Patrick Koch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8511057/publications.pdf

Version: 2024-02-01

159 papers	12,286 citations	47006 47 h-index	109 g-index
160	160	160	6118 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L1.	8.3	2,264
2	First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophysical Journal Letters, 2019, 875, L6.	8.3	897
3	First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophysical Journal Letters, 2019, 875, L5.	8.3	814
4	First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L4.	8.3	806
5	First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophysical Journal Letters, 2019, 875, L2.	8.3	618
6	First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophysical Journal Letters, 2022, 930, L12.	8.3	568
7	First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophysical Journal Letters, 2019, 875, L3.	8.3	519
8	First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophysical Journal Letters, 2021, 910, L13.	8.3	297
9	First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophysical Journal Letters, 2021, 910, L12.	8.3	215
10	First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophysical Journal Letters, 2022, 930, L17.	8.3	215
11	Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole. Physical Review Letters, 2020, 125, 141104.	7.8	190
12	First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophysical Journal Letters, 2022, 930, L16.	8.3	187
13	The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. Astrophysical Journal, Supplement Series, 2019, 243, 26.	7.7	175
14	First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophysical Journal Letters, 2022, 930, L14.	8.3	163
15	MAGNETIC FIELDS AND MASSIVE STAR FORMATION. Astrophysical Journal, 2014, 792, 116.	4.5	142
16	First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophysical Journal Letters, 2022, 930, L13.	8.3	142
17	First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophysical Journal Letters, 2022, 930, L15.	8.3	137
18	Constraints on black-hole charges with the 2017 EHT observations of M87*. Physical Review D, 2021, 103, .	4.7	126

#	Article	IF	CITATIONS
19	SIGNS OF EARLY-STAGE DISK GROWTH REVEALED WITH ALMA. Astrophysical Journal, 2017, 834, 178.	4.5	112
20	MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY. Astrophysical Journal Letters, 2014, 783, L33.	8.3	103
21	The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament. Astrophysical Journal, 2017, 846, 122.	4.5	103
22	CLASH: MASS DISTRIBUTION IN AND AROUND MACS J1206.2-0847 FROM A FULL CLUSTER LENSING ANALYSIS. Astrophysical Journal, 2012, 755, 56.	4.5	101
23	MASS AND HOT BARYONS IN MASSIVE GALAXY CLUSTERS FROM SUBARU WEAK-LENSING AND AMIBA SUNYAEV-ZEL'DOVICH EFFECT OBSERVATIONS. Astrophysical Journal, 2009, 694, 1643-1663.	4.5	99
24	EVOLUTION OF MAGNETIC FIELDS IN HIGH-MASS STAR FORMATION: LINKING FIELD GEOMETRY AND COLLAPSE FOR THE W51 e2/e8 CORES. Astrophysical Journal, 2009, 700, 251-261.	4.5	91
25	THE 2014 ALMA LONG BASELINE CAMPAIGN: AN OVERVIEW. Astrophysical Journal Letters, 2015, 808, L1.	8.3	90
