## Mircea Podar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8510307/publications.pdf

Version: 2024-02-01

130 papers 27,806 citations

50 h-index 17055 122 g-index

147 all docs

 $\begin{array}{c} 147 \\ \text{docs citations} \end{array}$ 

147 times ranked 32300 citing authors

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Incorporating concentration-dependent sediment microbial activity into methylmercury production kinetics modeling. Environmental Sciences: Processes and Impacts, 2022, 24, 1392-1405.                     | 1.7 | 1         |
| 2  | Complete Genome Sequence of Human Oral Saccharibacterium " Candidatus Nanosynbacter sp. HMT352―Strain KC1. Microbiology Resource Announcements, 2022, , e0120521.                                          | 0.3 | 1         |
| 3  | Microbial Diversity and Sulfur Cycling in an Early Earth Analogue: From Ancient Novelty to Modern<br>Commonality. MBio, 2022, 13, e0001622.                                                                | 1.8 | 15        |
| 4  | Machine learningâ€based prediction of enzyme substrate scope: Application to bacterial nitrilases. Proteins: Structure, Function and Bioinformatics, 2021, 89, 336-347.                                    | 1.5 | 30        |
| 5  | Complete Genome Sequence of Desulfobulbus oligotrophicus Prop6, an Anaerobic Deltabacterota<br>Strain That Lacks Mercury Methylation Capability. Microbiology Resource Announcements, 2021, 10, .          | 0.3 | O         |
| 6  | Complete Genome Sequence of Human Oral <i>Actinomyces</i> sp. HMT897 Strain ORNL0104, a Host of the Saccharibacterium (TM7) HMT351. Microbiology Resource Announcements, 2021, 10, .                       | 0.3 | 1         |
| 7  | Metagenome-Assembled Genome Sequences of Novel Prokaryotic Species from the<br>Mercury-Contaminated East Fork Poplar Creek, Oak Ridge, Tennessee, USA. Microbiology Resource<br>Announcements, 2021, 10, . | 0.3 | 2         |
| 8  | Cultivating the Bacterial Microbiota of <i>Populus</i> Roots. MSystems, 2021, 6, e0130620.                                                                                                                 | 1.7 | 17        |
| 9  | Complete Genome Sequence of Human Oral <i>Actinomyces</i> sp. HMT175 Strain ORNL0102, a Host of the Saccharibacterium (TM7) HMT957. Microbiology Resource Announcements, 2021, 10, e0041221.               | 0.3 | О         |
| 10 | Effects of syntrophic interactions on methyl-mercury generation., 2021,,.                                                                                                                                  |     | O         |
| 11 | Draft Genome Sequence of <i>Schaalia odontolytica</i> Strain ORNL0103, a Basibiont of "<br><i>Candidatus</i> Saccharibacteria―HMT352. Microbiology Resource Announcements, 2021, 10,<br>e0079321.          | 0.3 | 2         |
| 12 | Microbial diversity analysis of two full-scale seawater desalination treatment trains provides insights into detrimental biofilm formation., 2021, 1, 100001.                                              |     | 6         |
| 13 | Comparative Genomics Guides Elucidation of Vitamin B <sub>12</sub> Biosynthesis in Novel<br>Human-Associated <i>Akkermansia</i> Strains. Applied and Environmental Microbiology, 2020, 86, .               | 1.4 | 48        |
| 14 | An Improved hgcAB Primer Set and Direct High-Throughput Sequencing Expand Hg-Methylator Diversity in Nature. Frontiers in Microbiology, 2020, 11, 541554.                                                  | 1.5 | 33        |
| 15 | Complete Genome Sequence of the Novel Roseimicrobium sp. Strain ORNL1, a Verrucomicrobium Isolated from the Populus deltoides Rhizosphere. Microbiology Resource Announcements, 2020, 9, .                 | 0.3 | 1         |
| 16 | Comparative Analysis of Microbial Diversity Across Temperature Gradients in Hot Springs From Yellowstone and Iceland. Frontiers in Microbiology, 2020, 11, 1625.                                           | 1.5 | 48        |
| 17 | Draft Genome Sequence of <i>Larkinella</i> sp. Strain BK230, Isolated from <i>Populus deltoides</i> Roots. Microbiology Resource Announcements, 2020, 9, .                                                 | 0.3 | 2         |
| 18 | Structure determination of the HgcAB complex using metagenome sequence data: insights into microbial mercury methylation. Communications Biology, 2020, 3, 320.                                            | 2.0 | 30        |

