Thomas Graf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8509522/publications.pdf

Version: 2024-02-01

157	20,267	74 h-index	137
papers	citations		g-index
163	163	163	21089
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evidence for additive and synergistic action of mammalian enhancers during cell fate determination. ELife, 2021, 10, .	2.8	64
2	Dynamics of alternative splicing during somatic cell reprogramming reveals functions for RNA-binding proteins CPSF3, hnRNP UL1, and TIA1. Genome Biology, 2021, 22, 171.	3.8	12
3	CTCF chromatin residence time controls three-dimensional genome organization, gene expression and DNA methylation in pluripotent cells. Nature Cell Biology, 2021, 23, 881-893.	4.6	30
4	The transcription factor code: a beacon for histone methyltransferase docking. Trends in Cell Biology, 2021, 31, 792-800.	3.6	9
5	The EHA Research Roadmap: Normal Hematopoiesis. HemaSphere, 2021, 5, e669.	1.2	1
6	Identification of Enhancer-Promoter Contacts in Embryoid Bodies by Quantitative Chromosome Conformation Capture (4C). Journal of Visualized Experiments, 2020, , .	0.2	1
7	CTCF is dispensable for immune cell transdifferentiation but facilitates an acute inflammatory response. Nature Genetics, 2020, 52, 655-661.	9.4	98
8	Selective killing of leukemia cells: Yamanaka factors' new trick. Stem Cells, 2020, 38, 818-821.	1.4	0
9	Transcriptional activation during cell reprogramming correlates with the formation of 3D open chromatin hubs. Nature Communications, 2020, 11, 2564.	5.8	41
10	Whsc1 links pluripotency exit with mesendoderm specification. Nature Cell Biology, 2019, 21, 824-834.	4.6	17
11	Transcription factors and 3D genome conformation in cell-fate decisions. Nature, 2019, 569, 345-354.	13.7	362
12	Transcription Factor Stoichiometry Drives Cell Fate: Single-Cell Proteomics to the Rescue. Cell Stem Cell, 2019, 24, 673-674.	5. 2	9
13	Single cell RNA-seq identifies the origins of heterogeneity in efficient cell transdifferentiation and reprogramming. ELife, 2019, 8, .	2.8	44
14	Hoxb5, a Trojan horse to generate T cells. Nature Immunology, 2018, 19, 210-212.	7.0	6
15	OneD: increasing reproducibility of Hi-C samples with abnormal karyotypes. Nucleic Acids Research, 2018, 46, e49-e49.	6.5	50
16	Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. Nature Genetics, 2018, 50, 238-249.	9.4	295
17	Modeling Primary Human Monocytes with the Trans–Differentiation Cell Line BLaER1. Methods in Molecular Biology, 2018, 1714, 57-66.	0.4	21
18	Transcription Factors Drive Tet2-Mediated Enhancer Demethylation to Reprogram Cell Fate. Cell Stem Cell, 2018, 23, 727-741.e9.	5.2	156

#	Article	IF	CITATIONS
19	Logical modeling of lymphoid and myeloid cell specification and transdifferentiation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5792-5799.	3.3	125
20	A Transcription Factor Pulse Can Prime Chromatin for Heritable Transcriptional Memory. Molecular and Cellular Biology, 2017, 37, .	1.1	12
21	Constitutively Active SMAD2/3 Are Broad-Scope Potentiators of Transcription-Factor-Mediated Cellular Reprogramming. Cell Stem Cell, 2017, 21, 791-805.e9.	5.2	35
22	Human Monocytes Engage an Alternative Inflammasome Pathway. Immunity, 2016, 44, 833-846.	6.6	619
23	How does C/EBPα speed up cell reprogramming?. Cell Cycle, 2016, 15, 2381-2382.	1.3	0
24	C/EBPÎ \pm creates elite cells for iPSC reprogramming by upregulating Klf4 and increasing the levels of Lsd1 and ÂBrd4. Nature Cell Biology, 2016, 18, 371-381.	4.6	94
25	Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming. Cell Stem Cell, 2016, 18, 597-610.	5.2	187
