Vijay S Pande

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8509388/publications.pdf

Version: 2024-02-01

57758 32842 17,923 106 44 100 citations h-index g-index papers 110 110 110 17409 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. Journal of Chemical Theory and Computation, 2016, 12, 405-413.	5.3	2,567
2	MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophysical Journal, 2015, 109, 1528-1532.	0.5	1,576
3	OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Computational Biology, 2017, 13, e1005659.	3.2	1,561
4	MoleculeNet: a benchmark for molecular machine learning. Chemical Science, 2018, 9, 513-530.	7.4	1,261
5	Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins. Journal of Chemical Physics, 2003, 119, 5740-5761.	3.0	611
6	Everything you wanted to know about Markov State Models but were afraid to ask. Methods, 2010, 52, 99-105.	3.8	591
7	Markov State Models: From an Art to a Science. Journal of the American Chemical Society, 2018, 140, 2386-2396.	13.7	573
8	Low Data Drug Discovery with One-Shot Learning. ACS Central Science, 2017, 3, 283-293.	11.3	511
9	Improvements in Markov State Model Construction Reveal Many Non-Native Interactions in the Folding of NTL9. Journal of Chemical Theory and Computation, 2013, 9, 2000-2009.	5.3	506
10	COMPUTING: Screen Savers of the World Unite!. Science, 2000, 290, 1903-1904.	12.6	491
11	Exploiting a natural conformational switch to engineer an interleukin-2 †superkine'. Nature, 2012, 484, 529-533.	27.8	438
12	Building Force Fields: An Automatic, Systematic, and Reproducible Approach. Journal of Physical Chemistry Letters, 2014, 5, 1885-1891.	4.6	400
13	Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nature Chemistry, 2014, 6, 15-21.	13.6	388
14	MSMBuilder2: Modeling Conformational Dynamics on the Picosecond to Millisecond Scale. Journal of Chemical Theory and Computation, 2011, 7, 3412-3419.	5.3	381
15	Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing. Biopolymers, 2003, 68, 91-109.	2.4	346
16	To milliseconds and beyond: challenges in the simulation of protein folding. Current Opinion in Structural Biology, 2013, 23, 58-65.	5.7	331
17	Retrosynthetic Reaction Prediction Using Neural Sequence-to-Sequence Models. ACS Central Science, 2017, 3, 1103-1113.	11.3	308
18	Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nature Communications, 2014, 5, 3397.	12.8	300

#	Article	IF	Citations
19	Discovering chemistry with an ab initio nanoreactor. Nature Chemistry, 2014, 6, 1044-1048.	13.6	286
20	PotentialNet for Molecular Property Prediction. ACS Central Science, 2018, 4, 1520-1530.	11.3	278
21	MSMBuilder: Statistical Models for Biomolecular Dynamics. Biophysical Journal, 2017, 112, 10-15.	0.5	228
22	Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15. Nature Immunology, 2012, 13, 1187-1195.	14.5	206
23	OpenMM: A Hardware-Independent Framework for Molecular Simulations. Computing in Science and Engineering, 2010, 12, 34-39.	1.2	195
24	Building a More Predictive Protein Force Field: A Systematic and Reproducible Route to AMBER-FB15. Journal of Physical Chemistry B, 2017, 121, 4023-4039.	2.6	192
25	Is Multitask Deep Learning Practical for Pharma?. Journal of Chemical Information and Modeling, 2017, 57, 2068-2076.	5.4	191
26	Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model. Journal of Physical Chemistry B, 2015, 119, 9423-9437.	2.6	183
27	Variational cross-validation of slow dynamical modes in molecular kinetics. Journal of Chemical Physics, 2015, 142, 124105.	3.0	173
28	tlCA-Metadynamics: Accelerating Metadynamics by Using Kinetically Selected Collective Variables. Journal of Chemical Theory and Computation, 2017, 13, 2440-2447.	5. 3	142
29	Folding@home: Lessons from eight years of volunteer distributed computing. , 2009, , .		136
30	Variational encoding of complex dynamics. Physical Review E, 2018, 97, 062412.	2.1	119
31	Modeling Molecular Kinetics with tICA and the Kernel Trick. Journal of Chemical Theory and Computation, 2015, 11, 600-608.	5.3	115
32	Finding Our Way in the Dark Proteome. Journal of the American Chemical Society, 2016, 138, 9730-9742.	13.7	111
33	Improvement in ADMET Prediction with Multitask Deep Featurization. Journal of Medicinal Chemistry, 2020, 63, 8835-8848.	6.4	110
34	Discovery of a regioselectivity switch in nitrating P450s guided by molecular dynamics simulations and Markov models. Nature Chemistry, 2016, 8, 419-425.	13.6	107
35	Automated design of collective variables using supervised machine learning. Journal of Chemical Physics, 2018, 149, 094106.	3.0	98
36	Identification of significantly mutated regions across cancer types highlights a rich landscape of functional molecular alterations. Nature Genetics, 2016, 48, 117-125.	21,4	80

