
Roel G W Verhaak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8508884/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010, 17, 98-110.	7.7	6,138
2	Inferring tumour purity and stromal and immune cell admixture from expression data. Nature Communications, 2013, 4, 2612.	5.8	5,788
3	The Somatic Genomic Landscape of Glioblastoma. Cell, 2013, 155, 462-477.	13.5	3,979
4	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. New England Journal of Medicine, 2015, 372, 2481-2498.	13.9	2,582
5	ldentification of a CpG Island Methylator Phenotype that Defines a Distinct Subgroup of Glioma. Cancer Cell, 2010, 17, 510-522.	7.7	2,078
6	Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell, 2016, 164, 550-563.	13.5	1,695
7	Tumor Evolution of Clioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell, 2017, 32, 42-56.e6.	7.7	1,282
8	Prognostically Useful Gene-Expression Profiles in Acute Myeloid Leukemia. New England Journal of Medicine, 2004, 350, 1617-1628.	13.9	1,232
9	Characterizing the cancer genome in lung adenocarcinoma. Nature, 2007, 450, 893-898.	13.7	1,020
10	Gene expression–based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nature Medicine, 2008, 14, 822-827.	15.2	1,015
11	Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nature Genetics, 2016, 48, 607-616.	9.4	933
12	SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nature Genetics, 2009, 41, 1238-1242.	9.4	862
13	Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell, 2017, 171, 950-965.e28.	13.5	738
14	Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell, 2017, 32, 204-220.e15.	7.7	642
15	Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature, 2012, 483, 484-488.	13.7	630
16	GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro-Oncology, 2017, 19, 139-141.	0.6	622
17	Toward understanding and exploiting tumor heterogeneity. Nature Medicine, 2015, 21, 846-853.	15.2	604
18	Mosaic Analysis with Double Markers Reveals Tumor Cell of Origin in Glioma. Cell, 2011, 146, 209-221.	13.5	571

#	Article	IF	CITATIONS
19	Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro-Oncology, 2020, 22, 1073-1113.	0.6	543
20	Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nature Structural and Molecular Biology, 2013, 20, 908-913.	3.6	524
21	Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell, 2016, 29, 723-736.	7.7	482
22	Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nature Genetics, 2017, 49, 349-357.	9.4	476
23	Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. Journal of Clinical Investigation, 2013, 123, 517-25.	3.9	462
24	Suppression of lung adenocarcinoma progression by Nkx2-1. Nature, 2011, 473, 101-104.	13.7	383
25	Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Research, 2015, 25, 316-327.	2.4	343
26	Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature, 2019, 575, 699-703.	13.7	343
27	Longitudinal molecular trajectories of diffuse glioma in adults. Nature, 2019, 576, 112-120.	13.7	320
28	Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica, 2009, 94, 131-134.	1.7	300
29	PathSeq: software to identify or discover microbes by deep sequencing of human tissue. Nature Biotechnology, 2011, 29, 393-396.	9.4	289
30	Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nature Genetics, 2020, 52, 891-897.	9.4	273
31	Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nature Genetics, 2011, 43, 964-968.	9.4	270