26	Knockout of RNA Binding Protein MSI2 Impairs Follicle Development in the Mouse Ovary: Characterization of MSI1 and MSI2 during Folliculogenesis. Biomolecules, 2015, 5, 1228-1244.	1.8	16
27	A New Path to Leukemia with WIT. Molecular Cell, 2015, 57, 573-574.	4.5	3
28	C/EBPα Activates Pre-existing and De Novo Macrophage Enhancers during Induced Pre-B Cell Transdifferentiation and Myelopoiesis. Stem Cell Reports, 2015, 5, 232-247.	2.3	95
29	Very Rapid and Efficient Generation of Induced Pluripotent Stem Cells from Mouse Pre-B Cells. Methods in Molecular Biology, 2014, 1357, 45-56.	0.4	4
30	Zrf1 is required to establish and maintain neural progenitor identity. Genes and Development, 2014, 28, 182-197.	2.7	29
31	C/EBPÎ \pm poises B cells for rapid reprogramming into induced pluripotent stem cells. Nature, 2014, 506, 235-239.	13.7	201
32	Hi-TEC reprogramming for organ regeneration. Nature Cell Biology, 2014, 16, 824-825.	4.6	1
33	C/EBPa-Mediated Activation of MicroRNAs 34a and 223 Inhibits Lef1 Expression To Achieve Efficient Reprogramming into Macrophages. Molecular and Cellular Biology, 2014, 34, 1145-1157.	1.1	26
34	Time-resolved gene expression profiling during reprogramming of C/EBPα-pulsed B cells into iPS cells. Scientific Data, 2014, 1, 140008.	2.4	3
35	C/EBPÎ \pm Induces Highly Efficient Macrophage Transdifferentiation of B Lymphoma and Leukemia Cell Lines and Impairs Their Tumorigenicity. Cell Reports, 2013, 3, 1153-1163.	2.9	99
36	HDAC7 Is a Repressor of Myeloid Genes Whose Downregulation Is Required for Transdifferentiation of Pre-B Cells into Macrophages. PLoS Genetics, 2013, 9, e1003503.	1.5	55

#	Article	IF	Citations
37	Tissue-specific control of brain-enriched miR-7 biogenesis. Genes and Development, 2013, 27, 24-38.	2.7	131
38	CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood, 2013, 121, 4463-4472.	0.6	270
39	Musashi 2 in hematopoiesis. Current Opinion in Hematology, 2012, 19, 268-272.	1.2	35
40	C/EBP \hat{l}_{\pm} bypasses cell cycle-dependency during immune cell transdifferentiation . Cell Cycle, 2012, 11, 2739-2746.	1.3	26
41	Pre-B cell to macrophage transdifferentiation without significant promoter DNA methylation changes. Nucleic Acids Research, 2012, 40, 1954-1968.	6.5	37
42	A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. Journal of Experimental Medicine, 2012, 209, 2165-2181.	4.2	151
43	Tet2 Facilitates the Derepression of Myeloid Target Genes during CEBPα-Induced Transdifferentiation of Pre-B Cells. Molecular Cell, 2012, 48, 266-276.	4.5	85
44	BLUEPRINT to decode the epigenetic signature written in blood. Nature Biotechnology, 2012, 30, 224-226.	9.4	323
45	A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. Journal of General Physiology, 2012, 140, i11-i11.	0.9	2
46	A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. Journal of Cell Biology, 2012, 199, i7-i7.	2.3	0
47	Historical Origins of Transdifferentiation and Reprogramming. Cell Stem Cell, 2011, 9, 504-516.	5.2	171
48	Musashi 2 is a regulator of the HSC compartment identified by a retroviral insertion screen and knockout mice. Blood, 2011, 118, 554-564.	0.6	76
49	CCAAT/enhancer binding protein \hat{l}_{\pm} (C/EBP \hat{l}_{\pm})-induced transdifferentiation of pre-B cells into macrophages involves no overt retrodifferentiation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17016-17021.	3.3	95
50	Induced pluripotent stem cell–derived human platelets: one step closer to the clinic. Journal of Experimental Medicine, 2011, 208, 213-213.	4.2	9
51	Canonical BMP signaling is dispensable for hematopoietic stem cell function in both adult and fetal liver hematopoiesis, but essential to preserve colon architecture. Blood, 2010, 115, 4689-4698.	0.6	50