26	SUNYAEV-ZEL'DOVICH-MEASURED PRESSURE PROFILES FROM THE BOLOCAM X-RAY/SZ GALAXY CLUSTER SAMPLE. Astrophysical Journal, 2013, 768, 177.	4.5	88
27	DR 21(OH): A HIGHLY FRAGMENTED, MAGNETIZED, TURBULENT DENSE CORE. Astrophysical Journal, 2013, 772, 69.	4.5	79
28	First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt. Astrophysical Journal, 2017, 842, 66.	4.5	79
29	OBSERVATIONS OF INFALLING AND ROTATIONAL MOTIONS ON A 1000 AU SCALE AROUND 17 CLASS 0 AND 0/I PROTOSTARS: HINTS OF DISK GROWTH AND MAGNETIC BRAKING?. Astrophysical Journal, 2015, 799, 193.	4.5	72
30	A MEASUREMENT OF THE KINETIC SUNYAEV-ZEL'DOVICH SIGNAL TOWARD MACS J0717.5+3745. Astrophysical Journal, 2013, 778, 52.	4.5	70
31	Polarimetric Properties of Event Horizon Telescope Targets from ALMA. Astrophysical Journal Letters, 2021, 910, L14.	8.3	67
32	IMPLICATIONS OF A HIGH ANGULAR RESOLUTION IMAGE OF THE SUNYAEV-ZEL'DOVICH EFFECT IN RXJ1347–1145. Astrophysical Journal, 2010, 716, 739-745.	4.5	62
33	A MULTI-WAVELENGTH STUDY OF THE SUNYAEV-ZEL'DOVICH EFFECT IN THE TRIPLE-MERGER CLUSTER MACS J0717.5+3745 WITH MUSTANG AND BOLOCAM. Astrophysical Journal, 2012, 761, 47.	4.5	59
34	EVOLUTION OF MAGNETIC FIELDS IN HIGH MASS STAR FORMATION: SUBMILLIMETER ARRAY DUST POLARIZATION IMAGE OF THE ULTRACOMPACT H II REGION G5.89–0.39. Astrophysical Journal, 2009, 695, 1399-1412.	4.5	58
35	NO KEPLERIAN DISK > 10 AU AROUND THE PROTOSTAR B335: MAGNETIC BRAKING OR YOUNG AGE?. Astrophysical Journal, 2015, 812, 129.	4.5	57
36	A Holistic Perspective on the Dynamics of G035.39-00.33: The Interplay between Gas and Magnetic Fields. Astrophysical Journal, 2018, 859, 151.	4.5	57

#	Article	IF	CITATIONS
37	Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2021, 911, L11.	8.3	56
38	Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution. Astronomy and Astrophysics, 2020, 640, A69.	5.1	54
39	HIGH-ANGULAR RESOLUTION DUST POLARIZATION MEASUREMENTS: SHAPED < i > B < /i > -FIELD LINES IN THE MASSIVE STAR-FORMING REGION ORION BN/KL. Astrophysical Journal, 2010, 717, 1262-1273.	4.5	52
40	MAGNETIC FIELD STRENGTH MAPS FOR MOLECULAR CLOUDS: A NEW METHOD BASED ON A POLARIZATION-INTENSITY GRADIENT RELATION. Astrophysical Journal, 2012, 747, 79.	4.5	52
41	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
42	The TIME-Pilot intensity mapping experiment. Proceedings of SPIE, 2014, , .	0.8	51
43	Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements. Astrophysical Journal, 2018, 861, 65.	4.5	51
44	Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope. Astrophysical Journal, 2020, 901, 67.	4.5	51
45	The TOP-SCOPE Survey of <i>Planck</i> Galactic Cold Clumps: Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17. Astrophysical Journal, Supplement Series, 2018, 234, 28.	7.7	50
46	GALAXY CLUSTER SCALING RELATIONS BETWEEN BOLOCAM SUNYAEV–ZEL'DOVICH EFFECT AND <i>CHANDRA</i> X-RAY MEASUREMENTS. Astrophysical Journal, 2015, 806, 18.	4.5	48
47	STACKING SPECTRA IN PROTOPLANETARY DISKS: DETECTING INTENSITY PROFILES FROM HIDDEN MOLECULAR LINES IN HD 163296. Astrophysical Journal, 2016, 832, 204.	4.5	47