32	Integrative analysis of the melanoma transcriptome. Genome Research, 2010, 20, 413-427.	2.4	248
33	Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target. Journal of Clinical Investigation, 2018, 129, 137-149.	3.9	242
34	Predicting drug susceptibility of non–small cell lung cancers based on genetic lesions. Journal of Clinical Investigation, 2009, 119, 1727-1740.	3.9	230
35	Glioma: experimental models and reality. Acta Neuropathologica, 2017, 133, 263-282.	3.9	223
36	Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nature Reviews Cancer, 2019, 19, 283-288.	12.8	219

#	Article	IF	CITATIONS
37	Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. Nature Genetics, 2018, 50, 708-717.	9.4	212
38	EGFR heterogeneity and implications for therapeutic intervention in glioblastoma. Neuro-Oncology, 2018, 20, 743-752.	0.6	210
39	Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nature Genetics, 2020, 52, 294-305.	9.4	180
40	TumorFusions: an integrative resource for cancer-associated transcript fusions. Nucleic Acids Research, 2018, 46, D1144-D1149.	6.5	179
41	Exosomes from Glioma-Associated Mesenchymal Stem Cells Increase the Tumorigenicity of Glioma Stem-like Cells via Transfer of miR-1587. Cancer Research, 2017, 77, 5808-5819.	0.4	169
42	Essential role of Jun family transcription factors in PU.1 knockdown–induced leukemic stem cells. Nature Genetics, 2006, 38, 1269-1277.	9.4	167
43	The cellular origin for malignant glioma and prospects for clinical advancements. Expert Review of Molecular Diagnostics, 2012, 12, 383-394.	1.5	161
44	Sequential gain of mutations in severe congenital neutropenia progressing to acute myeloid leukemia. Blood, 2012, 119, 5071-5077.	0.6	156
45	PRADA: pipeline for RNA sequencing data analysis. Bioinformatics, 2014, 30, 2224-2226.	1.8	147
46	Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nature Genetics, 2018, 50, 1399-1411.	9.4	145
47	The Tandem Duplicator Phenotype Is a Prevalent Genome-Wide Cancer Configuration Driven by Distinct Gene Mutations. Cancer Cell, 2018, 34, 197-210.e5.	7.7	130
48	Genomic and Phenotypic Characterization of a Broad Panel of Patient-Derived Xenografts Reflects the Diversity of Glioblastoma. Clinical Cancer Research, 2020, 26, 1094-1104.	3.2	124
49	Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium. Neuro-Oncology, 2018, 20, 873-884.	0.6	119
50	A High Notch Pathway Activation Predicts Response to Î ³ Secretase Inhibitors in Proneural Subtype of Glioma Tumor-Initiating Cells. Stem Cells, 2014, 32, 301-312.	1.4	117
51	Immune checkpoint blockade as a potential therapeutic target: surveying CNS malignancies. Neuro-Oncology, 2016, 18, 1357-1366.	0.6	116
52	Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription. Cancer Cell, 2021, 39, 694-707.e7.	7.7	115
53	Single-cell multimodal glioma analyses identify epigenetic regulators of cellular plasticity and environmental stress response. Nature Genetics, 2021, 53, 1456-1468.	9.4	111
54	MGMT genomic rearrangements contribute to chemotherapy resistance in gliomas. Nature Communications, 2020, 11, 3883.	5.8	110

#	Article	IF	CITATIONS
55	A distal single nucleotide polymorphism alters long-range regulation of the PU.1 gene in acute myeloid leukemia. Journal of Clinical Investigation, 2007, 117, 2611-2620.	3.9	109
56	ZFHX4 Interacts with the NuRD Core Member CHD4 and Regulates the Glioblastoma Tumor-Initiating Cell State. Cell Reports, 2014, 6, 313-324.	2.9	106