#	Article	IF	Citations
37	Advanced Potential Energy Surfaces for Molecular Simulation. Journal of Physical Chemistry B, 2016, 120, 9811-9832.	2.6	77
38	Hard Data on Soft Errors: A Large-Scale Assessment of Real-World Error Rates in GPGPU. , 2010, , .		74
39	Identification of simple reaction coordinates from complex dynamics. Journal of Chemical Physics, 2017, 146, 044109.	3.0	73
40	Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science. Journal of Chemical Physics, 2018, 149, 180901.	3.0	72
41	Transition path theory analysis of c-Src kinase activation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9193-9198.	7.1	67
42	Optimized parameter selection reveals trends in Markov state models for protein folding. Journal of Chemical Physics, 2016, 145, 194103.	3.0	61
43	Towards simple kinetic models of functional dynamics for a kinase subfamily. Nature Chemistry, 2018, 10, 903-909.	13.6	61
44	Bayesian Energy Landscape Tilting: Towards Concordant Models of Molecular Ensembles. Biophysical Journal, 2014, 106, 1381-1390.	0.5	58
45	Engineering a Single-Agent Cytokine/Antibody Fusion That Selectively Expands Regulatory T Cells for Autoimmune Disease Therapy. Journal of Immunology, 2018, 201, 2094-2106.	0.8	58
46	Cloud computing approaches for prediction of ligand binding poses and pathways. Scientific Reports, 2015, 5, 7918.	3.3	54
47	Conformational heterogeneity of the calmodulin binding interface. Nature Communications, 2016, 7, 10910.	12.8	49
48	A Molecular Interpretation of 2D IR Protein Folding Experiments with Markov State Models. Biophysical Journal, 2014, 106, 1359-1370.	0.5	48
49	Learning Kinetic Distance Metrics for Markov State Models of Protein Conformational Dynamics. Journal of Chemical Theory and Computation, 2013, 9, 2900-2906.	5.3	43
50	Millisecond dynamics of BTK reveal kinome-wide conformational plasticity within the apo kinase domain. Scientific Reports, 2017, 7, 15604.	3.3	43
51	Complex Pathways in Folding of Protein G Explored by Simulation and Experiment. Biophysical Journal, 2014, 107, 947-955.	0.5	41
52	A modular DNA scaffold to study protein–protein interactions at single-molecule resolution. Nature Nanotechnology, 2019, 14, 988-993.	31.5	41
53	A network of molecular switches controls the activation of the two-component response regulator NtrC. Nature Communications, 2015, 6, 7283.	12.8	40
54	Accelerated Molecular Dynamics Simulations with the AMOEBA Polarizable Force Field on Graphics Processing Units. Journal of Chemical Theory and Computation, 2013, 9, 4684-4691.	5.3	39