52	Platelets regulate lymphatic vascular development through CLEC-2–SLP-76 signaling. Blood, 2010, 116, 661-670.	0.6	396
53	Induced pluripotent stem cell–derived human platelets: one step closer to the clinic. Journal of Experimental Medicine, 2010, 207, 2781-2784.	4.2	28
54	Reprogramming of Committed Lymphoid Cells by Enforced Transcription Factor Expression. Methods in Molecular Biology, 2010, 636, 219-232.	0.4	2

#	Article	IF	Citations
55	Forcing cells to change lineages. Nature, 2009, 462, 587-594.	13.7	817
56	An uphill battle toward pluripotency. Nature Genetics, 2009, 41, 960-961.	9.4	2
57	Fibroblast-Derived Induced Pluripotent Stem Cells Show No Common Retroviral Vector Insertions. Stem Cells, 2009, 27, 300-306.	1.4	55
58	A Robust and Highly Efficient Immune Cell Reprogramming System. Cell Stem Cell, 2009, 5, 554-566.	5.2	145
59	Blood lines redrawn. Nature, 2008, 452, 702-703.	13.7	20
60	B Young Again. Immunity, 2008, 28, 606-608.	6.6	8
61	Lymphoid myeloid lineage specification. Seminars in Immunology, 2008, 20, 205-206.	2.7	1
62	Heterogeneity of Embryonic and Adult Stem Cells. Cell Stem Cell, 2008, 3, 480-483.	5.2	328
63	PU.1 and C/EBPÎ \pm ſβ convert fibroblasts into macrophage-like cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6057-6062.	3.3	309
64	è¡€ç∱å^†åŒ–ã®ç³»å^–å³ã,'ä¿®æ£. Nature Digest, 2008, 5, 25-27.	0.0	0
65	Dynamic Visualization of Thrombopoiesis Within Bone Marrow. Science, 2007, 317, 1767-1770.	6.0	572
66	Identification of interventricular septum precursor cells in the mouse embryo. Developmental Biology, 2007, 302, 195-207.	0.9	27
67	Reciprocal Activation of GATA-1 and PU.1 Marks Initial Specification of Hematopoietic Stem Cells into Myeloerythroid and Myelolymphoid Lineages. Cell Stem Cell, 2007, 1, 416-427.	5. 2	264
68	CD41-YFP mice allow in vivo labeling of megakaryocytic cells and reveal a subset of platelets hyperreactive to thrombin stimulation. Experimental Hematology, 2007, 35, 490-499.e1.	0.2	66
69	Early decisions in lymphoid development. Current Opinion in Immunology, 2007, 19, 123-128.	2.4	63
70	DETERMINANTS OF LYMPHOID-MYELOID LINEAGE DIVERSIFICATION. Annual Review of Immunology, 2006, 24, 705-738.	9.5	229
71	Klf2 Is an Essential Regulator of Vascular Hemodynamic Forces In Vivo. Developmental Cell, 2006, 11, 845-857.	3.1	241
72	Reprogramming of Committed T Cell Progenitors to Macrophages and Dendritic Cells by C/EBPÎ \pm and PU.1 Transcription Factors. Immunity, 2006, 25, 731-744.	6.6	321

#	Article	IF	Citations
73	Characterization of the megakaryocyte demarcation membrane system and its role in thrombopoiesis. Blood, 2006, 107, 3868-3875.	0.6	182
74	Can Fibroblasts Be Reprogrammed into Macrophages? Blood, 2006, 108, 443-443.	0.6	0
75	Fluorescent Protein–Cell Labeling and Its Application in Time-Lapse Analysis of Hematopoietic Differentiation., 2005, 105, 395-412.		10
76	PU.1 is not strictly required for B cell development and its absence induces a B-2 to B-1 cell switch. Journal of Experimental Medicine, 2005, 202, 1411-1422.	4.2	85
77	Assessing the role of hematopoietic plasticity for endothelial and hepatocyte development by non-invasive lineage tracing. Development (Cambridge), 2005, 132, 203-213.	1.2	198
78	Phosphatidyl Inositol (4,5)P2 Marks Megakaryocyte Internal Membranes and Is Associated with Megakaryocyte Maturation and Platelet Release Blood, 2005, 106, 732-732.	0.6	0
79	A Paracrine Loop between Tumor Cells and Macrophages Is Required for Tumor Cell Migration in Mammary Tumors. Cancer Research, 2004, 64, 7022-7029.	0.4	1,019
80	Stepwise Reprogramming of B Cells into Macrophages. Cell, 2004, 117, 663-676.	13.5	892