57	Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4214-23.	3.3	105
58	Radiotherapy is associated with a deletion signature that contributes to poor outcomes in patients with cancer. Nature Genetics, 2021, 53, 1088-1096.	9.4	94
59	Multigene signature for predicting prognosis of patients with 1p19q co-deletion diffuse glioma. Neuro-Oncology, 2017, 19, 786-795.	0.6	87
60	Somatic mutation distributions in cancer genomes vary with three-dimensional chromatin structure. Nature Genetics, 2020, 52, 1178-1188.	9.4	79
61	Differential Regulation of Foxo3a Target Genes in Erythropoiesis. Molecular and Cellular Biology, 2007, 27, 3839-3854.	1.1	77
62	Very low mutation burden is a feature of inflamed recurrent glioblastomas responsive to cancer immunotherapy. Nature Communications, 2021, 12, 352.	5.8	77
63	A survey of intragenic breakpoints in glioblastoma identifies a distinct subset associated with poor survival. Genes and Development, 2013, 27, 1462-1472.	2.7	74
64	Molecular profiling of long-term survivors identifies a subgroup of glioblastoma characterized by chromosome 19/20 co-gain. Acta Neuropathologica, 2015, 130, 419-434.	3.9	74
65	Transcriptional regulatory networks of tumor-associated macrophages that drive malignancy in mesenchymal glioblastoma. Genome Biology, 2020, 21, 216.	3.8	73
66	Glioblastoma-Derived Epidermal Growth Factor Receptor Carboxyl-Terminal Deletion Mutants Are Transforming and Are Sensitive to EGFR-Directed Therapies. Cancer Research, 2011, 71, 7587-7596.	0.4	70
67	Src Inhibition with Saracatinib Reverses Fulvestrant Resistance in ER-Positive Ovarian Cancer Models <i>In Vitro</i> and <i>In Vivo</i> . Clinical Cancer Research, 2012, 18, 5911-5923.	3.2	69
68	Perspective of mesenchymal transformation in glioblastoma. Acta Neuropathologica Communications, 2021, 9, 50.	2.4	63
69	Live-Cell Imaging Shows Uneven Segregation of Extrachromosomal DNA Elements and Transcriptionally Active Extrachromosomal DNA Hubs in Cancer. Cancer Discovery, 2022, 12, 468-483.	7.7	63
70	Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer. Journal of Clinical Investigation, 2015, 125, 4625-4637.	3.9	62
71	Integrated cistromic and expression analysis of amplified <i>NKX2-1</i> in lung adenocarcinoma identifies <i>LMO3</i> as a functional transcriptional target. Genes and Development, 2013, 27, 197-210.	2.7	61
72	Reconstructing the molecular life history of gliomas. Acta Neuropathologica, 2018, 135, 649-670.	3.9	61

#	Article	IF	CITATIONS
73	Comparative Molecular Life History of Spontaneous Canine and Human Gliomas. Cancer Cell, 2020, 37, 243-257.e7.	7.7	59
74	BMP signaling mediates glioma stem cell quiescence and confers treatment resistance in glioblastoma. Scientific Reports, 2019, 9, 14569.	1.6	57
75	A cancer drug atlas enables synergistic targeting of independent drug vulnerabilities. Nature Communications, 2020, 11, 2935.	5.8	57
76	Mir-21–Sox2 Axis Delineates Glioblastoma Subtypes with Prognostic Impact. Journal of Neuroscience, 2015, 35, 15097-15112.	1.7	53
77	Ets Factors Regulate Neural Stem Cell Depletion and Gliogenesis in Ras Pathway Glioma. Cell Reports, 2015, 12, 258-271.	2.9	53
78	Predicting time to ovarian carcinoma recurrence using protein markers. Journal of Clinical Investigation, 2013, 123, 3740-50.	3.9	46
79	HUGO Gene Nomenclature Committee (HGNC) recommendations for the designation of gene fusions. Leukemia, 2021, 35, 3040-3043.	3.3	42