48	THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophysical Journal, 2020, 897, 139.	4.5	47
49	A First Look at BISTRO Observations of the ϕOph-A core. Astrophysical Journal, 2018, 859, 4.	4.5	46
50	Gravity, Magnetic Field, and Turbulence: Relative Importance and Impact on Fragmentation in the Infrared Dark Cloud G34.43+00.24. Astrophysical Journal, 2019, 878, 10.	4.5	45
51	HL Tau Disk in HCO ⁺ (3–2) and (1–0) with ALMA: Gas Density, Temperature, Gap, and One-arm Spiral. Astrophysical Journal, 2019, 880, 69.	4.5	45
52	Verification of Radiative Transfer Schemes for the EHT. Astrophysical Journal, 2020, 897, 148.	4.5	44
53	The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. Astrophysical Journal, 2021, 912, 35.	4.5	43
54	Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2022, 930, L19.	8.3	43

#	Article	IF	CITATIONS
55	JCMT BISTRO Survey: Magnetic Fields within the Hub-filament Structure in IC 5146. Astrophysical Journal, 2019, 876, 42.	4.5	42
56	THE IMPORTANCE OF THE MAGNETIC FIELD FROM AN SMA-CSO-COMBINED SAMPLE OF STAR-FORMING REGIONS. Astrophysical Journal, 2014, 797, 99.	4.5	41
57	Dust polarized emission observations of NGC 6334. Astronomy and Astrophysics, 2021, 647, A78.	5.1	41
58	Gravity-driven Magnetic Field at \hat{a}^4 1000 au Scales in High-mass Star Formation. Astrophysical Journal Letters, 2021, 915, L10.	8.3	41
59	Greenland telescope project: Direct confirmation of black hole with subâ€millimeter VLBI. Radio Science, 2014, 49, 564-571.	1.6	39
60	The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333. Astrophysical Journal, 2020, 899, 28.	4.5	39
61	The JCMT BISTRO Survey: The Magnetic Field in the Starless Core <i>jk/i> Ophiuchus C. Astrophysical Journal, 2019, 877, 43.</i>	4.5	38
62	Magnetic Fields in the Infrared Dark Cloud G34.43+0.24. Astrophysical Journal, 2019, 883, 95.	4.5	38
63	The JCMT BISTRO Survey: The Magnetic Field of the Barnard 1 Star-forming Region. Astrophysical Journal, 2019, 877, 88.	4.5	37
64	THE YUAN-TSEH LEE ARRAY FOR MICROWAVE BACKGROUND ANISOTROPY. Astrophysical Journal, 2009, 694, 1610-1618.	4.5	35
65	THE AMIBA HEXAPOD TELESCOPE MOUNT. Astrophysical Journal, 2009, 694, 1670-1684.	4.5	34
66	Polarization Properties and Magnetic Field Structures in the High-mass Star-forming Region W51 Observed with ALMA. Astrophysical Journal, 2018, 855, 39.	4.5	34
67	PLANCK COLD CLUMPS IN THE λ ORIONIS COMPLEX. I. DISCOVERY OF AN EXTREMELY YOUNG CLASS O PROTOSTELLAR OBJECT AND A PROTO-BROWN DWARF CANDIDATE IN THE BRIGHT-RIMMED CLUMP PGCC G192.32–11.88. Astrophysical Journal, Supplement Series, 2016, 222, 7.	7.7	31
68	DUST CONTINUUM AND POLARIZATION FROM ENVELOPE TO CORES IN STAR FORMATION: A CASE STUDY IN THE W51 NORTH REGION. Astrophysical Journal, 2013, 763, 135.	4.5	27
69	QUANTIFYING THE SIGNIFICANCE OF THE MAGNETIC FIELD FROM LARGE-SCALE CLOUD TO COLLAPSING CORE: SELF-SIMILARITY, MASS-TO-FLUX RATIO, AND STAR FORMATION EFFICIENCY. Astrophysical Journal, 2012, 747, 80.	4.5	26
