 2863-2878.	3.9	164
180	Formation of low-δ180 rhyolites after caldera collapse at Yellowstone, Wyoming, USA. Geology, 2000, 28, 719-722.	4.4	3

#	Article	IF	CITATIONS
181	400 my of Basic Magmatism in a Single Lithospheric Block during Cratonization: Ion Microprobe Study of Plagioclase Megacrysts in Mafic Rocks from Transbaikalia, Russia. Journal of Petrology, 1999, 40, 807-830.	2.8	6
182	Trace elements in anorthite megacrysts from the Kurile Island Arc: a window to across-arc geochemical variations in magma compositions. Earth and Planetary Science Letters, 1999, 169, 209-226.	4.4	56
183	400 my of Basic Magmatism in a Single Lithospheric Block during Cratonization: Ion Microprobe Study of Plagioclase Megacrysts in Mafic Rocks from Transbaikalia, Russia. Journal of Petrology, 1999, 40, 807-830.	2.8	0
184	Ion Microprobe Study of Plagioclase-Basalt Partition Experiments at Natural Concentration Levels of Trace Elements. Geochimica Et Cosmochimica Acta, 1998, 62, 1175-1193.	3.9	409
185	A Stable Isotope Study of Anorogenic Magmatism in East Central Asia. Journal of Petrology, 1996, 37, 1063-1095.	2.8	97
186	Geochemical evolution of Phanerozoic magmatism in Transbaikalia, East Asia: A key constraint on the origin of K-rich silicic magmas and the process of cratonization. Journal of Geophysical Research, 1995, 100, 15641-15654.	3.3	50
187	A model of reverse differentiation at Dikii Greben' Volcano, Kamchatka: progressive basic magma vesiculation in a silicic magma chamber. Contributions To Mineralogy and Petrology, 1994, 117, 263-278.	3.1	34
188	A practical petrological method for the determination of volume proportions of magma chamber refilling. Journal of Volcanology and Geothermal Research, 1993, 56, 133-144.	2.1	12
189	EXPERIMENTAL STUDIES OF MAGMA MIXING. International Geology Review, 1993, 35, 721-738.	2.1	8
190	MELANOCRATIC INCLUSIONS IN ANDESITES AND DACITES OF THE KURILE-KAMCHATKA VOLCANIC ARC. International Geology Review, 1992, 34, 119-130.	2.1	2
191	THE MECHANISM OF TRANSPORT AND ERUPTION OF COGNATE INCLUSIONS IN VOLCANIC ROCKS. International Geology Review, 1991, 33, 879-888.	2.1	0
192	XENOLITHS OF BIOTITE-GARNET-ORTHOPYROXENE ROCKS FROM A DIKE-LIKE DIATREME ON YELOVYY ISLAND, WHITE SEA. International Geology Review, 1990, 32, 905-915.	2.1	2
193	Rhyolite Generation prior to a Yellowstone Supereruption: Insights from the Island Park–Mount Jackson Rhyolite Series. Journal of Petrology, 0, , egw071.	2.8	9