#	Article	IF	Citations
55	Ward Clustering Improves Cross-Validated Markov State Models of Protein Folding. Journal of Chemical Theory and Computation, 2017, 13, 963-967.	5.3	38
56	United polarizable multipole water model for molecular mechanics simulation. Journal of Chemical Physics, 2015, 143, 014504.	3.0	36
57	Markov State Models and tICA Reveal a Nonnative Folding Nucleus in Simulations of NuG2. Biophysical Journal, 2016, 110, 1716-1719.	0.5	34
58	Modeling the mechanism of CLN025 beta-hairpin formation. Journal of Chemical Physics, 2017, 147, 104107.	3.0	34
59	Quercitrin and quercetin $3 \cdot \hat{l}^2$ -d-glucoside as chemical chaperones for the A4V SOD1 ALS-causing mutant. Protein Engineering, Design and Selection, 2017, 30, 431-440.	2.1	33
60	A New Twist on the Helix-Coil Transition:Â A Non-Biological Helix with Protein-Like Intermediates and Traps. Journal of Physical Chemistry B, 2001, 105, 482-485.	2.6	28
61	REDOR NMR Reveals Multiple Conformers for a Protein Kinase C Ligand in a Membrane Environment. ACS Central Science, 2018, 4, 89-96.	11.3	28
62	Heat dissipation guides activation in signaling proteins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10377-10382.	7.1	27
63	Computationally Discovered Potentiating Role of Glycans on NMDA Receptors. Scientific Reports, 2017, 7, 44578.	3.3	25
64	Dynamical Phase Transitions Reveal Amyloid-like States on Protein Folding Landscapes. Biophysical Journal, 2014, 107, 974-982.	0.5	24
65	Solution-Phase Conformation and Dynamics of Conjugated Isoindigo-Based Donor–Acceptor Polymer Single Chains. Journal of Physical Chemistry Letters, 2017, 8, 5479-5486.	4.6	24
66	Bayesian analysis of isothermal titration calorimetry for binding thermodynamics. PLoS ONE, 2018, 13, e0203224.	2.5	24
67	Simple Theory of Protein Folding Kinetics. Physical Review Letters, 2010, 105, 198101.	7.8	23
68	K-Means for Parallel Architectures Using All-Prefix-Sum Sorting and Updating Steps. IEEE Transactions on Parallel and Distributed Systems, 2013, 24, 1602-1612.	5.6	23
69	Automatic Selection of Order Parameters in the Analysis of Large Scale Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10, 5217-5223.	5.3	23
70	Efficient maximum likelihood parameterization of continuous-time Markov processes. Journal of Chemical Physics, 2015, 143, 034109.	3.0	23
71	Solving the RNA design problem with reinforcement learning. PLoS Computational Biology, 2018, 14, e1006176.	3.2	23
72	Meeting halfway on the bridge between protein folding theory and experiment. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3555-3556.	7.1	22

#	Article	IF	Citations
73	Tungstate as a Transition State Analog for Catalysis by Alkaline Phosphatase. Journal of Molecular Biology, 2016, 428, 2758-2768.	4.2	22
74	Discovery of novel brain permeable and G protein-biased beta-1 adrenergic receptor partial agonists for the treatment of neurocognitive disorders. PLoS ONE, 2017, 12, e0180319.	2.5	22
75	Long Timestep Molecular Dynamics on the Graphical Processing Unit. Journal of Chemical Theory and Computation, 2013, 9, 3267-3281.	5. 3	20
76	Storage@home: Petascale Distributed Storage. , 2007, , .		18
77	Simulated Dynamics of Glycans on Ligand-Binding Domain of NMDA Receptors Reveals Strong Dynamic Coupling between Glycans and Protein Core. Journal of Chemical Theory and Computation, 2017, 13, 5496-5505.	5.3	17
78	Note: MSM lag time cannot be used for variational model selection. Journal of Chemical Physics, 2017, 147, 176101.	3.0	16
79	A Minimum Variance Clustering Approach Produces Robust and Interpretable Coarse-Grained Models. Journal of Chemical Theory and Computation, 2018, 14, 1071-1082.	5.3	16
80	Elucidating Ligand-Modulated Conformational Landscape of GPCRs Using Cloud-Computing Approaches. Methods in Enzymology, 2015, 557, 551-572.	1.0	15
81	Markov modeling reveals novel intracellular modulation of the human TREK-2 selectivity filter. Scientific Reports, 2017, 7, 632.	3.3	15
82	Conserve Water: A Method for the Analysis of Solvent in Molecular Dynamics. Journal of Chemical Theory and Computation, 2015, 11, 1094-1101.	5. 3	14
83	An information theoretic framework reveals a tunable allosteric network in group II chaperonins. Nature Structural and Molecular Biology, 2017, 24, 726-733.	8.2	14
84	Transfer Learning from Markov Models Leads to Efficient Sampling of Related Systems. Journal of Physical Chemistry B, 2018, 122, 5291-5299.	2.6	14
85	Computational IR Spectroscopy of Insulin Dimer Structure and Conformational Heterogeneity. Journal of Physical Chemistry B, 2021, 125, 4620-4633.	2.6	14
86	Finite domain simulations with adaptive boundaries: Accurate potentials and nonequilibrium movesets. Journal of Chemical Physics, 2013, 139, 234114.	3.0	12
87	Efficient gaussian density formulation of volume and surface areas of macromolecules on graphical processing units. Journal of Computational Chemistry, 2017, 38, 740-752.	3. 3	11
88	Atomistic structural ensemble refinement reveals non-native structure stabilizes a sub-millisecond folding intermediate of CheY. Scientific Reports, 2017, 7, 44116.	3.3	10
89	Communication: Adaptive boundaries in multiscale simulations. Journal of Chemical Physics, 2018, 148, 141104.	3.0	10
90	Intradomain Interactions in an NMDA Receptor Fragment Mediate N-Glycan Processing and Conformational Sampling. Structure, 2019, 27, 55-65.e3.	3.3	9