| #  | Article                                                                                                                                                                                                                                      | IF                | Citations           |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 19 | Complete Genome Sequence of Starkeya sp. Strain ORNL1, a Soil Alphaproteobacterium Isolated from the Rhizosphere of Populus deltoides. Microbiology Resource Announcements, 2020, 9, .                                                       | 0.3               | 1                   |
| 20 | Single-Cell Genomics and the Oral Microbiome. Journal of Dental Research, 2020, 99, 613-620.                                                                                                                                                 | 2.5               | 18                  |
| 21 | A Microbe Associated with Sleep Revealed by a Novel Systems Genetic Analysis of the Microbiome in Collaborative Cross Mice. Genetics, 2020, 214, 719-733.                                                                                    | 1.2               | 20                  |
| 22 | Characterization of subsurface media from locations up- and down-gradient of a uranium-contaminated aquifer. Chemosphere, 2020, 255, 126951.                                                                                                 | 4.2               | 18                  |
| 23 | Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32627-32638. | 3.3               | 36                  |
| 24 | In-field bioreactors demonstrate dynamic shifts in microbial communities in response to geochemical perturbations. PLoS ONE, 2020, 15, e0232437.                                                                                             | 1.1               | 5                   |
| 25 | A System Biology Approach to Discern the Native Biochemical Function of Hg Methylation Proteins in <i>Desulfovibrio desulfuricans</i>                                                                                                        |                   | O                   |
| 26 | Determining the Reliability of Measuring Mercury Cycling Gene Abundance with Correlations with Mercury and Methylmercury Concentrations. Environmental Science & Environmental Science, 2019, 53, 8649-8663.                                 | 4.6               | 99                  |
| 27 | Toward unrestricted use of public genomic data. Science, 2019, 363, 350-352.                                                                                                                                                                 | 6.0               | 45                  |
| 28 | Consent insufficient for data releaseâ€"Response. Science, 2019, 364, 446-446.                                                                                                                                                               | 6.0               | 5                   |
| 29 | Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nature<br>Biotechnology, 2019, 37, 1314-1321.                                                                                                               | 9.4               | 231                 |
| 30 | A new symbiotic nanoarchaeote (Candidatus Nanoclepta minutus) and its host (Zestosphaera) Tj ETQq0 0 0 rgB 2019, 42, 94-106.                                                                                                                 | T /Overloc<br>1.2 | k 10 Tf 50 30<br>76 |
| 31 | Pseudodesulfovibrio mercurii sp. nov., a mercury-methylating bacterium isolated from sediment.<br>International Journal of Systematic and Evolutionary Microbiology, 2019, 71, .                                                             | 0.8               | 13                  |
| 32 | Complete Genome Sequence of Terriglobus albidus Strain ORNL, an Acidobacterium Isolated from the Populus deltoides Rhizosphere. Microbiology Resource Announcements, 2019, 8, .                                                              | 0.3               | 5                   |
| 33 | Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus<br>Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses. Applied and Environmental<br>Microbiology, 2018, 84, .                     | 1.4               | 33                  |
| 34 | Microbial community structure with trends in methylation gene diversity and abundance in mercury-contaminated rice paddy soils in Guizhou, China. Environmental Sciences: Processes and Impacts, 2018, 20, 673-685.                          | 1.7               | 36                  |
| 35 | Robust Mercury Methylation across Diverse Methanogenic Archaea. MBio, 2018, 9, .                                                                                                                                                             | 1.8               | 112                 |
| 36 | Insights into the Evolution of Host Association through the Isolation and Characterization of a Novel Human Periodontal Pathobiont, <i>Desulfobulbus oralis</i> . MBio, 2018, 9, .                                                           | 1.8               | 32                  |