80	Novel therapeutic strategy for cervical cancer harboring FGFR3-TACC3 fusions. Oncogenesis, 2018, 7, 4.	2.1	41
81	PAF promotes stemness and radioresistance of glioma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9086-E9095.	3.3	40
82	Silent Mutations Make Some Noise. Cell, 2014, 156, 1129-1131.	13.5	33
83	Engineering and Functional Characterization of Fusion Genes Identifies Novel Oncogenic Drivers of Cancer. Cancer Research, 2017, 77, 3502-3512.	0.4	31
84	The evolutionary pattern of mutations in glioblastoma reveals therapy-mediated selection. Oncotarget, 2018, 9, 7844-7858.	0.8	29
85	Significance of Murine Retroviral Mutagenesis for Identification of Disease Genes in Human Acute Myeloid Leukemia. Cancer Research, 2006, 66, 622-626.	0.4	26
86	Studying a Complex Tumor. Cancer Journal (Sudbury, Mass), 2012, 18, 107-114.	1.0	26
87	<i>EGFR</i> Amplification Induces Increased DNA Damage Response and Renders Selective Sensitivity to Talazoparib (PARP Inhibitor) in Glioblastoma. Clinical Cancer Research, 2020, 26, 1395-1407.	3.2	26
88	MSK1-Mediated β-Catenin Phosphorylation Confers Resistance to PI3K/mTOR Inhibitors in Glioblastoma. Molecular Cancer Therapeutics, 2016, 15, 1656-1668.	1.9	25
89	Moving the needle: Optimizing classification for glioma. Science Translational Medicine, 2016, 8, 350fs14.	5.8	24
90	Spatiotemporal dynamics of clonal selection and diversification in normal endometrial epithelium. Nature Communications, 2022, 13, 943.	5.8	24

#	Article	IF	CITATIONS
91	Prognostic Relevance of Tumor Purity and Interaction with MGMT Methylation in Glioblastoma. Molecular Cancer Research, 2017, 15, 532-540.	1.5	23
92	Homozygous MTAP deletion in primary human glioblastoma is not associated with elevation of methylthioadenosine. Nature Communications, 2021, 12, 4228.	5.8	21
93	Spatial concordance of DNA methylation classification in diffuse glioma. Neuro-Oncology, 2021, 23, 2054-2065.	0.6	19
94	The polo-like kinase 1 inhibitor volasertib synergistically increases radiation efficacy in glioma stem cells. Oncotarget, 2018, 9, 10497-10509.	0.8	18
95	Prospective Clinical Sequencing of Adult Glioma. Molecular Cancer Therapeutics, 2019, 18, 991-1000.	1.9	15
96	Transcriptional mimicry by tumor-associated stroma. Nature Genetics, 2015, 47, 307-309.	9.4	14
97	Unifying Gene Expression Measures from Multiple Platforms Using Factor Analysis. PLoS ONE, 2011, 6, e17691.	1.1	12
98	Biphasic components of sarcomatoid clear cell renal cell carcinomas are molecularly similar to each other, but distinct from, nonâ€sarcomatoid renal carcinomas. Journal of Pathology: Clinical Research, 2015, 1, 212-224.	1.3	12
99	iGLASS: imaging integration into the Glioma Longitudinal Analysis Consortium. Neuro-Oncology, 2020, 22, 1545-1546.	0.6	12
100	Novel kinase fusion transcripts found in endometrial cancer. Scientific Reports, 2016, 5, 18657.	1.6	11
101	TMIC-14. TUMOR EVOLUTION OF GLIOMA INTRINSIC GENE EXPRESSION SUBTYPE ASSOCIATES WITH IMMUNOLOGICAL CHANGES IN THE MICROENVIRONMENT. Neuro-Oncology, 2016, 18, vi202-vi202.	0.6	11
102	Molecular and clonal evolution in recurrent metastatic gliosarcoma. Journal of Physical Education and Sports Management, 2020, 6, a004671.	0.5	10
103	A validated integrated clinical and molecular glioblastoma long-term survival-predictive nomogram. Neuro-Oncology Advances, 2021, 3, vdaa146.	0.4	10