70	Does the Magnetic Field Suppress Fragmentation in Massive Dense Cores?. Astrophysical Journal, 2021, 912, 159.	4.5	26
71	AMiBA: BROADBAND HETERODYNE COSMIC MICROWAVE BACKGROUND INTERFEROMETRY. Astrophysical Journal, 2009, 694, 1664-1669.	4.5	25
72	THE CONTRIBUTION OF RADIO GALAXY CONTAMINATION TO MEASUREMENTS OF THE SUNYAEV-ZEL'DOVICH DECREMENT IN MASSIVE GALAXY CLUSTERS AT 140 GHz WITH BOLOCAM. Astrophysical Journal, 2013, 764, 152.	4.5	25

#	Article	IF	CITATIONS
73	MAGNETIC FIELD PROPERTIES IN HIGH-MASS STAR FORMATION FROM LARGE TO SMALL SCALES: A STATISTICAL ANALYSIS FROM POLARIZATION DATA. Astrophysical Journal, 2010, 721, 815-827.	4.5	23
74	INTERPRETING THE ROLE OF THE MAGNETIC FIELD FROM DUST POLARIZATION MAPS. Astrophysical Journal, 2013, 775, 77.	4.5	23
75	Formation of the Hub–Filament System G33.92+0.11: Local Interplay between Gravity, Velocity, and Magnetic Field. Astrophysical Journal, 2020, 905, 158.	4.5	23
76	ARRAY FOR MICROWAVE BACKGROUND ANISOTROPY: OBSERVATIONS, DATA ANALYSIS, AND RESULTS FOR SUNYAEV-ZEL'DOVICH EFFECTS. Astrophysical Journal, 2009, 694, 1619-1628.	4.5	22
77	Dust spectrum and polarisation at 850 <i>\hat{l}/4</i> m in the massive IRDC G035.39-00.33. Astronomy and Astrophysics, 2018, 620, A26.	5.1	22
78	Planck Cold Clumps in the $\langle i \rangle \hat{l} \rangle \langle i \rangle$ Orionis Complex. II. Environmental Effects on Core Formation. Astrophysical Journal, Supplement Series, 2018, 236, 51.	7.7	22
79	SCOPE: SCUBA-2 Continuum Observations of Pre-protostellar Evolution – survey description and compact source catalogue. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2895-2908.	4.4	22
80	Molecular Gas Feeding the Circumnuclear Disk of the Galactic Center. Astrophysical Journal, 2017, 847, 3.	4.5	21
81	The JCMT BISTRO Survey: Revealing the Diverse Magnetic Field Morphologies in Taurus Dense Cores with Sensitive Submillimeter Polarimetry. Astrophysical Journal Letters, 2021, 912, L27.	8.3	21
82	Selective Dynamical Imaging of Interferometric Data. Astrophysical Journal Letters, 2022, 930, L18.	8.3	21
83	Magnetized Converging Flows toward the Hot Core in the Intermediate/High-mass Star-forming Region NGC 6334 V. Astrophysical Journal, 2017, 844, 44.	4.5	20
84	Stellar masses and disk properties of Lupus young stellar objects traced by velocity-aligned stacked ALMA ¹³ CO and C ¹⁸ O spectra. Astronomy and Astrophysics, 2018, 616, A100.	5.1	20
85	Multi-scale analysis of the Monoceros OB 1 star-forming region. Astronomy and Astrophysics, 2019, 631, A3.	5.1	20
86	Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI. Astrophysical Journal Letters, 2022, 930, L21.	8.3	20
87	A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows. Astrophysical Journal Letters, 2022, 930, L20.	8.3	20
88	The Properties of Planck Galactic Cold Clumps in the L1495 Dark Cloud. Astrophysical Journal, 2018, 856, 141.	4.5	19
89	Constraints on the Mass, Concentration, and Nonthermal Pressure Support of Six CLASH Clusters from a Joint Analysis of X-Ray, SZ, and Lensing Data. Astrophysical Journal, 2018, 861, 71.	4.5	19