| #  | Article                                                                                                                                                                                                                   | IF         | Citations     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| 37 | Carbon Amendments Alter Microbial Community Structure and Net Mercury Methylation Potential in Sediments. Applied and Environmental Microbiology, 2018, 84, .                                                             | 1.4        | 38            |
| 38 | Single-cell genomics of co-sorted Nanoarchaeota suggests novel putative host associations and diversification of proteins involved in symbiosis. Microbiome, 2018, 6, 161.                                                | 4.9        | 44            |
| 39 | Development and characterization of stable anaerobic thermophilic methanogenic microbiomes fermenting switchgrass at decreasing residence times. Biotechnology for Biofuels, 2018, 11, 243.                               | 6.2        | 37            |
| 40 | Draft Genome Sequence of a Dictyoglomus sp. from an Enrichment Culture of a New Zealand Geothermal Spring. Genome Announcements, 2018, 6, .                                                                               | 0.8        | 0             |
| 41 | Draft Genome Sequence of a Novel Thermofilum sp. Strain from a New Zealand Hot Spring Enrichment Culture. Genome Announcements, 2018, 6, .                                                                                | 0.8        | 1             |
| 42 | Genomics of the Uncultivated, Periodontitis-Associated Bacterium <i>Tannerella</i> sp. BU045 (Oral) Tj ETQq0                                                                                                              | 0 0 rgBT / | Overlock 10 T |
| 43 | Temporal Dynamics of In-Field Bioreactor Populations Reflect the Groundwater System and Respond Predictably to Perturbation. Environmental Science & Technology, 2017, 51, 2879-2889.                                     | 4.6        | 15            |
| 44 | Multi-omics analysis provides insight to the Ignicoccus hospitalis-Nanoarchaeum equitans association. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2218-2227.                                            | 1.1        | 6             |
| 45 | Hypersaline sapropels act as hotspots for microbial dark matter. Scientific Reports, 2017, 7, 6150.                                                                                                                       | 1.6        | 15            |
| 46 | Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature Biotechnology, 2017, 35, 725-731.                                                   | 9.4        | 1,512         |
| 47 | A Complex Endomembrane System in the Archaeon Ignicoccus hospitalis Tapped by Nanoarchaeum equitans. Frontiers in Microbiology, 2017, 8, 1072.                                                                            | 1.5        | 52            |
| 48 | Culture Independent Genomic Comparisons Reveal Environmental Adaptations for Altiarchaeales. Frontiers in Microbiology, 2016, 7, 1221.                                                                                    | 1.5        | 25            |
| 49 | Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment. Nature Communications, 2016, 7, 12115.                                                    | 5.8        | 154           |
| 50 | Ultrastructural and Single-Cell-Level Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an Ice-Covered Antarctic Lake. Applied and Environmental Microbiology, 2016, 82, 3659-3670.  | 1.4        | 36            |
| 51 | Enrichment of Root Endophytic Bacteria from Populus deltoides and Single-Cell-Genomics Analysis.<br>Applied and Environmental Microbiology, 2016, 82, 5698-5708.                                                          | 1.4        | 53            |
| 52 | Development and Validation of Broad-Range Qualitative and Clade-Specific Quantitative Molecular Probes for Assessing Mercury Methylation in the Environment. Applied and Environmental Microbiology, 2016, 82, 6068-6078. | 1.4        | 73            |
| 53 | Draft Genome Sequence of Pyrodictium occultum PL19 T , a Marine Hyperthermophilic Species of Archaea That Grows Optimally at $105 \hat{A}^{\circ}\text{C}$ . Genome Announcements, 2016, 4, .                             | 0.8        | 2             |
| 54 | A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genomics, 2016, 17, 55.                                                                                    | 1.2        | 387           |