81	Mechanisms and implications of phosphoinositide 3-kinase \hat{l}' in promoting neutrophil trafficking into inflamed tissue. Blood, 2004, 103, 3448-3456.	0.6	198
82	Comparison of the microbicidal and muramidase activities of mouse lysozyme M and P. Biochemical Journal, 2004, 380, 385-392.	1.7	53
83	B Cell Development in the Absence of PU.1 Blood, 2004, 104, 226-226.	0.6	1
84	MafB deficiency causes defective respiratory rhythmogenesis and fatal central apnea at birth. Nature Neuroscience, 2003, 6, 1091-1100.	7.1	154
85	Hematopoietic Stem Cells Expressing the Myeloid Lysozyme Gene Retain Long-Term, Multilineage Repopulation Potential. Immunity, 2003, 19, 689-699.	6.6	159
86	E26 leukemia virus converts primitive erythroid cells into cycling multilineage progenitors. Blood, 2003, 101, 1103-1110.	0.6	10
87	Distinguishable live erythroid and myeloid cells in \hat{I}^2 -globin ECFP x lysozyme EGFP mice. Blood, 2003, 101, 903-906.	0.6	20
88	Increased inflammation in lysozyme M–deficient mice in response to Micrococcus luteus and its peptidoglycan. Blood, 2003, 101, 2388-2392.	0.6	95
89	Making Eosinophils Through Subtle Shifts in Transcription Factor Expression. Journal of Experimental Medicine, 2002, 195, F43-F47.	4.2	101
90	Differentiation plasticity of hematopoietic cells. Blood, 2002, 99, 3089-3101.	0.6	321

#	Article	IF	Citations
91	Myeloid or Lymphoid Promiscuity as a Critical Step in Hematopoietic Lineage Commitment. Developmental Cell, 2002, 3, 137-147.	3.1	386
92	Anuria, Omphalocele, and Perinatal Lethality in Mice Lacking the Cd34-Related Protein Podocalyxin. Journal of Experimental Medicine, 2001, 194, 13-28.	4.2	286
93	Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood, 2000, 96, 719-726.	0.6	640
94	GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood, 2000, 95, 2543-2551.	0.6	312
95	Suppression of HIV Type 1 Replication by a Dominant-Negative Ets-1 Mutant. AIDS Research and Human Retroviruses, 2000, 16, 1981-1989.	0.5	16
96	Antagonism between C/EBPbeta and FOG in eosinophil lineage commitment of multipotent hematopoietic progenitors. Genes and Development, 2000, 14, 2515-2525.	2.7	109
97	Tissue specific expression of Yrk kinase: implications for differentiation and inflammation. International Journal of Biochemistry and Cell Biology, 2000, 32, 351-364.	1.2	8
98	GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood, 2000, 95, 2543-2551.	0.6	19
99	Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood, 2000, 96, 719-726.	0.6	101
100	Leukemogenesis: Small differences in Myb have large effects. Current Biology, 1998, 8, R353-R355.	1.8	10
101	A transcription factor party during blood cell differentiation. Current Opinion in Genetics and Development, 1998, 8, 545-551.	1.5	155
102	Thrombomucin, a Novel Cell Surface Protein that Defines Thrombocytes and Multipotent Hematopoietic Progenitors. Journal of Cell Biology, 1997, 138, 1395-1407.	2.3	118
103	The expression pattern of the mafB/kr gene in birds and mice reveals that the kreisler phenotype does not represent a null mutant. Mechanisms of Development, 1997, 65, 111-122.	1.7	104
104	MafB Is an Interaction Partner and Repressor of Ets-1 That Inhibits Erythroid Differentiation. Cell, 1996, 85, 49-60.	13.5	283
105	Excision of Ets by an inducible site-specific recombinase causes differentiation of Myb–Ets-transformed hematopoietic progenitors. Current Biology, 1996, 6, 866-872.	1.8	17
106	Production and analysis of retro virus-transformed multipotent hematopoietic progenitors. , 1996 , , $2183-2198$.		1