90	The JCMT BISTRO Survey: The Distribution of Magnetic Field Strengths toward the OMC-1 Region. Astrophysical Journal, 2021, 913, 85.	4.5	19

#	Article	IF	Citations
91	SYMBA: An end-to-end VLBI synthetic data generation pipeline. Astronomy and Astrophysics, 2020, 636, A5.	5.1	18
92	AMIBA WIDEBAND ANALOG CORRELATOR. Astrophysical Journal, 2010, 716, 746-757.	4.5	17
93	The JCMT BISTRO Survey: Alignment between Outflows and Magnetic Fields in Dense Cores/Clumps. Astrophysical Journal, 2021, 907, 33.	4.5	17
94	Observations of Magnetic Fields Surrounding LkHÎ $_{\pm}$ 101 Taken by the BISTRO Survey with JCMT-POL-2. Astrophysical Journal, 2021, 908, 10.	4.5	16
95	Role of the magnetic field in the fragmentation process: the case of G14.225-0.506. Astronomy and Astrophysics, 2020, 644, A52.	5.1	16
96	B-fields in Star-forming Region Observations (BISTRO): Magnetic Fields in the Filamentary Structures of Serpens Main. Astrophysical Journal, 2022, 926, 163.	4.5	16
97	AMiBA: SYSTEM PERFORMANCE. Astrophysical Journal, 2009, 694, 1629-1636.	4.5	15
98	A Magnetic Field Connecting the Galactic Center Circumnuclear Disk with Streamers and Mini-spiral: Implications from 850 $\hat{1}$ 4m Polarization Data. Astrophysical Journal, 2018, 862, 150.	4.5	15
99	Multiwavelength Polarimetry of the Filamentary Cloud ICÂ5146. II. Magnetic Field Structures. Astrophysical Journal, 2020, 888, 13.	4.5	15
100	Dynamical Stellar Masses of Pre-main-sequence Stars in Lupus and Taurus Obtained with ALMA Surveys in Comparison with Stellar Evolutionary Models. Astrophysical Journal, 2021, 908, 46.	4.5	15
101	TESTS OF AMiBA DATA INTEGRITY. Astrophysical Journal, 2009, 694, 1637-1642.	4.5	14
102	AMiBA: SCALING RELATIONS BETWEEN THE INTEGRATED COMPTON- <i>y</i> AND X-RAY-DERIVED TEMPERATURE, MASS, AND LUMINOSITY. Astrophysical Journal, 2010, 716, 758-765.	4.5	14
103	Constraint on ion–neutral drift velocity in the Class 0 protostar B335 from ALMA observations. Astronomy and Astrophysics, 2018, 615, A58.	5.1	14
104	JCMT POL-2 and ALMA Polarimetric Observations of 6000–100 au Scales in the Protostar B335: Linking Magnetic Field and Gas Kinematics in Observations and MHD Simulations. Astrophysical Journal, 2019, 871, 243.	4.5	14
105	Magnetic Fields in Massive Star-forming Regions (MagMaR). I. Linear Polarized Imaging of the Ultracompact H ii Region G5.89–0.39. Astrophysical Journal, 2021, 913, 29.	4.5	13
106	The JCMT BISTRO Survey: An 850/450 \hat{l} 4m Polarization Study of NGC 2071IR in Orion B. Astrophysical Journal, 2021, 918, 85.	4.5	13
107	First-generation science cases for ground-based terahertz telescopes. Publication of the Astronomical Society of Japan, 2016, 68, .	2.5	12
108	The Circumnuclear Disk Revealed by ALMA. I. Dense Clouds and Tides in the Galactic Center. Astrophysical Journal, 2021, 913, 94.	4.5	12

#	Article	IF	Citations
109	BOLOCAM OBSERVATIONS OF TWO UNCONFIRMED GALAXY CLUSTER CANDIDATES FROM THE <i>PLANCK</i> EARLY SUNYAEV-ZEL'DOVICH SAMPLE. Astrophysical Journal Letters, 2012, 749, L15.	8.3	11