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Characterization of Fatty Acids in Crenarchaeota by GC-MS and NMR. Archaea, 2015, 2015, 1-9.                                                                                                    | 2.3  | 23        |
| 56 | Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation. Applied and Environmental Microbiology, 2015, 81, 3205-3217.                          | 1.4  | 73        |
| 57 | Rescuing Those Left Behind: Recovering and Characterizing Underdigested Membrane and Hydrophobic Proteins To Enhance Proteome Measurement Depth. Analytical Chemistry, 2015, 87, 7720-7728.     | 3.2  | 15        |
| 58 | Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania. Frontiers in Microbiology, 2015, 6, 253.                      | 1.5  | 24        |
| 59 | Contrasting taxonomic stratification of microbial communities in two hypersaline meromictic lakes. ISME Journal, 2015, 9, 2642-2656.                                                            | 4.4  | 82        |
| 60 | Community Analysis of Plant Biomass-Degrading Microorganisms from Obsidian Pool, Yellowstone National Park. Microbial Ecology, 2015, 69, 333-345.                                               | 1.4  | 20        |
| 61 | Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Science Advances, 2015, 1, e1500675.                                                            | 4.7  | 355       |
| 62 | Untargeted metabolomics studies employing NMR and LC–MS reveal metabolic coupling between Nanoarcheum equitans and its archaeal host Ignicoccus hospitalis. Metabolomics, 2015, 11, 895-907.    | 1.4  | 27        |
| 63 | Life on the edge: functional genomic response of <i>lgnicoccus hospitalis</i> to the presence of <i>Nanoarchaeum equitans</i> . ISME Journal, 2015, 9, 101-114.                                 | 4.4  | 44        |
| 64 | Targeted Genomic Characterization, Uncultured Bacteria from Human Microbiota, Project. , 2015, , 621-622.                                                                                       |      | 0         |
| 65 | Single Cell Genomics of Uncultured, Health-Associated Tannerella BU063 (Oral Taxon 286) and Comparison to the Closely Related Pathogen Tannerella forsythia. PLoS ONE, 2014, 9, e89398.         | 1.1  | 29        |
| 66 | Diversity and genomic insights into the uncultured <scp><i>C</i></scp> <i>hloroflexi</i> from the human microbiota. Environmental Microbiology, 2014, 16, 2635-2643.                            | 1.8  | 55        |
| 67 | Biogeography of the ecosystems of the healthy human body. Genome Biology, 2013, 14, R1.                                                                                                         | 13.9 | 540       |
| 68 | Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park. Biology Direct, 2013, 8, 9. | 1.9  | 102       |
| 69 | Mercury Methylation by Novel Microorganisms from New Environments. Environmental Science & Emp; Technology, 2013, 47, 11810-11820.                                                              | 4.6  | 575       |
| 70 | UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5540-5545. | 3.3  | 290       |
| 71 | Comparative metagenomic and <scp>rRNA</scp> microbial diversity characterization using archaeal and bacterial synthetic communities. Environmental Microbiology, 2013, 15, 1882-1899.           | 1.8  | 202       |
| 72 | The Genetic Basis for Bacterial Mercury Methylation. Science, 2013, 339, 1332-1335.                                                                                                             | 6.0  | 778       |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | A Multifactor Analysis of Fungal and Bacterial Community Structure in the Root Microbiome of Mature Populus deltoides Trees. PLoS ONE, 2013, 8, e76382.                                                       | 1.1  | 315       |
| 74 | Hexavalent Chromium Reduction under Fermentative Conditions with Lactate Stimulated Native Microbial Communities. PLoS ONE, 2013, 8, e83909.                                                                  | 1.1  | 36        |
| 75 | Targeted Genomic Characterization, Uncultured Bacteria from Human Microbiota, Project., 2013, , 1-2.                                                                                                          |      | 1         |
| 76 | Multiple Single-Cell Genomes Provide Insight into Functions of Uncultured Deltaproteobacteria in the Human Oral Cavity. PLoS ONE, 2013, 8, e59361.                                                            | 1.1  | 44        |
| 77 | Microbial Community Succession during Lactate Amendment and Electron Acceptor Limitation Reveals a Predominance of Metal-Reducing Pelosinus spp. Applied and Environmental Microbiology, 2012, 78, 2082-2091. | 1.4  | 42        |
| 78 | Draft Genome Sequences for Two Metal-Reducing Pelosinus fermentans Strains Isolated from a Cr(VI)-Contaminated Site and for Type Strain R7. Journal of Bacteriology, 2012, 194, 5147-5148.                    | 1.0  | 24        |
| 79 | Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME Journal, 2012, 6, 1176-1185.                                                                   | 4.4  | 799       |
| 80 | Host genetic and environmental effects on mouse intestinal microbiota. ISME Journal, 2012, 6, 2033-2044.                                                                                                      | 4.4  | 206       |
| 81 | Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486, 207-214.                                                                                                                | 13.7 | 9,614     |
| 82 | A framework for human microbiome research. Nature, 2012, 486, 215-221.                                                                                                                                        | 13.7 | 2,249     |
| 83 | Interâ€field variability in the microbial communities of hydrothermal vent deposits from a backâ€arc basin. Geobiology, 2012, 10, 333-346.                                                                    | 1.1  | 86        |
| 84 | Sequencing Intractable DNA to Close Microbial Genomes. PLoS ONE, 2012, 7, e41295.                                                                                                                             | 1.1  | 11        |
| 85 | An intersubunit disulfide bridge stabilizes the tetrameric nucleoside diphosphate kinase of <i>Aquifex aeolicus</i> . Proteins: Structure, Function and Bioinformatics, 2012, 80, 1658-1668.                  | 1.5  | 8         |
| 86 | Characterization of the Deltaproteobacteria in contaminated and uncontaminated stream sediments and identification of potential mercury methylators. Aquatic Microbial Ecology, 2012, 66, 271-282.            | 0.9  | 26        |
| 87 | Mercury and Other Heavy Metals Influence Bacterial Community Structure in Contaminated Tennessee Streams. Applied and Environmental Microbiology, 2011, 77, 302-311.                                          | 1.4  | 137       |
| 88 | Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Midâ€Atlantic Ridge. Environmental Microbiology, 2011, 13, 2158-2171.                               | 1.8  | 174       |
| 89 | Cellulases: ambiguous nonhomologous enzymes in a genomic perspective. Trends in Biotechnology, 2011, 29, 473-479.                                                                                             | 4.9  | 78        |
| 90 | Genome Sequence of the Mercury-Methylating and Pleomorphic Desulfovibrio africanus Strain Walvis Bay. Journal of Bacteriology, 2011, 193, 4037-4038.                                                          | 1.0  | 14        |