107	Dynamic Changes in the Chromatin of the Chicken Lysozyme Gene Domain During Differentiation of Multipotent Progenitors to Macrophages. DNA and Cell Biology, 1995, 14, 397-402.	0.9	28
108	Myb: a transcriptional activator linking proliferation and differentiation in hematopoietic cells. Current Opinion in Genetics and Development, 1992, 2, 249-255.	1.5	165

#	Article	IF	CITATIONS
109	Chicken "erythroid―cells transformed by the Gag-Myb-Ets-encoding E26 leukemia virus are multipotent. Cell, 1992, 70, 201-213.	13.5	132
110	Goose-type lysozyme gene of the chicken: sequence, genomic organization and expression reveals major differences to chicken-type lysozyme gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1090, 273-276.	2.4	66
111	Fusion of the nuclear oncoproteins v-Myb and v-Ets is required for the leukemogenicity of E26 virus. Cell, 1991, 66, 95-105.	13.5	100
112	Biological Effects of the v-erbA Oncogene in Transformation of Avian Erythroid Cells. , 1991, , 137-147.		1
113	Mutations in v-myb alter the differentiation of myelomonocytic cells transformed by the oncogene. Cell, 1990, 63, 1287-1297.	13.5	159
114	DNA-binding domain ancestry. Nature, 1989, 342, 134-134.	13.7	85
115	The v-myb oncogene product binds to and activates the promyelocyte-specific mim-1 gene. Cell, 1989, 59, 1115-1125.	13.5	492
116	v-myb dominance over v-myc in doubly transformed chick myelomonocytic cells. Cell, 1987, 51, 41-50.	13.5	72
117	Individual and Combined Effects of Viral Oncogenes in Hematopoietic Cells. , 1986, , 312-319.		1
118	Protein synthesis in differentiating normal and leukemic erythroid cells. Journal of Cellular Physiology, 1985, 123, 269-276.	2.0	6
119	S13, a rapidly oncogenic replication-defective avian retrovirus. Virology, 1985, 145, 141-153.	1.1	39
120	DNA-binding activity is associated with purified myb proteins from AMV and E26 viruses and is temperature-sensitive for E26 ts mutants. Cell, 1985, 40, 983-990.	13.5	135
121	Pleas for would-be emigrés. Nature, 1984, 309, 490-490.	13.7	1
122	Autocrine growth induced by src-related oncogenes in transformed chicken myeloid cells. Cell, 1984, 39, 439-445.	13.5	175
123	Ts mutants of E26 leukemia virus allow transformed myeloblasts, but not erythroblasts or fibroblasts to differentiate at the nonpermissive temperature. Cell, 1984, 39, 579-588.	13.5	139
124	Transforming capacities of avian erythroblastosis virus mutants deleted in the erbA or erbB oncogenes. Cell, 1983, 32, 227-238.	13.5	335
125	Role of the v-erbA and v-erbB oncogenes of avian erythroblastosis virus in erythroid cell transformation. Cell, 1983, 34, 7-9.	13.5	218
126	Identification and characterization of the avian erythroblastosis virus erbB gene product as a membrane glycoprotein. Cell, 1983, 32, 579-588.	13.5	199

#	Article	IF	Citations
127	Hormone-dependent terminal differentiation in vitro of chicken erythroleukemia cells transformed by ts mutants of avian erythroblastosis virus. Cell, 1982, 28, 907-919.	13.5	229
128	Transformation of both erythroid and myeloid cells by E26, an avian leukemia virus that contains the myb gene. Cell, 1982, 31, 643-653.	13.5	275
129	Expression of a chicken lysozyme recombinant gene is regulated by progesterone and dexamethasone after microinjection into oviduct cells. Cell, 1982, 31, 167-176.	13.5	102
130	Temperature-sensitive changes in the structure of globin chromatin in lines of red cell precursors transformed by ts-AEV. Cell, 1982, 28, 931-940.	13.5	110
131	Avian leukemia viruses oncogenes and genome structure. Biochimica Et Biophysica Acta: Reviews on Cancer, 1982, 651, 245-271.	3.3	65
132	Expression of Embryonic Haemoglobin in ts AEV-Transformed Embryonic Erythroid Cells During Temperature-Induced Differentiation. Differentiation, 1982, 22, 231-234.	1.0	6