104	Evolving Insights into the Molecular Neuropathology of Diffuse Gliomas in Adults. Neurologic Clinics, 2018, 36, 421-437.	0.8	9
105	Longitudinal genomic characterization of brain tumors for identification of therapeutic vulnerabilities: TableÂ1 Neuro-Oncology, 2016, 18, 1037-1039.	0.6	8
106	Doomed from the TERT? A Two-Stage Model of Tumorigenesis in IDH-Wild-Type Glioblastoma. Cancer Cell, 2019, 35, 542-544.	7.7	8
107	Seek and Destroy: Relating Cancer Drivers to Therapies. Cancer Cell, 2015, 27, 319-321.	7.7	5
108	Serum cell-free DNA epigenetic biomarkers aid glioma diagnostics and monitoring. Neuro-Oncology, 2021, 23, 1423-1424.	0.6	5

#	Article	IF	CITATIONS
109	Extrachromosomal DNA (ecDNA) carrying amplified oncogenes as a biomarker for insensitivity to pembrolizumab treatment in gastric cancer patients Journal of Clinical Oncology, 2020, 38, 3123-3123.	0.8	5
110	LUMOS - Low and Intermediate Grade Glioma Umbrella Study of Molecular Guided TherapieS at relapse: Protocol for a pilot study. BMJ Open, 2021, 11, e054075.	0.8	2
111	Intragenic breakpoint. Cell Cycle, 2013, 12, 3705-3706.	1.3	1
112	COMP-07. COMPARATIVE MOLECULAR LIFE HISTORY OF SPONTANEOUS CANINE AND HUMAN GLIOMA. Neuro-Oncology, 2018, 20, vi64-vi65.	0.6	1
113	RBTT-07. NUTMEG: A RANDOMISED PHASE II STUDY OF NIVOLUMAB AND TEMOZOLOMIDE (TMZ) VS TMZ ALONE IN ELDERLY PATIENTS WITH NEWLY DIAGNOSED GLIOBLASTOMA (GBM): TRIAL IN PROGRESS. Neuro-Oncology, 2018, 20, vi235-vi235.	0.6	1
114	EPID-23. PURSUIT OF AN INTERNATIONAL LANGUAGE OF GLIOMA RESEARCH: COMMON DATA ELEMENTS FOR THE LONGITUDINAL STUDY OF ADULT MALIGNANT GLIOMA. Neuro-Oncology, 2019, 21, vi79-vi79.	0.6	1
115	GENE-28. LONGITUDINAL MOLECULAR TRAJECTORIES OF DIFFUSE GLIOMA IN ADULTS. Neuro-Oncology, 2019, 21, vi103-vi103.	0.6	1
116	OMRT-3. Longitudinal analysis of diffuse glioma reveals cell state dynamics at recurrence associated with changes in genetics and the microenvironment. Neuro-Oncology Advances, 2021, 3, ii7-ii8.	0.4	1
117	EPIG-14EPIGENOMIC (DNA METHYLATION AND EXPRESSION) SIGNATURES DEFINE SUBSETS OF BOTH IDHmut AND IDHwt GLIOMA WITH DISTINCT CLINICAL OUTCOMES. Neuro-Oncology, 2015, 17, v89.2-v89.	0.6	0
118	GENO-36GLIOMA SPHERE-FORMING CELLS REVEAL INTRINSIC GLOBAL HYPERMETHYLATION ASSOCIATED WITH GBM RADIATION RESISTANCE. Neuro-Oncology, 2015, 17, v99.5-v100.	0.6	0
119	TMOD-31. AN INFLAMMATION RESPONSE GENE SIGNATURE IS ASSOCIATED WITH PROGNOSIS OF GLIOMA PATIENTS WITH 1p/19q CO-DELETION TUMORS. Neuro-Oncology, 2016, 18, vi213-vi213.	0.6	0
120	Navigating the Cancer Transcriptome by Decoding Divergent Oncogenic States. Cell Systems, 2017, 5, 90-92.	2.9	0
121	DDIS-03. EGFR AMPLIFICATION INDUCED INCREASED DNA DAMAGE RESPONSE AND PREDICTED SELECTIVE SENSITIVITY TO TALAZOPARIB (PARP INHIBITOR) IN GLIOBLASTOMA STEM-LIKE CELLS. Neuro-Oncology, 2018, 20, vi69-vi69.	0.6	0
122	IMMU-36. IMMUNE RESPONSES IN CANINE GLIOMAS ARE ENRICHED AT THE INFILTRATING EDGE OF ASTROCYTOMAS. Neuro-Oncology, 2018, 20, vi129-vi129.	0.6	0
123	TMOD-18. THE PATIENT DERIVED XENOGRAFT NATIONAL RESOURCE: A COMPREHENSIVE COLLECTION OF HIGH-GRADE GLIOMA MODELS FOR PRE-CLINICAL AND TRANSLATIONAL STUDIES. Neuro-Oncology, 2018, 20, vi272-vi272.	0.6	0
124	DRES-05. MOLECULAR EVOLUTION OF DIFFUSE GLIOMAS AND THE GLIOMA LONGITUDINAL ANALYSIS CONSORTIUM. Neuro-Oncology, 2018, 20, vi76-vi76.	0.6	0