| #   | Article                                                                                                                                                                                                                             | IF   | Citations |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Distinct Microbial Communities within the Endosphere and Rhizosphere of Populus deltoides Roots across Contrasting Soil Types. Applied and Environmental Microbiology, 2011, 77, 5934-5944.                                         | 1.4  | 524       |
| 92  | Genome Sequence of the Mercury-Methylating Strain Desulfovibrio desulfuricans ND132. Journal of Bacteriology, 2011, 193, 2078-2079.                                                                                                 | 1.0  | 41        |
| 93  | Proteomic Characterization of Cellular and Molecular Processes that Enable the Nanoarchaeum equitans-Ignicoccus hospitalis Relationship. PLoS ONE, 2011, 6, e22942.                                                                 | 1.1  | 65        |
| 94  | Characterization of Archaeal Community in Contaminated and Uncontaminated Surface Stream Sediments. Microbial Ecology, 2010, 60, 784-795.                                                                                           | 1.4  | 51        |
| 95  | Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments. BMC Microbiology, 2010, 10, 149.                            | 1.3  | 36        |
| 96  | <i>Caldicellulosiruptor obsidiansis</i> sp. nov., an Anaerobic, Extremely Thermophilic, Cellulolytic Bacterium Isolated from Obsidian Pool, Yellowstone National Park. Applied and Environmental Microbiology, 2010, 76, 1014-1020. | 1.4  | 91        |
| 97  | Complete Genome Sequence of the Cellulolytic Thermophile <i>Caldicellulosiruptor obsidiansis</i> OB47 <sup>T</sup> . Journal of Bacteriology, 2010, 192, 6099-6100.                                                                 | 1.0  | 39        |
| 98  | Complete and Draft Genome Sequences of Six Members of the <i>Aquificales</i> . Journal of Bacteriology, 2009, 191, 1992-1993.                                                                                                       | 1.0  | 76        |
| 99  | Single Cell Whole Genome Amplification of Uncultivated Organisms. Microbiology Monographs, 2009, , 241-256.                                                                                                                         | 0.3  | 2         |
| 100 | Single Cell Whole Genome Amplification of Uncultivated Organisms. Microbiology Monographs, 2009, , 83-99.                                                                                                                           | 0.3  | 2         |
| 101 | The prokaryotic V4R domain is the likely ancestor of a key component of the eukaryotic vesicle transport system. Biology Direct, 2008, 3, 2.                                                                                        | 1.9  | 24        |
| 102 | A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans. Genome Biology, 2008, 9, R158.                                                                                                               | 3.8  | 104       |
| 103 | A korarchaeal genome reveals insights into the evolution of the Archaea. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8102-8107.                                                     | 3.3  | 253       |
| 104 | Targeted Access to the Genomes of Low-Abundance Organisms in Complex Microbial Communities. Applied and Environmental Microbiology, 2007, 73, 3205-3214.                                                                            | 1.4  | 225       |
| 105 | Twoâ€Component Systems in Microbial Communities: Approaches and Resources for Generating and Analyzing Metagenomic Data Sets. Methods in Enzymology, 2007, 422, 32-46.                                                              | 0.4  | 2         |
| 106 | Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 2007, 450, 560-565.                                                                                                             | 13.7 | 1,181     |
| 107 | High Throughput Cultivation for Isolation of Novel Marine Microorganisms. Oceanography, 2006, 19, 120-125.                                                                                                                          | 0.5  | 17        |
| 108 | New opportunities revealed by biotechnological explorations of extremophiles. Current Opinion in Biotechnology, 2006, 17, 250-255.                                                                                                  | 3.3  | 126       |