133	Erythroblast cell lines transformed by a temperature-sensitive mutant of avian erythroblastosis virus: A model system to study erythroid differentiation in vitro. Journal of Cellular Physiology, 1982, 113, 195-207.	2.0	167
134	Characterization of the hematopoietic target cells of AEV, MC29 and AMV avian leukemia viruses. Experimental Cell Research, 1981, 131, 331-343.	1.2	109
135	Production and characterization of antisera specific for the erb-portion of p75, the presumptive transforming protein of avian erythroblastosis virus. Virology, 1981, 111, 201-210.	1.1	38
136	Mutants of avian myelocytomatosis virus with smaller gag gene-related proteins have an altered transforming ability. Nature, 1980, 288, 170-172.	13.7	98
137	Transformation parameters of chicken embryo fibroblasts infected with the ts34 mutant of avian erythroblastosis virus. Virology, 1980, 100, 348-356.	1.1	26
138	TRANSFORMATION DEFECTIVE MUTANTS OF AEV AND MC29 AVIAN LEUKEMIA VIRUSES SYNTHESIZE SMALLER GAG-RELATED PROTEINS., 1980, , 551-567.		1
139	Mutant avian erythroblastosis virus with restricted target cell specificity. Nature, 1979, 282, 750-752.	13.7	33
140	Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell, 1979, 18, 375-390.	13.5	778
141	Defectiveness of avian erythroblastosis virus: synthesis of a 75K gag-related protein. Virology, 1979, 92, 31-45.	1.1	192
142	Cells transformed by avian myelocytomatosis virus strain CMII contain a 90K gag-related protein. Virology, 1979, 98, 191-199.	1.1	44
143	Temperature-sensitive mutant of avian erythroblastosis virus suggests a block of differentiation as mechanism of leukaemogenesis. Nature, 1978, 275, 496-501.	13.7	193
144	Differential expression of Rous Sarcoma virus-specific transformation parameters in enucleated cells. Cell, 1978, 14, 843-856.	13.5	83

#	Article	IF	CITATIONS
145	Avian myelocytomatosis and erythroblastosis viruses lack the transforming gene src of avian sarcoma viruses. Cell, 1978, 13, 745-750.	13.5	75
146	Transformation parameters in chicken fibroblasts transformed by AEV and MC29 avian leukemia viruses. Cell, 1978, 13, 751-760.	13.5	144
147	In Vitro Transformation of Chicken Bone Marrow Cells with Avian Erythroblastosis Virus. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1975, 30, 847-849.	0.6	47
148	Biochemical properties of oncornavirus polypeptides. Biochimica Et Biophysica Acta: Reviews on Cancer, 1974, 355, 220-235.	3.3	18
149	Two types of target cells for transformation with avian myelocytomatosis virus. Virology, 1973, 54, 398-413.	1.1	149
150	Cell-surface antigens induced by avian RNA tumor viruses: Detection by immunoferritin technique. Virology, 1972, 47, 416-425.	1.1	81
151	A plaque assay for avian RNA tumor viruses. Virology, 1972, 50, 567-578.	1.1	120
152	A Simple Technique for the Detection and Classification of Latent Avian RNA Tumor Viruses. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1972, 27, 223-226.	0.3	7
153	Size differences among the high molecular weight RNA's of avian tumor viruses. Virology, 1971, 43, 214-222.	1.1	23
154	Studies on the reproductive and cell-converting abilities of avian sarcoma visuses. Virology, 1971, 43, 427-441.	1.1	39
155	Strain-specific antigen of the avian leukosis sarcoma virus group. Virology, 1970, 40, 530-539.	1.1	69
156	Induction of transplantation resistance to Rous sarcoma isograft by avian leukosis virus. Virology, 1969, 39, 482-490.	1.1	38
157	Evidence for the possible existence of two envelope antigenic determinants and corresponding cell receptors for avian tumor viruses. Virology, 1969, 37, 157-161.	1.1	62