110	3.5 Year Monitoring of 225 GHz Opacity at the Summit of Greenland. Publications of the Astronomical Society of the Pacific, 2017, 129, 025001.	3.1	11
111	Multi-scale analysis of the Monoceros OB 1 star-forming region. Astronomy and Astrophysics, 2019, 631, L1.	5.1	11
112	THE AMIBA PROJECT. Modern Physics Letters A, 2004, 19, 993-1000.	1.2	10
113	CONSTRAINING INTRACLUSTER GAS MODELS WITH AMIBA13. Astrophysical Journal, 2010, 723, 1272-1285.	4.5	10
114	THE FOSSIL NUCLEAR OUTFLOW IN THE CENTRAL 30 pc OF THE GALACTIC CENTER. Astrophysical Journal, 2016, 831, 72.	4.5	10
115	The TOP-SCOPE Survey of PGCCs: PMO and SCUBA-2 Observations of 64 PGCCs in the Second Galactic Quadrant. Astrophysical Journal, Supplement Series, 2018, 236, 49.	7.7	10
116	The influence of magnetic fields on the Sunyaev–Zel'dovich effect in clusters of galaxies. New Astronomy, 2003, 8, 1-14.	1.8	9
117	The Greenland telescope: Thule operations. , 2018, , .		8
118	Formation of the SDC13 Hub-filament System: A Cloud–Cloud Collision Imprinted on the Multiscale Magnetic Field. Astrophysical Journal, 2022, 931, 115.	4.5	8
119	AMiBA: SUNYAEV-ZEL'DOVICH EFFECT-DERIVED PROPERTIES AND SCALING RELATIONS OF MASSIVE GALAXY CLUSTERS. Astrophysical Journal, 2010, 713, 584-591.	4.5	7
120	The Atacama Large Millimeter/sub-millimeter Array band-1 receiver. Proceedings of SPIE, 2016, , .	0.8	7
121	Transition from Ordered Pinched to Warped Magnetic Field on a 100 au Scale in the Class 0 Protostar B335. Astrophysical Journal, 2020, 893, 54.	4.5	7
122	The JCMT BISTRO Survey: multiwavelength polarimetry of bright regions in NGC 2071 in the far-infrared/submillimetre range, with POL-2 and HAWC+. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1985-2002.	4.4	7
123	AMIBA: FIRST-YEAR RESULTS FOR SUNYAEV-ZEL'DOVICH EFFECT. Modern Physics Letters A, 2008, 23, 1675-1686.	1.2	6
124	PROTOSTAR L1455 IRS1: A ROTATING DISK CONNECTING TO A FILAMENTARY NETWORK. Astrophysical Journal, 2016, 823, 151.	4.5	6
125	The Greenland Telescope: antenna retrofit status and future plans. Proceedings of SPIE, 2016, , .	0.8	6
126	The JCMT BISTRO-2 Survey: The Magnetic Field in the Center of the Rosette Molecular Cloud. Astrophysical Journal, 2021, 913, 57.	4.5	6

#	Article	IF	Citations
127	The Variability of the Black Hole Image in M87 at the Dynamical Timescale. Astrophysical Journal, 2022, 925, 13.	4.5	6
128	Progress of the array of microwave background anisotropy (AMiBA)., 2006,,.		5
129	Instrumentation for single-dish observations with The Greenland Telescope. , 2014, , .		4
130	Commissioning status of the Greenland telescope. , 2018, , .		4
131	The JCMT BISTRO Survey: Evidence for Pinched Magnetic Fields in Quiescent Filaments of NGC 1333. Astrophysical Journal Letters, 2021, 923, L9.	8.3	4
132	Initial operation of the array for microwave background anisotropy (AMiBA)., 2006, 6275, 487.		3
133	AMiBA first year observation., 2008,,.		3
134	Platform deformation refined pointing and phase correction for the AMiBA hexapod telescope. Proceedings of SPIE, 2008, , .	0.8	3