#	Article	IF	Citations
91	Dynamical model of the CLC-2 ion channel reveals conformational changes associated with selectivity-filter gating. PLoS Computational Biology, 2020, 16, e1007530.	3.2	9
92	Percolation-like phase transitions in network models of protein dynamics. Journal of Chemical Physics, 2015, 142, 215105.	3.0	8
93	The Dynamic Conformational Cycle of the Group I Chaperonin C-Termini Revealed via Molecular Dynamics Simulation. PLoS ONE, 2015, 10, e0117724.	2.5	8
94	Note: Variational encoding of protein dynamics benefits from maximizing latent autocorrelation. Journal of Chemical Physics, 2018, 149, 216101.	3.0	7
95	Computer Simulations Predict High Structural Heterogeneity of Functional State of NMDA Receptors. Biophysical Journal, 2018, 115, 841-852.	0.5	7
96	A Targeted Computational Screen of the SWEETLEAD Database Reveals FDA-Approved Compounds with Anti-Dengue Viral Activity. MBio, 2020, 11 , .	4.1	6
97	Potential-Based Dynamical Reweighting for Markov State Models of Protein Dynamics. Journal of Chemical Theory and Computation, 2015, 11, 2412-2420.	5.3	5
98	Synthesis of spiro-2,6-dioxopiperazine and spiro-2,6-dioxopyrazine scaffolds using amino acids in a three-component reaction to generate potential Sigma-1 (lf1) receptor selective ligands. European Journal of Medicinal Chemistry, 2019, 164, 241-251.	5.5	5
99	Entropy-production-driven oscillators in simple nonequilibrium networks. Physical Review E, 2015, 91, 032136.	2.1	4
100	Theoretical restrictions on longest implicit time scales in Markov state models of biomolecular dynamics. Journal of Chemical Physics, 2018, 148, 044111.	3.0	4
101	(Compressed) sensing and sensibility. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14713-14714.	7.1	3
102	PREDICTING STRUCTURE AND DYNAMICS OF LOOSELY-ORDERED PROTEIN COMPLEXES: INFLUENZA HEMAGGLUTININ FUSION PEPTIDE. , 2006, , .		3
103	Control of membrane fusion mechanism by lipid composition: predictions from ensemble molecular dynamics. PLoS Computational Biology, 2005, preprint, e220.	3.2	2
104	Thalweg: A framework for programming 1,000 machines with 1,000 cores. , 2009, , .		0
105	Chaperonins: The Machines Which Fold Proteins. , 2011, , 87-98.		0
106	Understanding Protein Folding Yields Important Insights into Protein Conformational Change: New Insights into Kinases and GPCRs. FASEB Journal, 2015, 29, 356.1.	0.5	0