125	PATH-48. THE DNA METHYLATION LANDSCAPE OF CORE AND PERIPHERAL DIFFUSE GLIOMA REGIONS SHOWS LITTLE SPATIAL SUBTYPE HETEROGENEITY AFTER CONSIDERING TUMOR PURITY. Neuro-Oncology, 2019, 21, vi154-vi154.	0.6	0
126	COMP-15. MOLECULAR AND CLONAL EVOLUTION IN RECURRENT METASTATIC GLIOSARCOMA. Neuro-Oncology, 2019, 21, vi64-vi64.	0.6	0

#	Article	IF	CITATIONS
127	GENE-40. CHARACTERIZING EPIGENETIC INTRATUMORAL HETEROGENEITY IN GLIOMA USING SINGLE-CELL BISULFITE SEQUENCING. Neuro-Oncology, 2019, 21, vi106-vi106.	0.6	0
128	GENE-57. COMPARATIVE MOLECULAR LIFE HISTORY OF SPONTANEOUS CANINE AND HUMAN GLIOMA. Neuro-Oncology, 2019, 21, vi110-vi110.	0.6	0
129	OTEH-10. Evolutionary trajectory of epigenomic of gliomas. Neuro-Oncology Advances, 2021, 3, ii12-ii12.	0.4	0
130	Abstract 2084: Single-cell multimodal glioma analyses reveal epigenetic regulators of cellular plasticity and environmental stress response. , 2021, , .		0
131	Abstract 2068: Radiotherapy is associated with a deletion signature that contributes to poor cancer patient outcomes. , 2021, , .		0
132	INNV-08. LOW AND INTERMEDIATE GRADE GLIOMA UMBRELLA STUDY OF MOLECULAR GUIDED THERAPIES (LUMOS) STUDY. Neuro-Oncology, 2021, 23, vi106-vi107.	0.6	0
133	EPCO-09. LONGITUDINAL ANALYSIS OF DIFFUSE GLIOMA REVEALS CELL STATE DYNAMICS AT RECURRENCE ASSOCIATED WITH CHANGES IN GENETICS AND THE MICROENVIRONMENT. Neuro-Oncology, 2021, 23, vi3-vi3.	0.6	0
134	TMOD-13. IDENTIFYING DRIVERS IN THE CONVERGING SYNTENIC REGIONS OF SPONTANEOUS CANINE AND PEDIATRIC HIGH-GRADE GLIOMA USING IMAGING BASED CRISPR-CAS9 ARRAY SCREEN. Neuro-Oncology, 2021, 23, vi218-vi218.	0.6	0
135	BIOM-41. LIVE-CELL IMAGING SHOWS UNEVEN SEGREGATION OF EXTRACHROMOSOMAL DNA ELEMENTS AND TRANSCRIPTIONALLY ACTIVE EXTRACHROMOSOMAL DNA CLUSTERS IN CANCER. Neuro-Oncology, 2021, 23, vi20-vi20.	0.6	0
136	EPCO-17. METHYLATION ANALYSIS OF MATCHED PRIMARY AND RECURRENT IDHmt ASTROCYTOMA; AN UPDATE FROM THE GLIOMA LONGITUDINAL ANALYSIS NL (GLASS-NL) CONSORTIUM. Neuro-Oncology, 2021, 23, vi5-vi5.	0.6	0
137	EPCO-27. GLIOMA SINGLE CELL MULTI-OMIC ANALYSES REVEALS REGULATORS OF PLASTICITY AND ADAPTIVE STRESS RESPONSE. Neuro-Oncology, 2020, 22, ii75-ii75.	0.6	0
138	EPCO-11. IN VIVO FUNCTIONAL GENOMIC SCREEN IDENTIFIES WISP1 AS AN OVEREXPRESSED DRIVER OF GLIOBLASTOMA. Neuro-Oncology, 2020, 22, ii71-ii71.	0.6	0
139	TMOD-13. RESEARCH RESOURCES FOR OLIGODENDROGLIOMA NOW AVAILABLE TO RESEARCH COMMUNITY. Neuro-Oncology, 2020, 22, ii230-ii230.	0.6	0
140	EPCO-29. EPIGENOMICS OF THE GLIOMA LONGITUDINAL ANALYSIS (GLASS) CONSORTIUM. Neuro-Oncology, 2020, 22, ii75-ii75.	0.6	0
141	EPCO-15. TUMOR TREATMENT WITH IONIZING RADIATION IS ASSOCIATED WITH A CLINICALLY RELEVANT DELETION SIGNATURE. Neuro-Oncology, 2020, 22, ii72-ii72.	0.6	0
142	EPCO-08. TUMOR-IMMUNE INTERACTIONS ARE DYNAMIC AND INFLUENCE THE EVOLUTIONARY TRAJECTORY OF ADULT DIFFUSE GLIOMA. Neuro-Oncology, 2020, 22, ii70-ii71.	0.6	0
143	BIOM-20. TUMOR-INTRINSIC AND PERIPHERAL FEATURES ASSOCIATE WITH SURVIVAL AFTER POLIO VIROTHERAPY IN RECURRENT GBM. Neuro-Oncology, 2021, 23, vi14-vi15.	0.6	0
144	EPCO-13. MULTIOMIC SINGLE NUCLEUS RNA- AND ATACseq PROFILING REVEALS REGULATORS OF GLIOMA CELL STATE DIVERSITY. Neuro-Oncology, 2021, 23, vi4-vi4.	0.6	0

#	Article	IF	CITATIONS
145	EPCO-09. STEREOTACTIC IMAGE-GUIDED EPIGENOME PROFILING REVEALS DIVERSE EVOLUTIONARY GROWTH ROUTES IN DIFFUSE GLIOMAS. Neuro-Oncology, 2020, 22, ii71-ii71.	0.6	0