135	CONTAMINATION OF THE CENTRAL SUNYAEV-ZEL'DOVICH DECREMENTS IN AMIBA GALAXY CLUSTER OBSERVATIONS. Astrophysical Journal, 2010, 720, 608-613.	4.5	3
136	Design and Fabrication of TES Detector Modules for the TIME-Pilot [CII] Intensity Mapping Experiment. Journal of Low Temperature Physics, 2016, 184, 733-738.	1.4	3
137	The Nuclear Filaments inside the Circumnuclear Disk in the Central 0.5 pc of the Galactic Center. Astrophysical Journal Letters, 2019, 885, L20.	8.3	3
138	No Impact of Core-scale Magnetic Field, Turbulence, or Velocity Gradient on Sizes of Protostellar Disks in Orion A. Astrophysical Journal, 2021, 916, 97.	4.5	3
139	Electronics instrumentation for the Greenland telescope. , 2018, , .		3
140	Control and monitoring system for the Greenland telescope: computers, network and software. , 2018, , .		3
141	Status of scientific commissioning of the Greenland Telescope. , 2020, , .		3
142	Effects of Magnetic Field Orientations in Dense Cores on Gas Kinematics in Protostellar Envelopes. Astrophysical Journal, 2022, 930, 67.	4.5	3
143	Cooling flow bulk motion corrections to the Sunyaev–Zel'dovich effect. New Astronomy, 2002, 7, 587-593.	1.8	2
144	THE YUAN TSEH LEE AMiBA PROJECT. Modern Physics Letters A, 2008, 23, 1243-1251.	1.2	2

#	Article	IF	CITATIONS
145	A distributed control system for a radio telescope with six-meter hexapod mount. , 2009, , .		2
146	1.2Âm Shielded Cassegrain Antenna for Close-Packed Radio Interferometer. Publications of the Astronomical Society of the Pacific, 2011, 123, 198-212.	3.1	2
147	Greenland Telescope (GLT) Project. EPJ Web of Conferences, 2013, 61, 01008.	0.3	2
148	The Greenland Telescope (GLT): antenna status and future plans. , 2014, , .		2
149	Control and monitoring software for the Greenland Telescope. , 2020, , .		2
150	PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMIBA-13 COPLANAR INTERFEROMETER. Astrophysical Journal, 2013, 769, 71.	4.5	1
151	AMiBA: CLUSTER SUNYAEV–ZEL'DOVICH EFFECT OBSERVATIONS WITH THE EXPANDED 13-ELEMENT ARRA Astrophysical Journal, 2016, 830, 91.	4Y _{4.5}	1
152	Constraints on the Mass Accretion Rate onto the Supermassive Black Hole of Cygnus A Using the Submillimeter Array. Astrophysical Journal, 2021, 911, 35.	4.5	1
153	Local Magnetic Field Role in Star Formation. EAS Publications Series, 2015, 75-76, 159-162.	0.3	1
154	Spiral-arm Substructures in the Asymmetrical Dust Rings of the Circumstellar Disk MWC 758. Astrophysical Journal, 2020, 904, 125.	4.5	1
155	Magnetic field morphologies at mpc scale. Proceedings of the International Astronomical Union, 2012, 10, 392-392.	0.0	0
156	ALMA nutator design and preliminary performances. Proceedings of SPIE, 2012, , .	0.8	0
157	Kinematics of neutral and ionzied gas in the candidate protostar with efficient magnetic braking B335. Proceedings of the International Astronomical Union, 2018, 14, 120-120.	0.0	0
158	Submillimeter Continuum Variability in Planck Galactic Cold Clumps. Astrophysical Journal, Supplement Series, 2019, 242, 27.	7.7	0
159	Performance of pre-production band 1 receiver for the Atacama Large Millimeter/submillimeter Array (ALMA). , 2018, , .		0