| #   | Article                                                                                                                                                                                                                                   | IF   | Citations |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Environmental Whole-Genome Amplification To Access Microbial Populations in Contaminated Sediments. Applied and Environmental Microbiology, 2006, 72, 3291-3301.                                                                          | 1.4  | 213       |
| 110 | A biodiversity-based approach to development of performance enzymes: Applied metagenomics and directed evolution. Industrial Biotechnology, 2005, $1$ , $283-287$ .                                                                       | 0.5  | 10        |
| 111 | Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study. BMC Evolutionary Biology, 2005, 5, 42.                                                                                                    | 3.2  | 66        |
| 112 | The heteromeric Nanoarchaeum equitans splicing endonuclease cleaves noncanonical bulge-helix-bulge motifs of joined tRNA halves. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17934-17939. | 3.3  | 71        |
| 113 | Discovery of Pectin-degrading Enzymes and Directed Evolution of a Novel Pectate Lyase for Processing Cotton Fabric. Journal of Biological Chemistry, 2005, 280, 9431-9438.                                                                | 1.6  | 106       |
| 114 | Genome Streamlining in a Cosmopolitan Oceanic Bacterium. Science, 2005, 309, 1242-1245.                                                                                                                                                   | 6.0  | 1,034     |
| 115 | Comparative Metagenomics of Microbial Communities. Science, 2005, 308, 554-557.                                                                                                                                                           | 6.0  | 1,432     |
| 116 | Exploring Nitrilase Sequence Space for Enantioselective Catalysis. Applied and Environmental Microbiology, 2004, 70, 2429-2436.                                                                                                           | 1.4  | 212       |
| 117 | The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism.<br>Proceedings of the National Academy of Sciences of the United States of America, 2003, 100,<br>12984-12988.                        | 3.3  | 488       |
| 118 | Bacterial Group II Introns in a Deep-Sea Hydrothermal Vent Environment. Applied and Environmental Microbiology, 2002, 68, 6392-6398.                                                                                                      | 1.4  | 8         |
| 119 | A Molecular Phylogenetic Framework for the Phylum Ctenophora Using 18S rRNA Genes. Molecular Phylogenetics and Evolution, 2001, 21, 218-230.                                                                                              | 1.2  | 146       |
| 120 | Photocrosslinking of 4-thio uracil-containing RNAs supports a side-by-side arrangement of domains 5 and 6 of a group II intron. Rna, 1999, 5, 318-329.                                                                                    | 1.6  | 17        |
| 121 | Group II intron splicing in vivo by first-step hydrolysis. Nature, 1998, 391, 915-918.                                                                                                                                                    | 13.7 | 94        |
| 122 | The two steps of group II intron self-splicing are mechanistically distinguishable. Rna, 1998, 4, 890-900.                                                                                                                                | 1.6  | 28        |
| 123 | More than one way to splice an RNA: Branching without a bulge and splicing without branching in group II introns. Rna, 1998, 4, 1186-1202.                                                                                                | 1.6  | 58        |
| 124 | Domain 5 binds near a highly conserved dinucleotide in the joiner linking domains 2 and 3 of a group II intron. Rna, 1998, 4, 151-66.                                                                                                     | 1.6  | 21        |
| 125 | [8] Reactions catalyzed by group II introns in Vitro. Methods in Enzymology, 1996, 264, 66-86.                                                                                                                                            | 0.4  | 20        |
| 126 | Mutations of the two-nucleotide bulge of D5 of a group II intron block splicing in vitro and in vivo: phenotypes and suppressor mutations. Rna, 1996, 2, 1161-72.                                                                         | 1.6  | 35        |

| #   | Article                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Stereochemical Selectivity of Group II Intron Splicing, Reverse Splicing, and Hydrolysis Reactions.<br>Molecular and Cellular Biology, 1995, 15, 4466-4478. | 1.1 | 73        |
| 128 | A UV-induced, $Mg(2+)$ -dependent crosslink traps an active form of domain 3 of a self-splicing group II intron. Rna, 1995, 1, 828-40.                      | 1.6 | 25        |
| 129 | The stereochemical course of group II intron self-splicing. Science, 1994, 266, 1685-1688.                                                                  | 6.0 | 101       |
| 130 | Regulatory Elements Involved in Tax-Mediated Transactivation of the HTLV-I LTR. Virology, 1993, 196, 442-450.                                               | 1.1 | 56        |